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Abstract

We describe a pattern acquisition algorithm that learns, in an unsuper-
vised fashion, a streamlined representation of linguistic structures from a
plain natural-language corpus. This paper addresses the issues of learn-
ing structured knowledge from a large-scale natural language data set,
and of generalization to unseen text. The implemented algorithm repre-
sents sentences as paths on a graph whose vertices are words (or parts of
words). Significant patterns, determined by recursive context-sensitive
statistical inference, form new vertices. Linguistic constructions are rep-
resented by trees composed of significant patterns and their associated
equivalence classes. An input module allows the algorithm to be sub-
jected to a standard test of English as a Second Language (ESL) profi-
ciency. The results are encouraging: the model attains a level of per-
formance considered to be “intermediate” for 9th-grade students, de-
spite having been trained on a corpus (CHILDES) containing transcribed
speech of parents directed to small children.

1 Introduction

A central tenet of generative linguistics is that extensive innate knowledge of grammar is
essential to explain the acquisition of language from positive-only data [1, 2]. Here, we
explore an alternative hypothesis, according to which syntax is an abstraction that emerges
from exposure to language [3], coexisting with the corpus data within the same represen-
tational mechanism. Far from parsimonious, the representation we introduce allows partial
overlap of linguistic patterns or constructions [4]. The incremental process of acquisition
of patterns is driven both by structural similarities and by statistical information inherent
in the data, so that frequent strings of similar composition come to be represented by the
same pattern. The degree of abstraction of a pattern varies: it may be high, as in the case of
a frame with several slots, each occupied by a member of an equivalence class associated
with it, or low, as in the extreme case of idioms or formulaic language snippets, where there
is no abstraction at all [5, 6]. The acquired patterns represent fully the original data, and,
crucially, enable structure-sensitive generalization in the production and the assimilation of
unseen examples.

Previous approaches to the acquisition of linguistic knowledge, such asn-gram Hidden



Markov Models (HMMs) that use raw data, aimed not at grammar induction but rather at
expressing the probability of a sentence in terms of the conditional probabilities of its con-
stituents. In comparison, statistical grammar induction methods aim to identify the most
probable grammar, given a corpus [7, 8]. Due to the difficulty of this task, a majority of
such methods have focused on supervised learning [9]. Grammar induction methods that
do attempt unsupervised learning can be categorized into two classes: those that use cor-
pora tagged with part-of-speech information, and those that work with raw, untagged data.
The former includes such recent work as alignment-based learning [10], regular expression
(“local grammar”) extraction [11], and algorithms that rely on the Minimum Description
Length (MDL) principle [12].

The present work extends an earlier study [13] which offered preliminary results demon-
strating the feasibility of unsupervised learning of linguistic knowledge from raw data.
Here, we describe a new learning model and its implementation and extensive testing on a
large corpus of transcribed spoken language from the CHILDES collection [14] (the larger
corpora used in many other computational studies do not focus on children-directed lan-
guage). Our new results suggest that useful patterns embodying syntactic and semantic
knowledge of language can indeed be extracted from untagged corpora in an unsupervised
manner.

2 The ADIOS model

The ADIOS (Automatic DIstillation Of Structure) model has two components: (1) a Rep-
resentational Data Structure (RDS) graph, and (2) a Pattern Acquisition (PA) algorithm
that progressively refines the RDS in an unsupervised fashion. The PA algorithm aims to
detectsignificant patterns(SP): similarly structured sequences of primitives that recur in
the corpus. Each SP has an associatedequivalence class(EC), which is a set of alternative
primitives that may fit into the slot in the SP to construct a given path through the graph
(see Figure 1a). The manner whereby the model supports generalization is exemplified in
Figure 1c. The algorithm requires neither prior classification of the primitives into syntac-
tic categories, nor even a pre-setting of their scope: it can bootstrap itself from a corpus in
which all the words have been broken down into their constituent characters.

One of the few free parameters in the earlier version of the model, ADIOS1, was the
lengthL of the typical pattern the system was expected to acquire. Although presetting
the value ofL sufficed to learn simple artificial grammars, it proved to be problematic for
natural language corpora. On the one hand, a small value ofL led to over-generalization,
because of insufficient uniformity of ECs associated with short SPs (not enough context
sensitivity). On the other hand, using large values ofL in conjunction with the ADIOS1
statistical learning algorithm did not lead to the emergence of well-supported SPs. The
ADIOS2 model addresses this issue by first identifying long significant paths (SPATH) in
the graph, then analyzing theirk-gram statistics to identify short significant patterns SP.

2.1 Step 1: identifying a significant path

For eachpathi (sequence of elementse1 → e2 → . . .→ ek) longer than a given threshold,
the algorithm constructs a setP = {p1, . . . , pm} of paths of the same length aspathi.
Each of the paths inP(pathi) consists of the same non-empty prefix (some sequence of
graph edges), an equivalence class of vertices, and the same non-empty suffix (another
sequence of edges); as an example, consider the set of three paths starting with ‘is’ and
ending with the end of sentence symbol ‘END’ in Figure 1. Each such set is assigned a
scoreS(P) .=

∑
j s(pathj), with s(·) defined by eq. 1. This score assesses the likelihood

thatP captures a significant regularity rather than a random fluctuation in the data. The set
with the maximal score in a given pass over the corpus is the SPATH.
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Figure 1: (a) A small portion of the RDS, which is a directed multi-graph, for a simple
corpus containing sentences #101 (is that a cat?) #102 (is that a dog?) #103 (and is
that a horse?) #104 (where is the dog?). Each sentence is depicted by a solid colored
line; edge direction is marked by arrows and is labeled by the sentence number and within-
sentence index. The sentences in this example join a patternis that a {dog, cat, horse}
?. (b). The abstracted pattern and the equivalence class associated with it are highlighted
(edges that belong to sequences not subsumed by this pattern, e.g., #104, are untouched).
(c) The identification of new significant patterns is done using the acquired equivalence
classes (e.g., #200). In this manner, the system “bootstraps” itself, recursively distilling
more and more complex patterns. This kind of abstraction also supports generalization: the
original three sentences (shaded paths) form a pattern with two equivalence classes, which
can then potentially generate six new sentences (e.g.,the cat is play-ing andthe horse is
eat-ing).

s(pathi) = P (k)(pathi) log
(
P (k)(pathi)/P (2)(pathi)

)
(1)

P (k)(pathi) = P (e1)P (e2|e1)P (e3|e1 → e2)...P (ek|e1 → e2 → ...→ ek−1) (2)

P (2)(pathi) = P (e1)P (e2|e1)P (e3|e2)...P (ek|ek−1) (3)

The algorithm estimates the probabilities of different paths from the respectivek-gram
statistics (k being the length of the paths in the set under consideration), as per eq. 2. We
observe thatP (1)(pathi) corresponds to the “first order” probability of choosing the set of
nodese1, . . . , ek without taking into account their sequential order along the path. Thus,
P (1)(pathi) = P (e1)P (e2)P (e3) . . . P (ek). In comparison,P (2) (see eq. 3) is a better
candidate for identifying significantstrings, as opposed to mere sets of nodes, because it
takes into account the sequence of nodes along the path.

2.2 Step 2: identifying a significant pattern

Once the SPATH set is determined, the algorithm calculates the degree of cohesioncij
for each one of its member sub-paths, according to eq. 4. Thek-gram matrix in eq. 4
accumulates all the statistics through orderkth − 1 of the SPATH embedded in the graph,



with the zeroth order statistics located at the diagonal. The sub-path with the highestc-
score is now tagged as a Significant Pattern.

Our experience shows that the two-stage mechanism just described induces coherent equiv-
alence classes, leading to the formation of meaningful short patterns. The new pattern is
added as a new vertex to the RDS graph, replacing the elements and edges it subsumes
(Figure 1(b)). Note that only those edges of the multi-graph that belong to the detected
pattern are rewired; edges that belong to sequences not subsumed by the pattern are left
intact. This highly context-sensitive method of pattern abstraction, which is unique to our
approach, allows ADIOS to achieve a high degree of representational parsimony without
sacrificing generalization power.

P
.=



e1 e2 e3 ... ek

p(e1) p(e1|e2) p(e1|e2e3) ... p(e1|e2e3...ek)
p(e2|e1) p(e2) p(e2|e3) ... p(e2|e3e4...ek)
p(e3|e1e2) p(e3|e2) p(e3) ... p(e3|e4e5...ek)

...
...

...
...

p(ek|e1e2...ek−1) p(ek|e2e3...ek−1) p(ek|e3e4...ek−1) ... p(ek)


cij = Pij log

Pij
Pi−1,jPi,j+1

for i > j (4)

During the pass over the corpus, the list of equivalence sets is updated continuously; new
significant patterns are found using thecurrentequivalence classes. For each set of candi-
date paths, the algorithm tries to fit one or more equivalence classes from the pool it main-
tains. Because an element can a appear in several classes, the algorithm must check dif-
ferent combinations of equivalence classes. The winner combination is always the largest
class for which most of the members are found among the candidate paths in the set (the
ratio between the number of members that have been found among the paths and the total
number of members in the equivalence class is compared to a fixed threshold as one of the
configuration acceptance criteria). When not all the members appear in an existing set, the
algorithm creates a new equivalence class containing only those members that do. Thus,
as the algorithm processes more and more text, it bootstraps itself and enriches the RDS
graph structure with new SPs and their accompanying equivalence sets. The recursive na-
ture of this process enables the algorithm to form more and more complex patterns, in a
hierarchical manner.

The relationships among the distilled patterns can be visualized in a tree format, with tree
depth corresponding to the level of recursion (e.g., Figure 2). Such a tree can be seen as
a blueprint for creating acceptable (“grammatical”) sequences of elements (strings). The
number of all possible string configurations can be estimated and compared to the number
of examples seen in the training corpus. The reciprocal of their ratio,η, is the generalization
factor, which can be calculated for each pattern in the RDS graph (e.g., in Figure 1(c),
η = 0.33). Patterns whose significance scoreS and generalization factorη are beneath
certain thresholds are rejected. The algorithm halts if it processes a given amount of text
without finding a new significant pattern or equivalence set (in real language acquisition
this process may never stop).

2.3 The test module

A collection of patterns distilled from a corpus can be seen as a kind of empirically de-
termined construction grammar; cf. [5], p.63. The patterns can eventually become highly
abstract, thus endowing the model with an ability to generalize to unseen inputs. In pro-
duction, generalization is possible, for example, when two equivalence classes are placed
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Figure 2: Two typical patterns extracted from a subset of the CHILDES collection [14].
Hundreds of such patterns and equivalence classes (underscored) together constitute a con-
cise representation of the raw data. Some of the phrases that can be described/generated
by patterns #16555 and #16543 are:let’s change her...; I thought you gonna change
her...; I was going to go to the.... None of these sentences appear in the training data,
illustrating the ability of ADIOS to generalize. The numbers in parentheses denote the
generalization factorη of the patterns and their components (e.g., pattern #16555 gener-
ates86% new strings, while pattern #16543 generates75% new strings). The generation
process, which operates as a depth-first search of the tree corresponding to a pattern, is
illustrated on the left. For each non-terminal, the children are scanned from left to right;
for each equivalence class (underscored), one member is chosen. The scan continues from
the node corresponding to that member, with the elements reached at the terminal nodes
being written out.

next to each other in a pattern, creating new paths among the members of the equivalence
classes. In comprehension, generalization can also ensue from partial activation of existing
patterns by novel inputs. This function is supported by thetest module, designed to process
a novel sentence by forming its distributed representation in terms of activities of existing
patterns (a similar approach has been proposed for novel object and scene representation
in vision [15]). These values, which can be used to support grammaticality judgment, are
computed by propagating activation from bottom (the terminals) to top (the patterns) of the
RDS. The initial activitiesaj of the terminalsej are calculated given the novel stimulus
s1, . . . , sk as follows:

aj = max
l=1..k

{
P (sl, ej) log

P (sl, ej)
P (sl)P (ej)

}
(5)

whereP (sl, ej) is the joint probability ofsl andej appearing in the same equivalence class,
andP (sl) andP (ej) are the probabilities ofsl andej appearing in any equivalence class.
For an equivalence class, the value propagated upwards is the strongest non-zero activation
of its members; for a pattern, it is the average weight of the children nodes, on the condition
that all the children were activated by adjacent inputs. Activity propagation continues until
it reaches the top nodes of the pattern lattice. When the algorithm encounters a novel word,
all the members of the terminal equivalence class contribute a value ofε = 0.01, which is
then propagated upwards as usual. This enables the model to make an educated guess as to
the meaning of the unfamiliar word, by considering the patterns that become active.



3 Empirical results

3.1 Working with real data: the CHILDES’ parents

To illustrate the scalability of our method, we describe here briefly the outcome of applying
the PA algorithm to a subset of the CHILDES collection [14], which consists of transcribed
speech produced by, or directed at, children. The corpus we selected contained 300,000
sentences (1.3 million tokens) produced by parents. The following results were derived
from a snapshot of the algorithm’s state after 14 real-time days. Working at a rate of 250
patterns per day, the algorithm identified 3400 patterns and 3200 equivalence classes, rep-
resenting the corpus in terms of these elements. The outcome (for some examples, see
Figure 2) was encouraging: the algorithm found intuitively significant SPs and produced
semantically adequate corresponding equivalence sets. The algorithm’s considerable abil-
ity to recombine and reuse constructions it learns is illustrated by the following examples,
in which a few of the sentences generated by ADIOS (left) are shown alongside sentences
from CHILDES described by the same compositions of patterns:

ADIOS CHILDES (parents’ speech)
what doe s Spot say ? where doe s it go ?
I don ’t think it ’ s good ! that ’ s good !
it ’ s gon ta go first . dog ’ s gon ta eat first .
there ’ s a cup and there ’ s some lamb s . there ’ s a table and there ’ s some chair s .

3.2 Novel inputs

We have assessed the ability of the ADIOS model to deal with novel inputs by training it
on the CHILDES collection and then subjecting it to a grammaticality judgment test, in
the form of multiple choice questions used in English as Second Language (ESL) classes.
The particular test (http://www.forumeducation.net/servlet/pages/vi/mat/gram/dia001.htm)
has been administered to more than10, 000 people in the G̈oteborg (Sweden) education
system as a diagnostic tool when assessing students on upper secondary levels (that is,
children who typically had 9 years of school, but only 6-7 years of English; a test designed
for assessing proficiency of younger subjects in their native language would be more suit-
able, but is not available). The test consists of100 three-choice questions; a score lower
than50% is considered pre-intermediate,50%−70% intermediate, and a score greater than
70% – advanced, with65% being the average score for the population mentioned. For each
of the three choices in a given question, our algorithm provided a grammaticality score.
The choice with the highest score was declared as the winner; if two choices received the
same top score, the answer was “don’t know”. The algorithm’s performance in this test at
different stages of learning is plotted in Figure 3 versus the number of corpus sentences that
have been processed. Over the course of training, the proportion of questions that received
a definite answer grew (solid curve), while the proportion of correct answers remained
around60% (dashed curve).

The best results were achieved with the ensemble of patterns distilled from two separate
runs (two different generalization factors were applied in each run: 0.01 and 0.05). As
a benchmark, we compared the performance of ADIOS in this test with that of a word
bi-gram model. The latter was tested using the same procedure as ADIOS, except that
significant patterns in the bi-gram model were defined as all the word pairs in the corpus
(we emphasize that there is no training phase in the bi-gram model, as all the “patterns” are
already available in the raw data). ADIOS outperformed the bi-gram model by answering
50% of the questions with60% hits, compared to20% of the questions with only45% hits
for the latter (note that chance performance in this test is33%).
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Figure 3: The performance of ADIOS2 in an ESL test based on grammaticality judgment,
plotted against the number of sentences (paths) scanned during training. The solid curve
represents the percentage of questions with a valid answer; the dashed curve shows the
percentage of correct answers.

4 Concluding remarks

The ADIOS model incrementally learns the (morpho)syntax of English from “raw” in-
put by distilling structural regularities (which can be thought of as constructions [16, 4])
from the accrued statistical co-occurrence and contextual cues. The resulting pattern-based
representations are more powerful than finite automata because of their potential for re-
cursion. Their depth, however, is not unbounded (rather, it is driven by the demands of
the training data), a limitation that actually makes ADIOS a better candidate model for
psycholinguistics (cf. the human limitations on processing recursion [17]). The patterns
learned by ADIOS are also more powerful than context-free rewriting rules, because of
their conservative nature: members of an equivalence class are only ever considered as in-
terchangeable in a specific context, a characteristic that distinguishes ADIOS from related
approaches [18, 10, 9]. On the one hand, this results in larger – but not unmanageable –
demands on memory (more patterns need to be stored); on the other hand, crucially, it leads
to efficient unsupervised probabilistic learning, and subsequent judicious use, of linguistic
knowledge.

The ultimate goal of this project is to address the entire spectrum of English syntax-related
phenomena (and, eventually, semantics, which, as the construction grammarians hold, is
intimately connected to syntax [16, 4]). With respect to some of these, the ADIOS model
is already known to behave reasonably: for example, subject-verb agreement (even long-
range) is captured properly, due to the conservative structured pattern abstraction. While
providing empirical evidence that can be brought to bear on the poverty of the stimulus
argument for innateness, our work does not, of course, resolve completely the outstanding
issues. In particular, the treatment of many aspects of syntax such as anaphora, auxiliaries,
wh-questions, passive, control, etc. [19], awaits both further computational experimentation
and further theoretical work.
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