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Abstract

A scheme for learning to grasp objects using visual information is presented. A
system is considered that coordinates a parallel-jaw gripper (hand) and a camera
(eye). Given an object, and considering its geometry, the system chooses grasping
points, and performs the grasp. The system learns while performing grasping trials.
For each grasp we store location parameters that code the locations of the grasping
points, quality parameters that are relevant features for the assessment of grasp quality,
and the grade. We learn two separate subproblems: (1) to choose grasping points,
and (2) to predict the quality of a given grasp. The location parameters are used to
locate grasping points on new target objects. We consider a function from the quality
parameters to the grade, learn the function from examples, and later use it to estimate
grasp quality. In this way grasp quality for novel situations can be generalized and
estimated.

An experimental setup using an AdeptOne manipulator to test this scheme was
developed. Given an object, the system takes one image of it with a stationary top-
view camera, uses the image to choose two grasping points on the boundary, performs
a grasping trial with a parallel-jaw gripper, and assigns a grade to the trial using an
additional side-mounted camera. The system has demonstrated an ability to grasp
a relatively wide variety of objects, and its performance improves with experience
appreciably after a small number of trials.



1 Introduction

A general goal of robotics is to develop systems that gather information through interaction
with the world, and to improve their performance based on experience. In the context of
grasping, this corresponds to learning to improve the grasp quality. Previous work may
be divided into two main approaches:

e The analytic approach takes a model of the target object, and finds optimal grasping
points on it, relative to some criteria for optimality (see Nguyen [Ngu88], Markenscoff
and Papadimitriu [MP89], Faverjon and Ponce [FP91] and Blake [Bla92]). In the
context of learning we examine the function
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where §' = State (sensory information), A = Action, and G = Grade (quality of the
action). This formulation is called reinforcement learning.

e The comparative approach generates a set of candidate grasps, evaluates the quality
of each grasp and chooses the best candidate (see Wolter et al. [WVWS85], Gatrell
[Gat89], and Francois et al. [FIH91]). The function

f2:5%xA—G
is studied.

Relatively a few works have dealt with the problem of learning to grasp. Dunn and
Segen [DS88] presented a system that first tried to recognize its target object using a
stored library. If the object was recognized, the stored grasp was applied to it. For an
unknown object, the system tried to grasp it by trial and error. Tan [Tan90] used a set
of features to distinguish among objects. In the training stage, some measurements were
taken for several objects, and a decision tree was built, making it possible to distinguish
among the objects. In the working stage, a sequence of actions was planned, and the target
object was recognized and grasped. No generalization of new objects was performed in
those systems.

Salganicoff and Bajcsy [SB92] presented a general framework for learning sensorimotor
tasks, considering the function f2 : § X A — G and suggesting to approximate it from
examples. Given such an approximation and a set of sensory parameters obtained for a
new situation, they suggested finding the action parameters expected to give a good grade.
In other words, they tried solving the analytic approach problem using the formulation of
the comparative approach.

1.1 Our approach

We took the comparative approach, that is, we divided the problem into two subproblems:
(1) learning where to grasp, and (2) predicting grasp quality. Where to grasp was learned
by storing and applying grasping locations from successful trials. In order to predict grasp
quality, we took a version of the function f2 : § X A — G from examples. We believe
that grasp quality can be predicted rather reliably using a few, mainly local parameters,
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Figure 1: Important features of a grasp configuration: the angles al, a2 between the fingers
and the normals at the grasping points, and the distance d between the grasping line and
the center of mass.

and consider only parameters that can be extracted visually, for example, the angles
between the fingers and the normals at the grasping points, and the distance between
the center of mass and the line which connects the grasping points (see figure 1). We
found a subset of the most predictive parameters using statistical methods, and called
them quality parameters. We learn the function f3 : @ — G from the quality parameters
@ to the grade. Given an object and grasping points on it, the quality parameters were
extracted, and the learned function to estimate grasp quality used.

The quality parameter space has several advantages for learning. Each point in the
parameters space represents a class of grasp configurations that can be used on different
objects, which are similar locally, near the grasping points, thus achieving generalization
among objects. The number of parameters is small, and does not depend on the complexity
of the target objects; therefore a small number of examples is needed for learning. There
are explicit relations between the quality parameters and the grade, therefore the mapping
is relatively simple and smooth, and generalization among neighboring points in the quality
parameter space is possible.

We can rely on a few quality parameters that represent only a partial model of the
grasping system because we can observe visually the outcome of the grasping trials. The
quality of a grasp is influenced by parameters that are not considered explicitly in our
model, such as the force and contact characteristics of the gripper, the dynamic behavior
of the soft fingers, etc. The system adjusts to these parameters via the overall quality
of the observed grasp. Note that the grasp quality also depends on non visual properties
of the target objects (e.g. weight, friction, rigidity etc.). The system adjusts to these
parameters by averaging the grades that correspond to the same quality parameters, or
by considering the worst case.

2 Preparations

In this section we choose strategies and features for the working system.
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Figure 2: Rotation torque around the grasping line = R x M - g¢.

Heuristic strategies are used to choose grasping points when stored knowledge from
previous trials is not applicable for a novel situation. In this case grasping trials must
be performed until a successful grasp occurs. We compared several strategies and showed
that using more information about the grasping problem improves performance.

We chose features that can predict the grasp quality. A few features that give the best
prediction are chosen from a set of possible features, using statistical methods.

We compared strategies and features using simulation of grasping trials. We used 20
synthetic images obtained by cross-sectioning random generalized-cone objects (see figure
3). Every grasp (two grasping points on an object) gets a grade, assigned by a mechanical
model of grasping (see appendix A for details). We calculated the grade, considering two
components:

1. No sliding —
Sliding of the fingers is not allowed. This limits the angles between the line that
connects the grasping points (the grasping line) and the normals at the grasping
points (al, a2 in figure 2). If these angles are above a threshold, u, the grade is set
to zero.

If (al > p) or (a2 > p) then Grade = 0

2. Resistance to rotation —
We consider the difference between the resistance to rotation, and the torque that
rotates the object around the grasping line.

The resistance to rotation is the maximal torque the gripper can apply to the object.
It depends on the shape and size of the contact areas, the pressure on them and the
friction and viscoelasticity of the object and the fingers.

The torque that operates to rotate the object around the grasping line depends on
the mass distribution on both sides of the grasping line. The torque is created by the
gravitational acceleration g that operates in the vertical direction. The torque can
be represented by the moment arm, R, which operates on the mass of the object,
M. (see figure 2).
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Figure 3: 20 random generalized cones used for simulations.



2.1

Comparing Heuristic Strategies

We compared several strategies and showed that using more information about the grasp-

ing problem improves performance. We concluded that the design of a grasping system
should include apriori knowledge, rather than learning everything from scratch. The five
strategies we compared are:

sl

s2

s3

s4

$H

Two points are chosen randomly on the boundary, using a uniform distribution.

The first point is chosen randomly on the boundary, using a uniform distribution.
The direction to the second point is chosen relative to the internal normal at the
first point, using a zero-mean Gaussian distribution.

The first point is chosen according to its distance from the center of mass, along
the main axis. The distance has a zero-mean Gaussian distribution. We randomly
choose a distance d, go from the center of mass for a distance d along the main axis,
and go perpendicular to the main axis until we reach the boundary. The direction
to the second point is chosen relative to the internal normal at the first point, using
a zero-mean Gaussian distribution.

Similar to s3, but the distributions are tighter. The first point is closer to the center
of mass, and the direction to the second point is closer to the internal normal.

Similar to s4, but the direction to the second point tends to get closer to the center
of mass.

For each heuristic strategy, 2000 grasping trials were simulated. For each object from
the 20 target objects, 100 grasp configurations were chosen using the tested heuristic
strategy. Every grasp configuration consisted of two grasping points on the boundary of
the target object. A grade was calculated for each grasp, assigned by a mechanical model
of grasping (see appendix A for details).

strategy | mean | stdv | prob80 | prob85 | prob90 | prob95
sl 8 21 2 2 1 0
82 42 35 17 11 6 2
s3 53 34 26 18 10 4
s4 67 31 46 35 21 9
Eh) 70 32 57 45 30 14

Table 1: Comparing heuristic strategies. We show the mean grade and the standard
deviation. probxx is the probability to have a grade greater or equal to xx.

The fifth strategy sb gave the best results. The difference between s4 and s5 was
statistically significant (with p < 0.01).

The results support the intuitive strategy of grasping on two opposite sides, and near
the center of mass.
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Figure 4: Visual features - important angles and distances.

2.2 Extracting Features

In this section we describe the visual features that can be extracted from an image of a
target object. A subset of these features is used to predict the quality of a grasp. In the
next section we explain how to choose the most predictive features.

For a given image of a target object we find the main axis and center of mass of the
object, and define a coordinate system centered on it. We use the length along the main
axis, from the center of mass to the edges, to resolve the ambiguity of the direction of
the X axis. The negative direction of the X axis is chosen as the one that has a shorter
distance to the edge (see hl in figure 4).

For each grasp configuration consisting of two grasping points on the boundary of the
object, we extract 20 features from the image, which are divided into distances and angles.
Below are presented a partial list of the most important features.

1. @l - angle from pl to p2 (relative to pl internal normal).

2. a2 - angle from p2 to pl (relative to p2 internal normal).

3. a7 - angle from p2 to the center of mass (relative to p2 internal normal).
4. d1 - distance from the center of mass to the grasping line.

5. db - distance from pl to the symmetry axis.

6. d8 - projection of p2 on the symmetry axis.

7. d9 - d1 normalized by hl.



2.3 Choosing Important Features

A few visual features are necessary to predict the quality of the grasp. In this section we
compare features in order to find a small subset of the most predictive ones.

A comparison was made using 2000 configurations of the best strategy s5. For each
object from the 20 target objects, 100 grasp configurations were chosen. A grade and 20
features were calculated for each grasp. We estimated the statistical relations between the
features and the grades (see appendix D for details). The results show that a small subset
of features can predict the quality of the grasp rather reliably. The best subset of three
parameters consisted of the angles between the fingers and the normals at the grasping
points, a1, a2, and a normalized distance from the center of mass to the grasping line, d9.
This triplet gives prediction quality 0.97 according to the conditional average prediction
method. These features are considered in the intuitive strategy for two-fingered grasping,
that is, grasp on opposite sides, near the center of mass. They are also the most important
attributes of a grasp configuration, considering the mechanics of the grasping problem (see
appendix A).

The above results support the statement that a few visual features are sufficient to
predict the quality of a grasp. We next show how to use this information in the design of
a robotic system that learns to grasp.

3 The Working System

3.1 Overview

The working system consists of four components: the control subsystem, the learning
subsystem, the vision subsystem and the action subsystem.

The user first presents an object in the field of view of a stationary top-view camera,
and initiates a grasping trial. A picture is taken and processed by the vision subsystem.
The result is a segmented image of the target object, its center of mass, and the direction of
the main axis. The learning subsystem chooses grasping points on the object’s boundary,
using stored information from previous trials. The points in the image coordinates are
transformed into action parameters for the robot, and the action subsystem performs
the grasping trial. The grasped object is presented in front of a second, side-mounted
camera, which takes a picture of the object grasped by the gripper. The vision subsystem
processes this image and calculates the quality of the grasp. If the quality is good enough,
the new example is stored by the learning subsystem, to be used in the future. The control
subsystem coordinates the operation of the other subsystems.

The software for the control and the learning subsystems is written in lisp, and runs
on a Sun4 machine. The vision subsystem uses two fixed cameras that are connected to a
SGI Indigo 4000 machine. The image processing program is written in C, and runs on the
SGI. The action subsystem consists of the AdeptOne robot with a parallel-jaw gripper.

Communication between the Sun4 and the SGI is performed by running remote pro-
grams (using the Unix rsh command), and writing to common files, using a TCP/IP
network, and The communication between the Sun4 and the Adept robot is by using an
interface program that runs on a different Sun4, which has a serial line connection to the
robot.



Figure 5: Stages in image processing of a toy dinosaur image — (A) A gray level image;
(B) Thresholding the image; (C) Filling holes and removing small patches; (D) Marking

the boundary, center of mass and main axis.

3.2 The Vision Subsystem

The vision subsystem takes pictures with a camera, using the SGI svideo library. We use
576 X 768 8-bit gray level images. The result of the image processing is a segmented image
of the target object, with its center of mass, and the direction of the main axis. The
interior and the boundary of the object are marked separately.

3.2.1 Image Processing

The gray-level image is segmented, using a fixed threshold. Small object patches (smaller
than 50 pixels) are removed, to reduce noise. Background holes inside the object are
filled, and considered parts of the object. The object shape is smoothed, using local
considerations. The planar center of mass is found by averaging the (z,y) coordinates of
the object pixels. The axis of the least second moment is found, by using the method
described in Horn [Hor86, page 53]. The boundary of the object is marked forming a
closed curve. We mark off pixels in the boundary that are not necessary for connectivity.
After thinning, every pixel in the boundary has exactly two neighbors.
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Figure 6: Automatic grading — a side view of an object held in the gripper. The grade
(quality measure) depends on the difference between the minimal height and the optimal

height.

3.2.2 Automatic Grading

To estimate the quality of a grasp, we used the minimal height of the object (see [DS88]).
If the object is held firmly, its height is above a certain value. If the object slides, its
minimal height is lower. The grade given is lower when the minimal height is lower (see
figure 6).

A more detailed analysis of the object pose in the gripper was not applied because the
initial pose of the object was not known. The fixed side camera cannot get a side picture
of the object in its initial position, and therefore we do not have a baseline for comparison,
which is needed in order to judge whether the object has moved relative to the gripper
during the grasping action.

3.3 The Control Subsystem

The control subsystem includes the user interface, coordinates the operation of the other
subsystems, and is also responsible for several other tasks.

The learning subsystem needs visual information in order to choose the grasping points.
It uses two primitives:

1. Locate a point on the boundary.
Given a point pl inside the object, and a direction dirl, go from pl in direction dirl
until reaching the boundary at point p2.

2. Given a point p2 on the boundary, calculate the orientation of the normal there.
If the curvature near p2 is too big, no orientation is calculated. Otherwise two
neighboring points on the boundary are found, and the orientation of the line that
connects them is calculated.

The control subsystem also verifies that the open gripper does not collide with the
object before reaching the grasping points and transforms the grasping points into action

10



T AT T t LA Bt

Figure 7: Left: the working environment — the Adept robot with a parallel-jaw gripper,
the fixed top-view camera, the black background of the work area and a white target
object. Right: the gripper holds the object.

parameters for the robot (see appendices B,C for details).

3.4 The Action Subsystem

The action subsystem consists of the AdeptOne robot with a parallel-jaw gripper (see
figure 7). The robot is controlled by the Val-II operating system, and has four degrees
of freedom. It can reach any (z,y, z) location in its workspace, with rotational angle 6
around the vertical axis. The gripper was built especially for our project. It has only two
configurations: open and closed. The force exerted by the fingers is fixed, and the fingers
can be covered with various pads to increase friction and compliance. The application
program that runs under VAL-II reads commands from a serial port that is connected to
an interface program on a Sun4. The possible commands are move, that moves the gripper
to a specified (z,y, z,0) location in the robot coordinates, and open and close, that control
the parallel-jaw gripper.

The initial location of the parallel-jaw gripper is out of the field of view of the top-
view camera. Given a triple (z,y,0) as the target location of the gripper, it first moves to
(z,y,z — approach, ), that is located above the target position. The gripper moves high
enough to avoid collision with the target object. It then moves down to a fixed grasping
height (z,y,2 — grasp, ), and closes the fingers. After grasping the object, the gripper
takes it in front of the side-mounted camera, in order to estimate the grasp quality. Finally
the object is returned to its initial position, and the gripper goes out of the field of view
of the top-view camera.

11
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Figure 8: A Heuristic strategy for choosing grasping points, using location parameters
S1, f2. Go from the center of mass for a distance f1. Go in a perpendicular direction to
the main axis, until you reach the boundary at point pl. Go in the direction f2 to the
internal normal direction, until you reach the boundary at point p2.

3.5 A Heuristic Strategy

A heuristic strategy is used to choose grasping points when stored knowledge from previous
trials is not applicable for a novel situation. The heuristic strategy we used was denoted
in section 2.1 as s5. Given a segmented image, we traverse a distance f1 from the center
of mass along the main axis to the point {1 (see figure 8). The distance f1 was chosen
randomly, using a zero-mean Gaussian distribution. We go from t1 along a perpendicular
direction to the main axis, until reaching the boundary at point pl. This is chosen to
be the first grasping point. We calculate the boundary orientation at pl, and go in the
direction f2 relative to the internal normal until reaching the boundary at point p2, which
is chosen to be the second grasping point. The angle f2 is chosen randomly, using a
Gaussian distribution. The mean of the Gaussian is slightly shifted from the internal
normal at pl, toward the center of mass of the object.

Boundary orientations must be defined at pl, p2, that is, it must be guaranteed that
the curvature of the boundary at those points is low.

3.6 Coding a Grasp

Grasp configurations are coded as tuples of numbers. The parameters f1, f2 that were
chosen randomly by the heuristic strategy are used to locate grasping points on the object’s
boundary. We call them location parameters. We also store a few qualily parameters that
are used to estimate the grasp quality. The angles between the fingers and the normals
at the grasping points al, a2, and a normalized distance from the center of mass to the
grasping line d9 are used (see figure 9). These parameters are chosen as the most predictive
set of three parameters, as discussed in section 2.3. Note that f2 = «al, that is the same
parameter is used to locate the second grasping point, and also to estimate the grasp
quality.

12
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Figure 9: Depicted are the quality parameters of a grasp configuration — the angles a1, a2
between the fingers and the normals at the grasping points, and the distance d9 between
the grasping line and the center of mass.

3.7 The Learning Subsystem

In this section we present the learning mechanism. We distinguish between learning where
to grasp, which is coded by the location parameters of stored grasps, and learning to
estimate the grasp quality, which is coded by the quality parameters. The latter can be
generalized and used to predict grasp quality in novel situations.

The working system presented below learns while performing grasping trials. There
is no distinction between the training and working stages. The system starts only with
heuristic knowledge which is used to choose grasping points. If a successful grasp is
performed, its grasp configuration is stored for future use. Information from the stored
grasps is used in three ways:

1. Where to grasp.
Location parameters are used to locate the grasping points on new target objects.

2. Local estimation of the grasp quality.

Each set of quality parameters from one grasp is considered a point in a parameter
space, and is assigned a grade. Considering the set of measurements from the new
image as a new point, we look for its nearest neighbor. We assume that if the new
point is close enough to a stored example, its quality should be similar to that of the
stored example. Note that we abandon the link between the location of the grasping
points on a specific object and the quality parameters that characterize the grasp
quality. In this way we can generalize novel grasp configurations.

3. Global estimation of grasp quality.
We use the stored grasps to define ranges of acceptable parameter values that predict
good quality. Grasps that have measurements out of these ranges are ruled out.

Given a new target object, and having a list of stored grasp configurations, we try to
apply the stored grasps to the new object.

13



For each stored grasp, we locate two grasping points on the object’s boundary, using
the location parameters. We calculate the quality parameters for the new object, and try
to match them to the quality parameters of all the stored examples. If a match is found,
the grasp is performed, and its grade is expected to be similar to the grade of the matched
example.

If no match is found for all stored grasps, we use the heuristic strategy to create
grasping points, that is, we calculate the quality parameters for the new object, and try to
match them to all the stored examples. Before performing a grasping trial, the parameters
are checked to be within the acceptable ranges of the parameter values.

If the last two tests fail several times in a row, the grasp that was chosen by the
heuristics is used without considering the knowledge already stored in the system.

3.7.1 Nearest Neighbor Mechanism

Given a new point in the quality parameter space, we look for its nearest neighbor in
the list of stored examples. The example list is scanned, and checked for each example e
whether the new point is contained within a 3-dimensional box centered at e; and if it is,
the new point matches the example e, and the grade corresponding to the example e is
the expectation for the new point.

The search is performed in three iterations, increasing the size of the neighborhood
box from 3 to 6 to 9 (the units are angles and normalized distances).

Note that similarity is defined according to the lack of difference among the quality
parameters, that is objects are similar locally, near the grasping points. For every stored
grasp there is a class of grasps on different objects that are similar to it.

3.7.2 Maintaining Stored Grasps

Successful grasp configurations are stored in a common data structure (a list). The con-
siderations in the storage mechanism reflect the problems of the real system. In particular,
there is the problem that the quality parameters do not determine the quality of the grasp
completely, and therefore similar points in the parameter space may have very different
grades. Some grasp configurations are canonical, that is they can be applied to many
objects, whereas other grasps are specific to the objects for which they were used. The
distinction between canonical and specific examples applies both to the quality parameters
that characterize the grasp quality, and to the location parameters that code the location
of the grasping points.

For example, a1l = a2 = d9 = 0 and f1 = f2 = 0 are examples of canonical sets of quality
and location parameters, respectively. The quality parameters refer to grasping an object
on two parallel faces, where the grasping line passes through the center of mass. The
location parameters add the information that the grasping line is perpendicular to the
main axis.

For each grasp configuration the following details are stored: location parameters,
quality parameters, average grade and number of matched trials (the grade over all trials
that match that point in the quality parameters space is averaged). The neighborhood size
is also stored - we can limit the size of the matching neighborhood, based on contradictory
examples.

14
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Figure 10: A specific grasp configuration — the fingers slip from the unstable initial position
to the final stable position. In the final position, each finger contacts the object at two
points that have different orientations. This situation, however, is not considered in our
model.

Grasp configurations that have a grade > 95 are stored. The order of the stored grasps
affects both the order of attempting grasp locations on the target object, and matching
examples in the quality parameters space. The more canonical examples are to be used
first. The stored grasps are sorted according to their average grade (primary key) and the
number of matched trials (secondary key).

If a stored grasp is matched with unsuccessful trials, it should be taken out of the list.
This situation may happen for specific grasps. The main reasons for differences in grasp
quality for the same parameters are:

1. Weight difference.
Grasps of light objects are less sensitive to the distance from the center of mass.
Applying such grasps to heavier objects may result in failure. Note that grasps of
heavy objects are applicable to lighter objects.

2. Specific geometry considerations.
Grasps may rely on specific geometrical details of the grasped object. For example,
the fingers may slip from the initial unstable position into a stable grasp (see figure
10). In other cases each finger has contact with more than one point on the object
boundary, and therefore the model used for the grasp quality is not sufficient (see
final position in figure 10).

3. Marginal grasps.
Marginal grasp configurations may cause different grades for very similar situations.
The difference may result from small differences in the image measurements, small
differences by the gripper location relative to the object, contact of one finger before
the other finger, etc.

A grasp is removed if its average grade is lower than 90, or the current matched trial
grade is lower than 70.

15
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Figure 11: A 2D display of parameter ranges — the internal range of the stored examples,
the external range of possible values, and the intermediate acceptable range.

3.7.3 Parameter Ranges

The stored grasps are used to define ranges of acceptable parameter values that would
predict good quality. Grasps that have measurements out of those ranges are ruled out.
In the beginning the acceptable ranges cover the whole parameters space, and they shrink
as more examples are gathered.

For each quality parameter we determine the minimal and maximal values of the stored
examples, and then define the acceptable range by adding margins to these values (see
figure 11). The size of the margins is proportional to the difference between the minimal
(maximal) value and the possible minimum (maximum) value.

Range min = Exzample min — Portion x (Ezample min — Minimum)

Range maz = Example max + Portion x (Mazimum — Ezample maz)

The portion of the margin size depends on the number of good trials the system has
performed. It decreases as the number of examples increases, using the formula :

number of trials

10 )

Portion = exp(—1 *

16



Figure 12: The target objects ol, 02, 03, 04, 05

4 Experimental Results

Two experiments were performed to test the above scheme. In each experiment a series of
objects was repeatally presented to the system (one object at a time). The objects were
positioned by hand near the center of the work area. The improvement in performance
was measured as the system stores information about successful trials.

4.1 Experiment 1

In this experiment generalized cones were used as target objects. At each iteration there
was one trial for every object, in the order of 05, 03, 04, 01, 02 (the order was randomly cho-
sen). For each iteration the average grade, the minimal grade, the success rate (percentage
of grade > 80), and the number of examples were measured.

The experiment consisted of three sessions, each starting with no previously stored
grasps - the first two sessions, of 20 iterations (100 grasping trials) each, and the third
session, of 25 iterations (125 grasping trials). A larger number of trials were done because
the system needed more time to stabilize on a high level of performance. Each trial took
about 1 minute.

In order to compare the results to non-learning trials, 10 iterations (50 grasping trials)
were performed using only the heuristic strategy, and the same characteristics (average
and minimal grade, success rate) were measured for each iteration. The average of the
those results was considered a base line for comparison. The following graphs present the
experimental results.

17
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Figure 13: Experiment 1 —average (left) and minimal (right) grades. The X axis represents
the number of trials, and the Y axis shows the grades. Each run started with only heuristic
knowledge. The average (minimal) grades increased as the system gained experience.
Every point shows the average (minimal) grade for a single iteration over five grasping
trials. The base line is the average of 10 iterations of trials using only the heuristic strategy.
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Figure 14: Experiment 1 — success rate and number of examples. Left: success rate — the
X axis represents the number of trials. The Y axis shows the grades. Every point shows
the success rate (grade > 80) for a single iteration over five grasping trials. Right: number
of examples — the X axis represents the number of trials. The Y axis shows the number

of stored examples.



4.2 Experiment 2

In this experiment 15 target objects where used, which varied in size, weight, rigidity and
color (see figures 15 and 16), and included the five generalized cones, three stones, a cup,
a soda can, a tennis ball, a plastic plug, and three plastic toys (a doll, a hammer, and a
dinosaur).

The weights of the target objects ranged from 830g for the heaviest stone, to 30g for the
soda can. The objects were presented in a random order. At each iteration we performed
one trial for every object. and measured the average grade, the minimal grade, the success
rate (percentage of grade > 80), and the number of examples.

We performed one session starting with no stored grasps, consisting of 15 iterations
(225 grasping trials).

In order to compare these results to non-learning trials, we performed 5 iterations (75
grasping trials) using only the heuristic strategy, and measured the same characteristics
(average and minimal grade, success rate) for each iteration. The average of those results
was considered a base line for comparison.

Grasp configurations that were learned for certain objects were applied to other objects.
The system successfully tolerated instability of the vision subsystem (the most unstable
feature was the direction of the main axis). New examples were stored even after 200
trials, which suggests that the system did not completely stabilize. However, the number
of new examples added, decreased as the system gained more experience (see graph of
number of stored examples, figure 18).

The ranges of parameters that successfully predicted good grasp quality are presented
below, and include the ranges that were learned in experiment 2 using 52 stored examples,
after 199 successful grasping trials. The ranges for features al, a2 refer to angles. Small
angles between the fingers and the boundary normals at the grasping points were found to
be necessary for good grasps, as was a small distance from the center of mass. The range
for d9 refers to the percentage of normalized distances.

feature | minimal value | maximal value
al -20 17
a2 -12 24
d9 -20 14

Table 2: Acceptable ranges of parameters. We present the ranges that were learned in
experiment 2.

The base line for the average grade of experiment 2 is high relative to the average grade
of experiment 1, because many of the target objects in experiment 2 were of light, and
therefore easy to grasp. A few objects were difficult to grasp and caused failures. After
completing the experiment described above, the system successfully grasped new objects,
for which it did not have previous experience, which confirmed the ability to generalize to
new objects.

The following pictures and graphs present the target objects and examples of grasping
configurations, and the experimental results, respectively.
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Figure 15: The target objects — left: three stones, a toy dinosaur, and a tennis ball. Right:
A doll, a plug, a soda can, a cup and a plastic hammer.

Figure 16: The gripper holds the doll (left) and the object 03 (right).
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Figure 17: Experiment 2 — average (left) and minimal (right) grades. The X axis represents
the number of trials, and the Y axis shows the grades. The run started with only heuristic
knowledge. The average (minimal) grade increased as the system gained experience. Every
point shows the average (minimal) grade for a single iteration over 15 grasping trials. The
base line is the average of 5 iterations of trials using only the heuristic strategy.
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Figure 18: Experiment 2 — success rate and number of examples. Left: success rate — the
X axis represents the number of trials. The Y axis shows the grades. Every point shows
the success rate (grade > 80) for a single iteration over 15 grasping trials. Right: number
of examples — the X axis represents the number of trials. The Y axis shows the number

of stored examples.



5 Discussion

5.1 Task Difficulty

In this section we utilized the experience of hundreds of grasping trials observations to
judge the difficulty of the visually guided grasping task.

Our first observation was that grasping light objects, using soft fingers, is quite easy.
Light is defined relative to the characteristics of the gripper — the force applied by the
fingers, the friction and softness of the fingers, etc. An object is considered light if the
grasp quality does not depend on the location of the center of mass, relative to the locations
of the grasping points. Our results indicated that in this case, it is sufficient to choose
grasping points that keep the angles between the fingers and the contact surfaces small
(below a certain slippage threshold).

As the objects became heavier, the shape and size of the contact areas and the location
of the center of mass were found to become more important. The difficulty of the task
increased, depending on two factors: geometric considerations and uncertainty about the
target object’s characteristics.

1. Geometric considerations.

The most canonical grasp configuration for the type of objects we used (filled, elon-
gated, with straight axis) is grasping near the center of mass, on two opposite sur-
faces, where the grasping line is perpendicular to the main axis. For certain shapes,
this grasp was not applicable (because of corners near the center of mass, or non exis-
tence of parallel surfaces, for example, in the case of a triangle). Finding good grasps
for this kind of shapes is difficult. There are several algorithms that solve the problem
of finding stable two-fingered grasp for 2D objects (see Nguyen [Ngu88|, Markenscoff
and Papadimitriu [MP89], Faverjon and Ponce [FP91] and Blake [Bla92]). These al-
gorithms require the shape of the target object, which is represented as a polygon
or a smooth curve, and perform non trivial geometrical analysis. There are objects
that do not have a stable two-fingered grasp.

2. Uncertainty about the object’s characteristics.
A single image of the target object cannot supply all the information necessary for
grasping. In particular the location of the center of mass, the shape and size of the
contact areas can only be estimated. This uncertainty increases the probability of
failure, and makes it necessary to perform active explorations (i.e. try to grasp the
object, and assign a grade to the grasp based on the observed results).

5.2 Advantages

The main advantages of the scheme presented here are:

e Generalization.
Knowledge from previous trials can be generalized to novel objects. This is related
mainly to learning canonical grasp locations, learning to predict grasp quality for a
given configuration, and learning ranges of parameters that predict good grasps.
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e Learning of specific grasps.
In addition to general knowledge, the proposed scheme can learn specific grasps that
are suitable for specific objects. This is possible because the scheme stores locations
of good grasping points.

e Simple computation.

1. Simple image processing - no recovery of shape.

2. Compact representations - grasp coding requires a relatively small amount of
memory. Matching and other manipulations are very simple.

3. Simple control of the robot - only position control is used. The gripper is
passive, and does not require force control, force feedback, etc.

e Small number of trials.
An appreciable improvement of performance occurs after a small number of grasping
trials.

e Modularity.
The scheme consists of four components: the control, vision, learning and action
subsystems, which communicate through simple interfaces. The subsystems deliver
parameters to each other, but conceptually there is no shared data structure. The
implemented system runs on four different machines.

5.3 Comparing Learning to A Mechanical Model

The predictions of the learning system suggested are compared to the quality measure
calculated by the mechanical model described in section 2.

We used 2000 grasp configurations of the 20 random objects described in section 2.
For each object, 100 grasps were chosen by the heuristic strategy s5. The relevant features
for grasp quality al,a2,d9 were calculated from the images, as described in section 2.2.

For each grasp, a quality measure was calculated by the learning system, using the
learned knowledge from experiment 2, as described in section 4.2. The learned knowledge
consists of ranges of parameters that predict good grasps, and a list of stored grasps, that
are considered as points in the quality parameters space.

For each grasp we first checked if the features al, a2,d9 were within the acceptable
ranges. If they were not, the grasp was labeled “not acceptable”. If they were, we tried to
match them with the stored grasps. If a match was found, the corresponding grade of the
matched example was assigned to the grasp. If no match was found, the grasp was labeled
“acceptable”. To conclude, a quality measure from the learning system can be either a
number (a match is found), or an “acceptable” / “not acceptable” label. For each grasp,
a numerical grade is assigned by the mechanical model.

The following table contains the comparison results. At each line a range of grades as-
signed by the mechanical model is presented, percentage of grasps that were accepted/not
accepted by the range check, and percentage of grasps that match stored examples with
differences of 5, 10, and 15 between the learning grade and the model grade.
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range of grades | not acceptable | acceptable | diff 5 | diff 10 | diff 15
0- 60 100 0 0 0 0
61 - 80 80 20 0 0 1
81-90 41 59 2 21 23
91- 95 39 61 40 16 0
96 - 100 21 79 73 0 0

Table 3: Comparing learning to a mechanical model. At each line a range of grades as-
signed by the mechanical model is presented, percentage of grasps that were accepted/not
accepted by the range check, and percentage of grasps that match stored examples with
differences of 5, 10, and 15 between the learning grade and the model grade.

All the grasps with very low grade, 0 — 60, were ruled out by the range check.

o 80 percent of the grasps with low grade, 61 — 80, were ruled out by the range check.

The portion of grasps ruled out by the range test decreases as the grade increases.

e The portion of grasps that closely matches the stored examples increases as the grade
increases.

The learning system usually agrees with the mechanical model concerning very suc-
cessful and unsuccessful grasps. There is a difference for the intermediate level of grades
(80-95). Note that the mechanical model was not tuned to the physical characteristics of
the real gripper, and therefore, not more accurate than the learning system.

The following graph presents the results of the above comparison. A histogram of the
model grades is showen by the solid line. The X axis represents the number of trials, and
the Y axis shows the grades. If a match was found for a trial, its grade is represented as
a dot. The number of matches increases as the grade value increases.

Another plot that is superimposed on the above graph presents the percentage of the
trials that were ruled out by the range check. Omne hundred percent of the trials that
received the grade zero were ruled out, and that portion decreased as grades increased.
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5.4 Design of a Grasping System

We present a design for a grasping system that incorporates the experience and knowledge
learned while working with the system described in this work.

e Embedded knowledge.
The system should have apriori knowledge for estimating grasp quality, which may
be in the form of ranges of parameters that predict very good grasp quality.

e Structured search for a grasp.
The system should start the search for grasping points by trying the canonical grasp
locations. It will use the embedded knowledge to predict if the grasp locations are
good. If the canonical grasps are not applicable, the system will look for grasping
points in a structured way, e.g. starting from configurations where the grasping line
passes trough the center of mass, and gradually increasing the distance from the
center of mass.

e Storing successful grasps.
The system should store information about successful grasps in ways similar to the
scheme presented in this work. The learned information will extend the apriori
knowledge and adjust it to the properties of the actual system.

e Object recognition/classification.

For objects that require a specific grasp, it seems natural to attach the grasp con-
figuration to an internal representation of the object and to apply the grasp if the
new object matches this representation. The level of representation may vary from a
complete reconstruction of the target object, to local descriptions near the grasping
points. This requires additional mechanisms for creating such representations, and
for matching the new object with stored examples. Such additional information will
resolve the problem of contradiction between examples, because grasp configurations
of different quality should be represented differently.

5.5 Summary

We presented a scheme for learning visually guided grasping, and a robotic system that
implemented and tested the scheme. Our system successfully learned to grasp a large va-
riety of objects, with very different characteristics (geometry, weight, rigidity, color). The
system showed an appreciable improvement of performance after a small number of trials,
and maintained a high level of performance over sessions of several dozens of trials. The
system generalized among objects. These results have demonstrated better performance
compared to previous studies that have dealt with the same problem: Dunn and Segen
[DS88] and Tan [Tan90] used three target objects each, and Salganicoff [Sal92] consid-
ered only cylinders and boxes. None of the previous studies presented an improvement of
grasping performance over a continuous session of work.

The results support the argument that a single image may be sufficient for grasping
a 3D object, under reasonable assumptions. It also supports the claim that the quality
of the grasp can be predicted using a few visual features that contain local information
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about the grasping areas and their relations to the center of mass. Recovery of the target
object’s shape is not necessary.

The lessons from this work may be applicable to learning sensorimotor tasks in general,
and especially for learning visually guided tasks. We consider a system that consists of two
modules, the first generating candidate actions, and the second estimating their quality.
Both modules work in an alternating fashion until an action that is expected to provide
satisfactory performance is generated. The system then performs this action. The module
that generates actions may combine heuristic knowledge with good stored examples. This
type of knowledge is domain-specific, and currently we do not have a general framework
for learning it. Prediction of action quality can be formulated as a function from a few
parameters to the quality, which is learned from examples and can be generalized.

The learning becomes easier as the number of parameters decreases, therefore only
minimal and necessary information should be used. We suggest choosing a subset of the
most predictive parameters, using statistical methods. The relevant information depends
on the task, therefore specific task-depended representations can be used. This argument
supports the purposive and task-oriented approach in sensory information processing, in
contrast to the reconstruction approach that calls for a unified and global representation
used for all purposes.

The vision subsystem is active in the sense that it performs calculations on demand, in
contrast to a one-shot computation. It first calculates global features of the target objects,
such as center of mass and direction of the main axis. It then performs local calculations,
such as boundary tracing and orientation determination. These calculations are performed
on very low level data — the segmented image, and the boundary. Therefore, a higher level
representation and shape descriptors are not necessary.

Appendix A — Evaluating Grasp Quality: A Mechanical
Model

We assigned grades to the simulated grasping trials using a mechanical model of the
grasping operation. Given an image that contains a cross-section of a generalized cone and
two grasping points on the boundary, we calculated the grade, considering two components:

1. No sliding —
Sliding of the fingers is not allowed. This limits the angles between the line that
connects the grasping points (the grasping line) and the normals at the grasping
points (al, a2 in figure 19). If these angles are above a threshold, u, the grade is set
to zero. If (al > p) or (a2 > p) then Grade = 0

2. Resistance to rotation —
We consider the difference between the resistance to rotation, and the torque that
rotates the object around the grasping line.

The resistance to rotation is the maximal torque the gripper can apply to the object. It
depends on the shape and size of the contact areas, the pressure on them, and the friction
and viscoelasticity of the object and the fingers. We consider soft-finger contacts, and
assume that the contact areas are small, therefore each contact can be modeled considering
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a

Figure 19: Rotation torque around the grasping line = R X M - g.

only the normal, at one point of contact. It is assumed that the contact areas are flat and
have a constant area. Therefore, the contact characteristics are the same for all the grasps.
We assume that the grasping force applied by each finger is constant, and its direction is
along the grasping line. The two fingers apply forces in opposite directions. The pressure
of a finger on a contact area depends on the normal component of the grasping force.
The resistance at each contact area is given by the torque 7;, where K represents the
geometrical characteristics of the contact area, u; is the coeflicient of static friction, and
Force is the magnitude of force applied by each finger. The product K - us - Force is
constant over all grasps.

7, = K - us - Force - cosa; 1=1,2

The maximal torque the gripper can apply to the object is the sum of the maximal
torques at the contact areas.

Resistance = 11 + 19

The torque that operates to rotate the object around the grasping line depends on the
mass distribution on both sides of the grasping line. We assume that the images are cross-
sections of generalized cones, and that the mass distribution per unit volume is constant.
The volume is calculated assuming a circular cross-section in depth, perpendicular to the
symmetry axis. The torque around the grasping line is given by the formula

Torque:(/T-pdV)Xg:RXJW-g
‘/'

We integrate over the volume V', where p is the density, and r is the moment arm of
a mass element pdV. The gravitational acceleration, g, operates in the vertical direction.
The equivalent moment arm, R, operates on the mass of the object, M (see figure 19).

To calculate the grade we consider the net torque, which is the difference between the
resistance and rotation torque.

Diff = Best — min(Best, Resistance — Torque)

Diff

Grade = 100 X exp(——
sigma

)
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Figure 20: Safety check — (a) A safe grasp and (b) A collision between fingers and object.

The value of Best is the minimal net torque that gives the grade 100. The grade is
100 for Normal — Torque > Best, and goes down as Torque gets bigger, or Resistance
gets smaller. The quality of the grasp decreases exponentially with the net torque (there
is no special importance to the exponential relation).

Appendix B — Safety Checks

Given two grasping points on the image boundary, we verify that the open gripper does
not collide with the object before reaching the grasping points (see [DS88]). We use two
tests :

1. The distance between the grasping points does not exceed the opening of the gripper.

2. The fingers do not collide with the object. The space the fingers use between their
initial open positions to the final configuration is projected into the image, and we
check that it does not intersect with the object (see figure 20).

Appendix C — Transformation into Action Parameters

Given two grasping points on the object’s boundary, we transform them into action pa-
rameters for the robot.

First we transform the two points from the image coordinates into the robot coordi-
nates. This process is termed calibration between the camera and the robot. We assume
a planar mapping, that is the grasping points in the image correspond to points that lie
at the same horizontal plane, in the real world. To calculate the transformation, we use
four points as examples, and find their locations in both image and robot coordinates.
We then solve a system of equations, as described in Ballard and Brown [BB82, pages
481-484]. The calibration was performed once. The system worked for several months
using the same transformation parameters.
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The two grasping points in robot coordinates are then transformed into a triple (z,y, ),
where z,y is the middle point between the grasping points, and € is the direction of the
grasping line. This triple is passed as action parameters to the action subsystem.

Appendix D — Choosing Important Features

A few visual features are necessary to predict the quality of the grasp. In this section we
compare features in order to find a small subset of the most predictive features.

We made the comparison using 2000 configurations of the best strategy s5. For each
object from the 20 target objects, 100 grasp configurations were chosen. FEvery grasp
configuration consists of two grasping points, on the boundary of the target object. A
grade and 20 features were calculated for each grasp. We estimated the statistical relations
between the features and the grades.

5.6 Multivariate Regression

Multivariate regression was used to estimate the importance of the features. The regression
finds the coeflicients for a linear combination of parameters that fits the data best. A model
of 60 parameters was considered, where each of the 20 features appeared as z, 2%, 3. This
enabled the regression to consider nonlinear relations between the parameters (features)
and the depended variable (the grade).

Y=c xal4 ey xal?>+c3xal®+ecq Xxa2+es Xa2?+cgxa2.......

The REG procedure of SAS was used, with MAXR option. It uses forward selection
to fit the best one-variable model, the best two-variable model, and so on. Variables are
switched so that R? is maximized.

The correlation for the best model was R? = 0.82, using 57 parameters. This means
that the data were not approximated very well by the linear combinations of the first
three powers for each feature. However small subsets of parameters gave high correlations,
relative to the result of the full model. The following table presents the accumulated R?
of the best subsets of one to nine variables. At each line the added parameter and R? of
the subset are shown.

Parameter | Accumulated R? | Percent of full model
a2? 0.633 77
dl 0.715 87
at7? 0.735 90
a2’ 0.746 91
al? 0.751 92

Table 4: Importance of features — multivariate regression. The first line shows the best
one-variable model, the second line the best two-variable model, etc. The left column
shows the parameter added to the subset at each stage.
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Running a model with only al, a2, d1 (three powers for each feature) gave a correlation
R? = 0.748, that is 91 percent of the full model.

5.7 Conditional Average Prediction

Because the correlation found by the multivariate regression was not high, we also tested
the non-parametric measure of conditional average prediction. In this method a subset
of parameters is considered at each stage. The observations (grasp configurations) are
divided into bins. Each bin contains configurations that have certain ranges of values of
the considered parameters. The expected grade for each bin is the average grade of the
configurations in it. The prediction error is the ratio of the variance in the bins SSE and
the overall variance S57.

For each subset of parameters we calculated the prediction quality

SSE
Prediction =1 — ——
SST
We calculated the quality measure for every pair of features.
The following table presents the pairs with the best prediction quality. Several pairs have

prediction quality higher than 0.9. The average prediction quality over all pairs was 0.443.

Feature 1 | Feature 2 | Prediction quality
a2 d9 0.95
a2 ab 0.94
a2 d8 0.94
a2 dl 0.93

Table 5: Importance of features — conditional average prediction. The best pairs of pa-
rameters are presented with their prediction quality.

We also calculated the prediction quality for several triplets. Adding the third feature
al to the best pair a2, d9 gave the best improvement - prediction quality 0.97.
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