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Abstract

We describe a unified framework for the understanding of structure rep-
resentation in primate vision. A model derived from this framework is
shown to be effectively systematic in that it has the ability to interpret
and associate together objects that are related through a rearrangement
of common “middle-scale” parts, represented as image fragments. The
model addresses the same concerns as previous work on compositional
representation through the use of what+where receptive fields and atten-
tional gain modulation. It does not require prior exposure to the individ-
ual parts, and avoids the need for abstract symbolic binding.

1 The problem of structure representation

The focus of theoretical discussion in visual object processing has recently started to shift
from problems of recognition and categorization to the representation of object structure.
Although view- or appearance-based solutions for these problems proved effective on a
variety of object classes [1], the “holistic” nature of this approach – the lack of explicit
representation of relational structure – limits its appeal as a general framework for visual
representation [2].

The main challenges in the processing of structure are productivity and systematicity, two
traits commonly attributed to human cognition. A visual system is productive if it is open-
ended, that is, if it can deal effectively with a potentially infinite set of objects. A visual
representation is systematic if a well-defined change in the spatial configuration of the ob-
ject (e.g., swapping top and bottom parts) causes a principled change in the representation
(e.g., the interchange of the representations of top and bottom parts [3, 2]). A solution
commonly offered to the twin problems of productivity and systematicity is compositional
representation, in which symbols standing for generic parts drawn from a small repertoire
are bound together by categorical symbolically coded relations [4].

2 The Chorus of Fragments

In visual representation, the need for symbolic binding may be alleviated by using location
in the visual field in lieu of the abstract frame that encodes object structure. Intuitively, the



constituents of the object are then bound to each other by virtue of residing in their proper
places in the visual field; this can be thought of as a pegboard, whose spatial structure
supports the arrangement of parts suspended from its pegs. This scheme exhibits shallow
compositionality, which can be enhanced by allowing the “pegboard” mechanism to op-
erate at different spatial scales, yielding effective systematicity across levels of resolution.
Coarse coding the constituents (e.g., representing each object fragment in terms of its sim-
ilarities to some basis shapes) will render the scheme productive. We call this approach to
the representation of structure the Chorus of Fragments (CoF; [5]).

2.1 Neurobiological building blocks

What+Where cells. The representation of spatially anchored object fragments postulated
by the CoF model can be supported by what+where neurons, each tuned both to a certain
shape class and to a certain range of locations in the visual field. Such cells have been
found in the monkey in areas V4 and posterior IT [6], and in the prefrontal cortex [7].

Attentional gain fields. To decouple the representation of object structure from its location
in the visual field, one needs a version of the what+where mechanism in which the response
of the cell depends not merely on the location of the stimulus with respect to fixation (as in
classical receptive fields), but also on its location with respect to the focus of attention. In-
deed, modulatory effects of object-centered attention on classical RF structure (gain fields)
have been found in area V4 [8].

2.2 Implemented model

Our implementation of the CoF model involves what+where cells with attention-modulated
gain fields, and is aimed at productive and systematic treatment of composite shapes in
object-centered coordinates. It operates directly on gray-level images, pre-processed by a
model of the primary visual cortex [9], with complex-cell responses modified to use the
MAX operation suggested in [10]. In the model, one what+where unit is assigned to the
top and one to the bottom fragment of the visual field, each extracted by an appropriately
configured Gaussian gain profile (Figure 2, left). The units are trained (1) to discriminate
among five objects, (2) to tolerate translation within the hemifield, and (3) to provide an
estimate of the reliability of its output, through an autoassociation mechanism attempting
to reconstruct the stimulus image [11, 12]. Within each hemifield, the five outputs of a unit
can provide a coarse coding of novel objects belonging to the familiar category, in a manner
useful for translation-tolerant recognition [13]. The reliability estimate carries information
about category, allowing outputs for objects from other categories to be squelched. Most
importantly, due to the spatial localization of the unit’s receptive field, the system can
distinguish between different configurations of the same shapes, while noting the fragment-
wise similarities.

We assume that during learning the system performs multiple fixations of the target ob-
ject, effectively providing the what+where units with a basis for spanning the space of
stimulus translations. It is up to the model, however, to figure out that the objects may be
composed of recurring fragments, and to self-organize in a manner that would allow it to
deal with novel configurations of those fragments. This problem, which arises both at the
level of fragments and of their constituent features, can be addressed within the Minimum
Description Length (MDL) framework.

Specifically, we propose to construct receptive fields (RFs) for composite objects so as
to capture the deviation from independence between the probability distributions of the
responses of RFs tuned to their fragments. This implies a savings in the description length
of the composite object. Suppose, for example, that ����� is the response of a unit tuned
roughly to the top half of the character 6 and ����� – the response of a unit tuned to its
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Figure 1: Left: the CoF model conceptualized as a “computation cube” trained to distin-
guish among three fragments (1, 6, 9), each possibly appearing at two locations (above or
below the center of attention). A parallel may be drawn between the computation cube and
a cortical hypercolumn; in the inferotemporal cortex, cells selective for specific shapes may
be arranged in columns, with the dimension perpendicular to the cortical surface encoding
different variants of the same shape [14]. It is not known whether the attention-centered
location of the shape, which affects the responses of V4 cells [8], is mapped in an or-
derly fashion onto some physical dimension(s) of the cortex. Right: the estimation of the
marginal probabilities of shapes, which can be used to decide whether to allocate a unit
coding for their composition, can be carried out simply by summing the activities of units
along the different dimensions of the computation cube.

bottom half. The construction of a more complex RF combining the responses of these two
units will be justified when

��� ������� ��� ����� ��� �����	� ��� ��� �
� (1)

or, more practically, when some measure of deviation from independence between
��� ��� �	�

and
��� ��� � � is large (the simplest such measure would be the covariance, namely, the second

moment of the joint distribution but we believe that higher moments may also be required,
as suggested by the extensive work on measuring deviation from Gaussian distributions).

By this criterion, a composite RF will be constructed that recognizes the two “parts” of
the character 6 when they are appropriately located: the probability on the LHS of eq. 1
in that case would be proportional to ���
�	� , while the probability of the RHS would be
proportional to ���
�	��� (assuming that all characters are equiprobable, and that their frag-
ments never appear in isolation). At the same time, a composite RF tuned, say, to 6 above 3
(see section 3) will not be allocated, because the probability of such a complex feature as
measured by either the RHS or the LHS of eq. 1 is proportional to ���
�	��� . We note that
this feature analysis can be performed on the marginal probabilities of the corresponding
fragments, which are by definition less sensitive to image parameters such as the exact lo-
cation or scale, and can be based on a family of features (cf. Figure 1). A discussion of this
approach and of its relationship to the reconstruction constraint we impose when training
the fragment-tuned modules is beyond the scope of this paper.

A parallel can be drawn between the MDL framework just outlined and the findings con-
cerning what+where cells and gain fields in the shape processing pathway in the monkey
cortex. Under the interpretation we propose, the features at all levels of the hierarchy are
coarsely coded, and each feature is associated with a rough location in the visual field,



so that composite features necessarily represent more complex spatial structure than their
constituents, without separately implemented binding, and without a combinatorial prolif-
eration of features. The computational experiments described below concentrate on these
novel characteristics of our model, rather than on the standard MDL machinery.
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Figure 2: The CoF model, trained on five composite objects (1 over 6, 2 over 7, etc.).
Left: the model consists of two what+where units, responsible for the bottom and the
top fragments of the stimulus, respectively. Gain fields (boxes labeled below center
and above center) steer each input fragment to the appropriate unit. The learning
mechanism (R/C, for Reconstruction/Classification) was implemented as a radial basis
function network. The reconstruction error (

�
) modulates the classification outputs. Right:

training the model, viewed as a computation cube. Multiple fixations of the stimulus (of
which three are illustrated), along with Gaussian windows selecting stimulus fragments,
allow the system to learn what+where responses. A cell would only be allocated to a
given fragment if it recurs in the company of a variety of other fragments, as warranted
by the ratio between their joint probability and the product of the corresponding marginal
probabilities (cf. eq. 1 and Figure 1, right; this criterion has not yet been incorporated into
the CoF training scheme).

3 Computational experiments

We conducted three experiments that examined the properties of the structured represen-
tations emerging from the CoF model. The first experiment (reported elsewhere [13]), in-
volved animal-like shapes and aimed at demonstrating basic productivity and systematicity.
We found that the CoF model is capable of systematically interpreting composite objects to
which it was not previously exposed (for example, a half-goat and half-lion chimera is rep-
resented as such, by an ensemble of units trained to discriminate between three altogether
different animals).

In the second experiment, a version of the CoF model (Figure 2) was charged with learning
to reuse fragments of the members of the training set — five bipartite objects composed
of shapes of numerals from 1 through 0 — in interpreting novel compositions of the same
fragments. The gain field mechanism built into the CoF model allowed it to respond largely
systematically to the learned fragments even when these were shown in novel locations,
both absolute, and relative (Figure 3, left).

The third experiment addressed a basic prediction of the CoF model, stemming from its
reliance on what+where mechanisms: the interaction between effects of shape and location
in object representation. Such interaction had been found in a psychophysical study [15], in
which the task was 4-alternative forced-choice classification of two-part stimuli consisting



of simple geometric shapes (cube, cylinder, sphere, cone). The composite stimuli were
defined by two variables, shape and location, each of which could be same, neutral, or
different in the prime and the target (yielding 9 conditions altogether). Response times
of human subjects revealed effects of shape and location (what+where), but not of shape
alone; the pattern of priming across the nine conditions was replicated by the CoF model
(correlation between model and human data � � ��� ��� ), using the same stimuli as in the
psychophysical experiment.

1  2  3  4  5  6  7  8  9  0

1  2  3  4  5  6  7  8  9  0

above

below

above

below

0.1 0.05 0.01 0.005

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.50

0.25

0.75

1.00

mean
entropy
per unit

mean
correct
rate

1.25

1.50

1.75

2.00

Figure 3: Left: the response of the CoF model to a novel composite object, 6 (which only
appeared in the bottom position in the training set) over 3 (which was only seen in the top
position). The interpretations offered by the model were correct in 94 out of the 100 possi-
ble test cases (10 digits on top � 10 digits on the bottom) in this experiment. Note: in the
test scenario, each unit (above and below) must be fed each of the two input fragments
(above and below), hence the 20 bars in the plots of the model’s output. Right: the
non-monotonic dependence of the mean entropy per output unit (ordinate axis on the right;
dashed line) on the spread constant � of the radial basis functions (abscissa) indicates that
entropy alone should not be used as a training criterion in object representation systems.

4 Discussion

Because CoF relies on retinotopy rather than on abstract binding, its representation of spa-
tial structure is location-specific; so is the treatment of structure by the human visual sys-
tem, as indicated by a number of findings. For example, priming in a subliminal perception
task was found to be confined to a quadrant of the visual field [16]. The notion that the
representation of an object may be tied to a particular location in the visual field where it
is first observed is compatible with the concept of object file, a hypothetical record created
by the visual system for every encountered object, which persists as long as the object is
observed. Moreover, location (as it figures in the CoF model) should be interpreted relative
to the focus of attention, rather than retinotopically [17].

The idea that global relationships (hence, large-scale structure) have precedence over lo-
cal ones [18], which is central to our approach, has withstood extensive testing in the past
two decades. Even with the perceptual salience of the global and local structure equated,
subjects are able to process the relations among elements before the elements themselves
are identified [19]. More generally, humans are limited in their ability to represent spatial
structure, in that the representation of spatial relations requires spatial attention. For exam-
ple, visual search is difficult when targets differ from distractors only in the spatial relation
between their elements, as if “. . . attention is required to bind features . . . ” [20].



The CoF model offers a unified framework, rooted in the MDL principle, for the under-
standing of these behavioral findings and of the functional significance of what+where
receptive fields and attentional gain modulation. It extends the previous use of gain fields
in the modeling of translation invariance [21] and of object-centered hemi-neglect [22],
and highlights a parallel between what+where cells and probabilistic approaches to struc-
ture representation in computational vision (e.g., [23]). The representational framework we
described is both productive and effectively systematic. Specifically, it has the ability, as a
matter of principle, to recognize as such objects that are related through a rearrangement of
mesoscopic parts, without being taught those parts individually, and without the need for
abstract symbolic binding.
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