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1 Overview

This course states, motivates, and offers detailed support for the observation that cognition is fundamentally
a computational process [28]. Students are introduced to a number of conceptual tools for thinking about
natural behavior and the cognitive information processing that underlies it, including statistical learning from
experience and the use of patterns distilled from past experience in guiding future actions. The application of
these tools to the understanding of natural minds and to advancing the goals of artificial intelligence is illustrated
on selected examples drawn from the domains of perception, memory, motor control, action planning, problem
solving, decision making, reasoning, and creativity.

The material is conceptually advanced and moderately to highly technical. It is aimed at advanced under-
graduate students, as well as graduate students from psychology, neurobiology, computer science, and other
cognitive sciences. Prior exposure to statistical concepts and the scientific method is essential.

How to use this syllabus

• For each week, there’s a list of readings with references. Some of the readings are required, others are
optional. The references are also listed at the end of the syllabus, alphabetically by first author.

• For an alphabetical roster of select key ideas and topics, see section 4.

Readings

The recommended textbook is Computing the Mind: How the Mind Really Works (Oxford University Press,
2008). Additional readings (a zipped collection of PDFs) are available on the course Canvas site.

There are over 100 references listed at the end of this syllabus. Please do not be alarmed: this does not
mean that you are required to read all the papers on that list. Many of the references are there to provide entry
points into the technical literature on cognition for those of you who are interested in learning more about it
than what this course covers.

2 Notes for participants

This section contains essential information for participants: the inclusion statement,1 learning goals and prac-
tices, and credit requirements.

2.1 Diversity and inclusion

Computational Psychology is more diverse than many other courses at Cornell, in at least two respects. First,
it purposely ignores the traditional disciplinary boundaries, as cognitive science has done since its inception
(see the illustration on the next page). Accordingly, my plan is for us to freely mix concepts and topics from
psychology, mathematics, computer science, and neurobiology. Second, this course does not respect college and
program boundaries: historically, it has been attended and successfully completed by students from different
colleges and a variety of majors, among them psychology, neurobiology, engineering, information science,
computer science, and English, as well as by graduate and professional masters students.

1The remarks in section 2.1, which are specific to this course, are intended to supplement the official Cornell statement on diversity
and inclusion, which covers dimensions such as gender, race, socio-economic background, etc., and which can be found here: http:
//diversity.cornell.edu/.
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engineer computer scientist psychologist

psychologist neurologist psychologist neuroscientist

On the left, a group photograph of the (disciplinarily, but not otherwise, diverse) members of the Hixon Sym-
posium, held in 1948, which helped shape the modern integrative approach to brain/mind science. Left to
right: (seated) Halstead, Lashley, Klüver, Köhler, Lorente de Nó; (standing) Brosin, Jeffress, Weiss, Lindsley,
von Neumann, Nielsen, Gerard, Liddell. On the right, the cover of Embodiments of Mind (1965; [74]), a still
readable collection of papers by Warren McCulloch, the one member of the group who is absent from the group
photo.

This diversity makes inclusion particularly important; interestingly, it also makes it easier to attain, because
we can always “triangulate,” and thus better understand, every issue and concern from multiple disciplinary
and personal points of view. In such circumstances, the more each of you contributes to the discussion, the
more we all learn. Both myself and the TA are fully committed to having everyone’s questions and concerns
heard — both in class and outside — and to helping everyone succeed who is willing to invest the effort to do
so. In addition to our office hours, we are always available for meetings by appointment; we will also answer
promptly any questions posted on Canvas or emailed to us. Let us know if at any point during the semester you
have suggestions for making things work better; these may include additions to the present statement, which
will be included in periodic revisions, to be shared on Canvas.

2.2 Learning goals and opportunities

Active participation in this course should improve significantly your understanding of how the brain/mind
works, regardless of your disciplinary and personal background. In addition, upon its completion, you should
be able to:

• reflect on how different disciplines provide complementary insights into how the brain/mind works, and
how scholarship that cuts across disciplines can help integrate those insights;

• reflect on how people with different personal and educational backgrounds can join forces in solving
complex problems.
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Some of the instructional strategies and learning opportunities that we plan to use and make available to promote
these outcomes are as follows:

• The key conceptual framework that is stated, discussed, and applied in this course — the “levels of un-
derstanding” of complex information-processing systems (introduced in week 2) — is inherently geared
toward integrating multiple sources of data, methods of analysis, and formal models.

• The examples that will be used in class to illustrate various concepts will be drawn from a variety of
naturally diverse real-life situations.

• You will have opportunities to come up with your own examples, thus adding to the diversity of view-
points, enriching the abstract mathematical and computational concepts that are necessarily impersonal.

2.3 Best learning practices

In creating this course and keeping it up to date, I have in a sense been reprising the trajectory of my own
multidisciplinary educational background and research experience. For my undergraduate degree, I studied
electrical engineering. Following a stint in the military, I went back to school for an MSc and then a PhD in
computer science, so as to be able to work at the intersection of mathematics, philosophy, art, and science that
Doug Hofstadter described so alluringly in his Pulitzer-winning Gödel, Escher, Bach [53] (in cognitive science
and AI, this became known eventually as “the book that launched a thousand careers”). The main text for this
course, Computing the Mind [28], has been written with that great book as an inspiration.

The readings that are drawn from the textbook are specified by chapter, section, and subsection, but ideally
the book should be read in its entirety. The key concepts are marked in the text by SMALL CAPITALS and are
usually included in the index. The many margin notes may be ignored on the first reading to avoid distraction,
or you may want to take them in for an extra helping of (sometimes only marginally relevant) information or an
entertaining flight of fancy.

Additional readings come from a selection of more than 100 academic papers, some of which are decades-
old classics and some published less than a year ago. Don’t panic! Only a few of the papers, listed in the
references at the end of this document, are required reading. These are clearly marked in the week-by-week
syllabus. Furthermore, for some of the required papers, it will suffice to read only a few select sections. If in
doubt, please feel free to ask (in class or on Canvas).

When reading, always focus on the “big picture” and the key concepts and principles. Concepts and princi-
ples are also what I shall be trying to bring out during the lectures, which is why it is important that you attend.
Technical details (such as proofs of mathematical statements) and trivia (such as the names of researchers, with
the exception of a few luminaries) are secondary. Please bring any concerns about learning practices to my
office hours (or to the TA’s).

2.4 Credit and grading

There are no exams in this course. To get credit, do:

1. Attend the lectures; ask questions and participate in the discussion. If you must miss a lecture, please
send along an email with an explanation.

Zoom policy. [In case the course is moved online] Please make sure to use your full name as the screen
name. I would appreciate it if you keep your camera on during class, but I understand that this is not
always possible. I do not mind seeing people having coffee or a snack on camera (indeed, I miss smelling
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sandwiches being eaten in class, back in the times before the plague). If you have a question, wave your
hand; if I fail to notice it, type the question into the Chat window and the TA will alert me. Questions are
always welcome.

2. Weekly collaborative reading and annotation, to be completed by Monday midnight, the week after the
material is discussed in class. For each week, one of the PDF papers is marked below by ***. To read and
annotate these papers, use the Perusall app, linked from the Canvas Assignment for the corresponding
week. The collaborative reading assignments will be graded on a scale of 5 (excellent) to 0 (missing
work). Altogether 10 of the 14 weekly collaborative readings should be completed by the end of the
semester.

Guidelines for annotating the weekly collaborative readings. When you first click on an assignment,
you’ll be taken to the Perusall page, which will display a list of best practices for collaborative annotation.

3. Weekly micro-essay. Every Friday noon, submit a micro-essay on the weekly topic (on Canvas, in
response to the topic Assignment). Each essay will be graded on a scale of 5 (excellent) to 0 (missing
work). Submit up to 14 micro-essays; of these, the 10 best will count towards the final grade.

Guidelines for writing the micro-essays. Ideally, these should be just a couple of paragraphs each (some-
where between 100 and 300 words; never longer than 500 words). Use the default font of the Canvas
Assignment text input window. Hyperlinks to outside sources are allowed in support of certain claims, but
your text must stand alone (also, linking to irrelevant material will lose you points). Every week, we shall
publish a representative good essay (anonymized, of course). The essays will be run through Turnitin
(please remember that copying and pasting from any source without attribution is academic misconduct).

4. (Graduate students only, enrolled in Psych 6140.) In addition to the weekly readings and micro-essays,
submit a written summary of your impressions and lessons from the material, in an essay form (about
1000 words), by noon, Tuesday, May 17, via email to the instructor.

Final grade components:

Psych 3140 Psych 6140
Weekly collab readings: 40% 30%
Weekly micro-essays: 60% 50%
Final essay: – 20%

Up to 3 extra credits can be accrued by participating in the Psychology Department subject pool (SONA).
These will be added to the final score before it is converted into a letter grade.

The list of lecture topics and readings by week number and date begins on the next page. There is one page per
week, with the “Primary” (required) and “Other” (optional) readings listed separately. The weekly collaborative
readings are marked by ***. I have also included a few photographs of the authors of the papers, to offer you
a glimpse of the collective face of cognitive science; bibliographical entries for papers thus distinguished are
marked in boldface. Advanced readings (optional), which may be too long or too technical for casual perusal,
are marked in gray.

[The syllabus continues on the next page.]
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3 Lecture topics by date

3.1 Week 1 (1/25; 1/27): motivation

1.1 The subject matter of psychology. The fundamentality of computation [28]. Examples: (i) perception
— lightness, or estimating surface reflectance from images; (ii) thinking — planning, or estimating the
actions needed to attain a goal); (iii) action — motor control, or estimating the signals that need to be
sent to the muscles to execute the desired motion. A quick overview of computation: dynamical systems
[57, sections 1,2]; Turing Machines [6].

1.2 The blind men and the elephant. Four case studies: an abstract computational theory [1]; a single-cell
electrophysiology study [92]; an imaging study [51]; an engineering hack [75].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapters 1,2.

***[51] Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. Distributed
and overlapping representations of faces and objects in ventral temporal cortex. Science, 293:
2425–2430, 2001.

Other readings

[114] Wigner, E. P. The unreasonable effectiveness of mathematics in the natural sciences. Comm. Pure Appl.
Math., XIII:1–14, 1960.

[6] Barker-Plummer, D. Turing machines. In Zalta, E. N., editor, The Stanford Encyclopedia of Philosophy.
2007. Available online at http://plato.stanford.edu/archives/win2007/entries/turing-machine/.

Alumit Ishai

[92] Salzman, C. D., Britten, K. H., and Newsome, W. T. Cortical microstimulation
influences perceptual judgements of motion direction. Nature, 346:174–177, 1990.

[57] Hotton, S. and Yoshimi, J. Extending dynamical systems theory to model embodied
cognition. Cognitive Science, 35:444–479, 2010, sections 1,2.

[1] Anderson, J. R. ACT: A simple theory of complex cognition. American Psycholo-
gist, 51:355–365, 1996.

[75] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.
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3.2 Week 2 (2/1; 2/3): universal tools, I; methodology; levels of understanding; behavior

2.1 The nature of behavior. Dewey on the “reflex arc” concept [23]. Thurstone on the “stimulus-response”
fallacy [108]. The life of behavior [47].

2.2 Open your eyes! The general methodology: the Marr-Poggio program for neurosciences [28, ch.4]. A
worked-out example: sound localization in the barn owl [64, 73, 52].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapters 4,5.

[72] Marr, D. and Poggio, T. From understanding computation to understanding neural circuitry. Neuro-
sciences Res. Prog. Bull., 15:470–488, 1977.

[64] Joris, P. X., Smith, P. H., and Yin, T. C. T. Coincidence detection in the auditory system: 50 years after
Jeffress. Neuron, 21:1235–1238, 1998.

[23] Dewey, J. The reflex arc concept in psychology. Psychological Review, 3:357–370, 1896.

[108] Thurstone, L. L. The stimulus-response fallacy in psychology. Psychological Review, 30:354–369,
1923.

Alex Gomez-Marin

***[47] Gomez-Marin, A. and Ghazanfar, A. A. The life of behavior. Neuron, 104:
25–36, 2019.

Other readings

[30] Edelman, S. Vision, reanimated and reimagined. Perception, 41:1116–1127, 2012. Special issue on
Marr’s Vision.

[32] Edelman, S. The minority report: some common assumptions to reconsider in the modeling of the brain
and behavior. Journal of Experimental and Theoretical Artificial Intelligence, 28:751–776, 2016.

[52] Hazan, Y., Kra, Y., Yarin, I., Wagner, H., and Gutfreund, Y. Visual-auditory integration for visual search
a behavioral study in barn owls. Frontiers in Integrative Neuroscience, 9(11):1–12, 2015

[39] Embar, K., Mukherjee, S., and Kotler, B. P. What do predators really want? The role of gerbil energetic
state in determining prey choice by Barn Owls. Ecology, 95:280–285, 2014

Carolina Massa

[73] Massa, C., Gabelli, F. M., and Cueto, G. R. Using GPS tracking to determine
movement patterns and foraging habitat selection of the common barn-owl
(Tyto alba). Hornero, 30:7–12, 2015
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3.3 Week 3 (2/8; 2/10): universal tools, II: probability; Bayes

3.1 A probabilistic formulation of cognition [15]. The Bayesian framework [49].

3.2 The Bayesian approach, applied to lightness perception [10, sections 1,2,4].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapter 5; Appendix A.

***[15] Chater, N., Tenenbaum, J. B., and Yuille, A. Probabilistic models of cognition: Conceptual foundations.
Trends in Cognitive Sciences, 10:287–291, 2006.

[49] Griffiths, T. L. and Yuille, A. Technical introduction: A primer on probabilistic inference. Trends in
Cognitive Sciences, 10, 2006. Supplementary material. DOI: 10.1016/j.tics.2006.05.007.

[10] Brainard, D. H. and Freeman, W. T. Bayesian color constancy. J. Opt. Soc. Am. A, 14:1393–1411, 1997.

Other readings

Anya Hurlbert

[58] Hurlbert, A. Colour constancy. Current Biology, 17:R906–R907, 2007.
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3.4 Week 4 (2/15; 2/17): universal tools, III: representation, similarity, generalization

4.1 Perceptual representation spaces [28, ch.5]. The face space [63, 43]. Multidimensional scaling (MDS).

4.2 Similarity and generalization [28, ch.5]. Shepard’s Law [96, up to section “Mathematical Formulation”
only (inclusive)]. Deriving Shepard’s Law from the principle of efficient coding [99].

Primary readings

Alice O’Toole

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University
Press, New York, NY, 2008, chapter 5.

***[63] Jiang, F., Blanz, V., and O’Toole, A. J. Probing the visual representation of
faces with adaptation: A view from the other side of the mean. Psychological
Science, 17:493–500, 2006.

[96] Shepard, R. N. Toward a universal law of generalization for psychological science.
Science, 237:1317–1323, 1987.

[99] Sims, C. R. Efficient coding explains the universal law of generalization in human
perception. Science, 360:652–656, 2018.

Other readings

[97] Shepard, R. N. How a cognitive psychologist came to seek universal laws. Psychonomic Bulletin &
Review, 11(1):1–23, 2004.

[106] Tenenbaum, J. B. and Griffiths, T. L. Generalization, similarity, and Bayesian inference. Behavioral and
Brain Sciences, 24:629–641, 2001.

[31] Edelman, S. Varieties of perceptual truth and their possible evolutionary roots. Psychonomic Bulletin
and Review, 22:1519–1522, 2015. doi: 10.3758/s13423-014-0741-z.

Susan Chipman

[98] Shepard, R. N. and Chipman, S. Second-order isomorphism of internal repre-
sentations: Shapes of states. Cognitive Psychology, 1:1–17, 1970.
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3.5 Week 5 (2/22, 2/24): universal tools, IV: veridical representation; memory

5.1 Veridical representation in perception [38, 19]. Representation is representation of similarities [26].

5.2 Memory for things, places, and events [28, ch.6]; [109, 113].

Primary readings

Kalanit
Grill-Spector

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University
Press, New York, NY, 2008, chapter 5.

[38] Edelman, S., Grill-Spector, K., Kushnir, T., and Malach, R. Towards direct vi-
sualization of the internal shape representation space by fMRI. Psychobiology,
26:309–321, 1998.

***[19] Cutzu, F. and Edelman, S. Faithful representation of similarities among three-
dimensional shapes in human vision. Proceedings of the National Academy of
Science, 93:12046–12050, 1996.

Charles H. Turner

[109] Turner, C. H. The behavior of a snake. Science, 30:563–564, 1909.

[113] Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N.,
and Behrens, T. E. J. The Tolman-Eichenbaum Machine: Unifying space and re-
lational memory through generalization in the hippocampal formation. Cell, 183:
1–15, 2020. doi: 10.1016/j.cell.2020.10.024.

Other readings

[26] Edelman, S. Representation is representation of similarity. Behavioral and Brain Sciences, 21:449–498,
1998.

[27] Edelman, S. Representation and recognition in vision. MIT Press, Cambridge, MA, 1999.

[93] Samadi, H., Dona, G., and Chittka, L. Charles H. Turner, pioneer in animal cognition. Science, 370:
530–531, 2020. doi: 10.1126/science.abd8754.
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3.6 Week 6 (3/1; 3/3): [February break]; memory

6.1 [No class.]

6.2 Associative memory [28, ch.6] and locality-sensitive hashing [3, 36].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapter 6.

Reza Shahbazi

[36] Edelman, S. and Shahbazi, R. Renewing the respect for similarity. Frontiers
in Computational Neuroscience, 6:45, 2012 (through section 7).

Other readings

[3] Andoni, A. and Indyk, P. Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. Communications of the ACM, 51:117–122, 2008.
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3.7 Week 7 (3/8; 3/10): actions and consequences

7.1 Managing action. The basics of motor control [115]. Bayesian motor decision making [67].

7.2 Action and reward. Reinforcement learning (RL) [117] and its relationship to Bayes. Hierarchical RL
[8].

Primary readings

[115] Wise, S. P. and Shadmehr, R. Motor control. In Ramachandran, V. S., editor, Encyclopedia of the Human
Brain, volume 3, pages 137–157. Academic Press, San Diego, CA, 2002.

***[67] Körding, K. P. and Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends in Cognitive
Sciences, 10:319–326, 2006.

[117] Wolpert, D. M., Diedrichsen, J., and Flanagan, J. R. Principles of sensorimotor learning. Nature Reviews
Neuroscience, 12:739–751, 2011.

Other readings

Yael Niv

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University
Press, New York, NY, 2008, chapter 6.

[116] Woergoetter, W. and Porr, B. Reinforcement learning. Scholarpedia, 3(3):1448,
2007.

[9] Botvinick, M. M., Niv, Y., and Barto, A. C. Hierarchically organized behavior and
its neural foundations: A reinforcement learning perspective. Cognition, 113:262–
280, 2009.

[105] Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., and Botvinick, M. M. Optimal
behavioral hierarchy. PLOS Computational Biology, 10(8):e1003779, 2014.
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3.8 Week 8 (3/15; 3/17): higher cognition, I: language

8.1 The structure of language [28, ch.7] and its use [25]. A functionalist approach to linguistic structure [46].

8.2 A computational framework for language and other sequential behaviors [33].

Primary readings

Adele Goldberg

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University
Press, New York, NY, 2008, chapter 7.

[25] Du Bois, J. W. Towards a dialogic syntax. Cognitive Linguistics, 25:359–410, 2014.

[46] Goldberg, A. E. Subtle implicit language facts emerge from the functions of
constructions. Frontiers in Psychology, 6:2019, 2016.

***[33] Edelman, S. Language and other complex behaviors: unifying characteristics, com-
putational models, neural mechanisms. Language Sciences, 62:91–123, 2017.

Other readings

[103] Solan, Z., Horn, D., Ruppin, E., and Edelman, S. Unsupervised learning of natural languages. Proceed-
ings of the National Academy of Science, 102:11629–11634, 2005.

[66] Kolodny, O., Lotem, A., and Edelman, S. Learning a generative probabilistic grammar of experience: a
process-level model of language acquisition. Cognitive Science, 39:227–267, 2015.
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3.9 Week 9 (3/22; 3/24): higher cognition, II: reasoning; induction

9.1 Graphical models (Bayesian Networks) and reasoning [28, ch.8].

9.2 Induction [107].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapter 8.

***[107] Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D. How to grow a mind: statistics,
structure, and abstraction. Science, 331:1279–1285, 2011.

Other readings

Judea Pearl

[82] Pearl, J. Theoretical impediments to machine learning with seven sparks from
the causal revolution. arXiv e-prints, art. arXiv:1801.04016, January 2018.
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3.10 Week 10 (3/29; 3/31): higher cognition, III: intelligence; problem solving, analogy

10.1 General intelligence and IQ [48, 77, 5].

10.2 Problem solving [28, ch.8]. Analogy [55] and creativity [54].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapter 8.

[54] Hofstadter, D. R. Variations on a theme as the crux of creativity. In Metamagical Themas, chapter 12,
pages 232–259. Viking, Harmondsworth, England, 1985.

[55] Hofstadter, D. R. Analogy as the core of cognition. In Gentner, D., Holyoak, K. J., and Kokinov,
B. N., editors, The Analogical Mind: Perspectives from Cognitive Science, pages 499–538. MIT Press,
Cambridge MA, 2001.

Helen E. Davis

[20] Davis, H. E. Variable Education Exposure and Cognitive Task Performance
Among the Tsimane, Forager-Horticulturalists. PhD thesis, University of New
Mexico, 2014. URL https://digitalrepository.unm.edu/anth_etds/
17.

***[5] Baker, D. P., Eslinger, P. J., Benavides, M., Peters, E., Dieckmann, N. F., and Leon,
J. The cognitive impact of the education revolution: A possible cause of the Flynn
Effect on population IQ. Intelligence, 49:144–158, 2015.

Other readings

[48] Gottfredson, L. S. Life, death, and intelligence. Journal of Cognitive Education and Psychology, 1:
23–46, 2004.

[77] Nisbett, R. E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D. F., and Turkheimer, E. Intelli-
gence: new findings and theoretical developments. American Psychologist, 2012.

[91] Ritchie, S. J. and Tucker-Drob, E. M. How much does education improve intelligence? A meta-analysis.
Psychological Science, 29:1358–1369, 2018.
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3.11 Week 11 (4/12; 4/14): intro to neural computation; neurons, I

11.1 Introduction to neural computation. Brains and neurons. Cortical receptive fields (RFs), maps [113], and
hierarchies [28, ch.2,3]. Channel coding and hyperacuity [101].

11.2 What do neurons do?

Projection:

– neurons as readout devices [12];

– neurons, random projections, and similarity [36, 70].

Kernels:

– landmarks in representation spaces, similarity, and kernels [95].

Primary readings

[28] Edelman, S. Computing the mind: how the mind really works. Oxford University Press, New York, NY,
2008, chapters 2,3.

György Buzsáki

***[12] Buzsáki, G. Neural syntax: cell assemblies, synapsembles, and readers. Neu-
ron, 68:362–385, 2010.

[113] Whittington, J. C. R., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N.,
and Behrens, T. E. J. The Tolman-Eichenbaum Machine: Unifying space and re-
lational memory through generalization in the hippocampal formation. Cell, 183:
1–15, 2020. doi: 10.1016/j.cell.2020.10.024.

[36] Edelman, S. and Shahbazi, R. Renewing the respect for similarity. Frontiers in
Computational Neuroscience, 6:45, 2012 (through section 7).

Other readings

[70] Lillicrap, T. P., Cownden, D., Akerman, C. J., and Tweed, D. B. Multilayer controllers can learn from
random feedback weights. In Proc. Symp. on Translational and Computational Motor Control (TCMC),
pages 83–84, 2013. Satellite to the annual Society for Neuroscience meeting.

[95] Shahbazi, R., Raizada, R., and Edelman, S. Similarity, kernels, and the fundamental constraints on
cognition. Journal of Mathematical Psychology, 70:21–34, 2016.
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3.12 Week 12 (4/19; 4/21): neurons, II

12.1 What do neurons do?

Time-dependent dynamic learning:

– spike timing dependent plasticity (STDP), and Hebbian learning (see the Scholarpedia article [100]);

– history-dependent learning with the BCM rule [17];

– learning dynamic embodied control modes [22].

12.2 What do neurons do?

Population dynamics:

– neural trajectories and classification [11].

Primary readings

[17] Cooper, L. N. and Bear, M. F. The BCM theory of synapse modification at 30: interaction of theory with
experiment. Nature Reviews Neuroscience, 13:798–810, 2012.

***[100] Sjöström, J. and Gerstner, W. Spike-timing dependent plasticity. Scholarpedia, 5(2):1362, 2010.

[11] Buonomano, D. V. and Maass, W. State-dependent computations: spatiotemporal processing in cortical
networks. Nature Reviews Neuroscience, 10:113–125, 2009.

Other readings

Sophie Deneve

[60] Izhikevich, E. M. and Desai, N. S. Relating STDP to BCM. Neural Computation,
15:1511–1523, 2003

[21] Deneve, S. Bayesian spiking neurons I: Inference. Neural Computation, 20:
91–117, 2008.

[59] Izhikevich, E. M. Solving the distal reward problem through linkage of STDP and
dopamine signaling. Cerebral Cortex, 17:2443–2452, 2007.

[79] Peña, B. J. F. J. L. Owl’s behavior and neural representation predicted by Bayesian
inference. Nature Neuroscience, 14:1061–1067, 2011.

[22] Der, R. and Martius, G. Novel plasticity rule can explain the development of sensorimotor intelligence.
Proceedings of the National Academy of Science, pages E6224–E6232, 2015.

17

http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity


3.13 Week 13 (4/26; 4/28): neurons, III; advanced topics I

13.1 What do neurons do?

Population dynamics (cont.):

– ongoing dynamics and chaotic itinerancy [89].

13.2 Bayes and the real world [94, 68].

Primary readings

[89] Rabinovich, M. I., Simmons, A. N., and Varona, P. Dynamical bridge between brain and mind. Trends
in Cognitive Sciences, 19:453–461, 2015.

***[94] Sanborn, A. N. and Chater, N. Bayesian brains without probabilities. Trends in Cognitive Sciences, 20:
883–893, 2016. doi: 10.1016/j.tics.2016.10.003.

Other readings

[68] Kwisthout, J., Wareham, T., and van Rooij, I. Bayesian intractability is not an ailment that ap-
proximation can cure. Cognitive Science, 35:779–784, 2011.

[111] van Rooij, I. How the curse of intractability can be cognitive science’s blessing. In Noelle, D. C., Dale, R.,
Warlaumont, A. S., Yoshimi, J., Matlock, T., Jennings, C. D., and Maglio, P. P., editors, Proceedings of the
37th Annual Meeting of the Cognitive Science Society, Austin, TX, 2015. Cognitive Science Society.

Iris van Rooij
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3.14 Week 14 (5/3; 5/5): advanced topics II

14.1 Predictive processing and the free energy principle [44, 78, 16].

14.2 Affect and emotions [4, 42].

Primary readings

Karl Friston

***[44] Friston, K. J. The free-energy principle: a unified brain theory? Nature Neu-
roscience, 11:127–138, 2010.

[4] Bach, D. R. and Dayan, P. Algorithms for survival: a comparative perspective on
emotions. Nature Reviews Neuroscience, 18:311–319, 2017.

Other readings

[16] Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav-
ioral and Brain Sciences, 36:181–204, 2013.

[78] Park, H.-J. and Friston, K. J. Structural and functional brain networks: from connections to cognition.
Science, 342:1238411, 2013. doi: 10.1126/science.1238411.

[69] Kwisthout, J., Bekkering, H., and van Rooij, I. To be precise, the details don’t matter: On predictive
processing, precision, and level of detail of predictions. Brain and Cognition, 112:84–91, 2017.

[41] Feldman Barrett, L. Psychological construction: the Darwinian approach to the science of emotion.
Emotion Review, 5:379–389, 2013.

Lisa Feldman Barrett

[42] Fernandez Velasco, P. and Loev, S. Affective experience in the predictive mind:
a review and new integrative account. Synthese, 2020. doi: 10.1007/s11229-020-02755-4.
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3.15 Week 15 (5/10): wrapping up

15.1 Some conclusions. Also: AMA (Ask Me Anything).

4 Computational concepts, principles, and methods: a selective abecedary

Note: the number of important principles in cognitive science is somewhat larger than the number of letters
in the alphabet. To make up for this inconvenience, I have highlighted in SMALL CAPITALS every concept of
interest that is mentioned, whether or not it has its own entry.

ANALOGY — a comparison that involves a structure mapping between complex entities, situations, or domains
[55, 56]. Analogy is central to general cognitive function (general fluid intelligence, often referred to as gF
or IQ [102]) and has been hypothesized to underlie structural LEARNING in vision and in language.

BAYES THEOREM — a direct consequence of the definition of conditional probability; the basis for the so-
called rational theories of cognition. The Bayes Theorem prescribes a way of integrating prior beliefs with
new data, in a way that proves useful in all domains, from perception, through thinking and language, to
motor control [65, 118, 35, 106, 84, 67].

CHANNEL CODING — measuring a stimulus with a set of graded, overlapping filters (receptive fields or “chan-
nels”) supports a high degree of resolution, or hyperacuity, that cannot be achieved through dense sampling
by pointlike filters [101]. This principle is at work throughout cognition [28, p.90].

DIMENSIONALITY REDUCTION — A high-dimensional perceptual measurement space is advantageous be-
cause it may capture more of the useful structure of the problems that a cognitive system needs to deal
with, such as categorization. LEARNING by “tiling” the representation space with examples is, however,
infeasible in a high-dimensional space, because the number of required examples grows exponentially
with dimensionality [34]. This necessitates dimensionality reduction prior to learning, which, moreover,
needs to be done so as to lose as little as possible of the useful information.

EMBODIMENT AND SITUATEDNESS — EVOLUTION fine-tunes the computations carried out by natural cog-
nitive systems to the mechanics of the bodies that they control and the ecological niche in which they are
situated [2].

FUNCTION APPROXIMATION — LEARNING from examples and generalization to new queries is equivalent to
function approximation, a problem in which the values of an unknown function are given at a number of
points in its domain and are used to form an estimate that can then support generalization [86].

GRAPHICAL MODELS — The relationships among a set of variables of interest to a cognitive system can be
conveniently represented in the form of a directed graph, in which the vertices stand for variables (of which
some may be observable and others hidden, corresponding to the properties of the world that need to be
inferred from sensory data) and the edges — for probabilistic dependencies between pairs of variables
[80]. One type of such model is the BAYES Network [83]. Graphical models map naturally onto the
architecture of the brain [71].

HOLISM — The PATTERN of causal dependencies in a system of knowledge about the natural world is such
that any two items may be potentially interdependent; in this sense, rich cognitive representations are
holistic [88]. This property of world knowledge gives rise to serious algorithmic challenges in truth main-
tenance systems, where facts newly acquired through LEARNING can potentially interact with, and cause
the revision of, the entire knowledge base.
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ILL-POSEDNESS — Problems arising in perception, thinking, and action planning are typically ill-posed in the
sense that they do not possess a unique solution (e.g., 7). FUNCTION APPROXIMATION, which is central
to LEARNING, is ill-posed because an infinite number of mappings may be consistent with a given set of
input-output pairs, and so is probability density estimation. Such problems can be made well-posed by
REGULARIZATION.

JOINT PROBABILITY — The most that can be learned about the world by observing or tracking a set of variables
of interest is an approximation to their joint probability density (note that the problem of probability
estimation is ILL-POSED). To learn the causal dependencies among the variables, one must go beyond
mere observation and intervene on variables of interest [81].

KERNELS — A family of mathematical methods that arise from measurements of SIMILARITY of two vectors
and that are widely applicable in modeling cognition [61, 62, 95]. Formally, a positive definite kernel is a
function of two arguments that represents an inner product (dot product) in some feature space.

LEARNING AND LEARNABILITY — Most of the detailed knowledge about how the world works that animals
with advanced cognitive systems need to master cannot be “squeezed” through the genomic bottleneck
and must therefore be learned from experience. The field of machine learning has amassed a wealth of
insights into the computational nature of this process, including constraints and limitations on learning and
learnability (e.g., 110, 112).

MINUMUM DESCRIPTION LENGTH (MDL) PRINCIPLE — The fundamental principle of the computational
theory of learning, due to Solomonoff [104], is that LEARNING is learning of regularities. It is derived from
the observation that learning is only useful insofar as it supports generalization and that generalization is
only possible if regularities are discovered in the observed data. A modern operationalization of this idea
is the Minimum Description Length Principle of Rissanen [90], according to which regularities in the data
are best captured by a representation that minimizes the sum of the description lengths of the code and of
the training data under that code [50]. A related principle is that of SIMPLICITY [14].

NAVIGATION — Finding a route through a representation space, subject to certain CONSTRAINTS, is a paradigm
for all sequential behaviors. Thus, in foraging, for instance, the SEARCH space represents the terrain in
which the animal is situated; in planning, it may be a graph representing the space of possible solutions
to the problem at hand; in language production, the graph would be a representation of the speaker’s
knowledge of language [29].

OPTIMIZATION — A wide range of tasks in cognition, including perception, thinking (e.g., problem solving
and decision making), and motor control reduce to SEARCHING a space of possible solutions for an optimal
one [28]. Optimality in this context is imposed by various CONSTRAINTS, which may stem from the nature
of the problem, from implementational considerations, from EVOLUTIONARY pressure, or from general
requirements of tractability and uniqueness (as in REGULARIZATION).

PREDICTION — A true understanding of the world (e.g., one that takes the form of a CAUSAL PROBABILIS-
TIC model) should allow the cognitive system to exercise FORESIGHT: to predict impending events and
the consequences of its own actions [28]. Such capacity for prediction turns out to be a very general ex-
planatory principle in cognition [16], which can be linked to other general principles, such as BAYESIAN

probability theory.
QUANTUM PROBABILITY — Animal behaviors that involve probabilistic assessment of cues and outcomes

are often strongly context- and order-dependent. Understanding such behaviors may require positing in-
dividual states that are superpositions (i.e., are impossible to associate with specific values), as well as
composite systems that are entangled (i.e., that cannot be decomposed into their subsystems). The relevant
theories are best expressed in terms of quantum probability postulates [87].

REGULARIZATION — A problem that is formally ILL-POSED in that it has no unique solution can be turned
into a well-posed one by imposing external CONSTRAINTS on the solution space. One class of such
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constraints, which has a profound grounding in LEARNING theory, is regularization through smoothing,
which is related to BAYESIAN probability, to statistical learning theory, and to the MAXIMUM LIKELIHOOD

idea [40].
SIMILARITY — the most important ultimate use to which sensory data could be put involves estimating the sim-

ilarity between two stimuli, which constitutes the only principled basis for GENERALIZATION of response
from one stimulus to another, and therefore for any non-trivial LEARNING from experience [96, 26, 36].

TUNING — Neurons in animal brains, and neuron-like units in artificial distributed cognitive systems, are
typically tuned to various features of the perceptual world, of motor behavior, or of the animal’s internal
representational states [28, ch.3]. Graded, shallow tuning, with a high degree of overlap between the
profiles of adjacent units, is behind perceptual filters or CHANNELS that support hyperacuity. Because a
tuned unit effectively represents the SIMILARITY between the actual and optimal stimuli, graded tuning
also underlies VERIDICALITY [27].

UNCERTAINTY — “The percept is always a wager. Thus uncertainty enters at two levels, not merely one:
the configuration may or may not indicate an object, and the cue may or may not be utilized at its true
indicative value” [45]. The fundamental uncertainty in dealing with the world is the central motivation for
the use of PROBABILISTIC representations and processes by cognitive systems.

VERIDICALITY — Perceptual representations based on CHANNEL CODING are provably veridical in that they
faithfully reflect the SIMILARITY relationships of the represented items, such as visual objects [27].

WEIGHT LEARNING — In computational systems composed of simple, neuron-like elements, LEARNING typ-
ically proceeds by adjusting the weights of the synaptic connections, although the threshold of the non-
linear transfer function that is part of the standard “formal neuron” can also be adjusted [18]. The rule
for experience-based weight adjustment proposed by Hebb in 1949, according to which “neurons that fire
together, wire together,” has now been recast and widely accepted as spike timing dependent plasticity, or
STDP [13].

MAXIMUM LIKELIHOOD ESTIMATION (MLE) — According to the MLE principle, the parameters of a PROB-
ABILISTIC model that is intended to reproduce a set of observations should be tuned so as to make the
actual observed data set most likely [76].

SYNTAX — The system of PATTERNS and CONSTRAINTS that governs the composition of utterances in a
natural language [85, 37].

DOBZHANSKY — “Nothing in biology makes sense except in the light of EVOLUTION” [24].
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