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Abstract

To explore the nature of the representation space of 3D objects, we studied human
performance in forced-choice categorization of objects composed of four geon-like parts
emanating from a common center. Two categories were defined by prototypical objects,
distinguished by qualitative properties of their parts (bulging vs. waist-like limbs).
Subjects were trained to discriminate between the two prototypes (shown briefly, from
a number of viewpoints, in stereo) in a 1-interval forced-choice task, until they reached
a 90% correct-response performance level. After training, in the first experiment, 11
subjects were tested on shapes obtained by varying the prototypical parameters both
orthogonally (ORTHO) and in parallel (PARA) to the line connecting the prototypes in
the parameter space. For the eight subjects who performed above chance, the error rate
increased with the ORTHO parameter-space displacement between the stimulus and the
corresponding prototype; the effect of the PARA displacement was weaker. Thus, the
parameter-space location of the stimuli mattered more than the qualitative contrasts,
which were always present. To find out whether both prototypes or just the nearest
one to the test shape influenced the decision, in the second experiment we varied the
similarity between the categories. Specifically, in the test stage trials the distance
between the two prototypes could assume one of three values (FAR, INTERMEDIATE,
and NEAR). For the 13 subjects who performed above chance, the error rate (on
physically identical stimuli) in the NEAR condition was higher than in the other two
conditions. The results of the two experiments contradict the prediction of theories
that postulate exclusive reliance on qualitative contrasts, and support the notion of a
representation space in which distances to more than one reference point or prototype

are encoded (Edelman, 1998).



1 Introduction

To make sense of the world of shapes it encounters, the visual system must overcome two
major computational difficulties. The first of these is the variability in the appearance of a
3D object (and, hence, in the stimulus it presents to the visual system), caused by the varying
viewing conditions, such as illumination and pose with respect to the observer. Thus, the
same 3D object may look quite different when seen from different viewpoints; to realize that
two views belong to the same object, the visual system must reveal their common origin,
while ignoring (or making explicit) the conditions that gave rise to their differences.

The second source of problems is the variability in the shape of individual objects be-
longing to the same category. Just as a series of views of the same object must be perceived
as such, a collection of different shapes should be attributed to the same category, if they
are sufficiently similar. There is, however, an important distinction between the two cases:
whereas the changes in the object appearance precipitated by changing viewpoint can be
fully characterized by a handful of parameters (as few as six, in the case of a rigid object),
the variation in the shape of objects belonging to the same class is a prior: unconstrained.

A convenient common approach to the description of the two kinds of computational
problems mentioned above is to coach both in terms of certain subspaces of the measurement
space — the space of all possible outputs of the filters (or receptive fields) at the initial stage
of the visual system (Edelman, 1998). Recognizing an image as a view of some object then
becomes the problem of deciding the membership of that image in the space of all views of
that object, which we call its view space. Analogously, the categorization of an image as
produced by some member of a class of shapes amounts to pinpointing the location of the

image in a shape space spanned by all members of that class within the measurement space.



A considerable amount of attention has been given recently to the issues involved in the
perception of different views as belonging to the same object, or, using the terminology we
just introduced, in the processing of the view spaces of individual objects. In contrast, much
less work has been done on the processing of shape spaces generated by object categories.

In the present paper, we report two experiments intended to fill this gap.

1.1 View space effects

Psychophysical studies conducted in the past few years led to the characterization of cer-
tain basic limitations of the visual system in generalizing shape-based recognition to novel
conditions; see (Jolicoeur and Humphrey, 1998) for an extensive review and a discussion.
Specifically, it was found that the recognition of novel views of objects tends to be slower
and more prone to errors than the recognition of highly familiar views (Rock and DiVita,
1987; Tarr and Pinker, 1989; Biilthoff and Edelman, 1992; Edelman and Biilthoff, 1992;
Humphrey and Khan, 1992; Cutzu and Edelman, 1994; Biilthoff et al., 1995; Lawson et al.,
1994; Lawson and Humphreys, 1996), This effect persists even when full 3D shape informa-
tion is available to the subject through, e.g., binocular stereo cues (Edelman and Biilthoff,
1992).

The relevance of the above findings to the understanding of the processes of object recog-
nition has been disputed on the basis of the difference between viewpoint-dependent perfor-
mance exhibited by the subjects in these experiments, and the viewpoint-invariant perfor-
mance found in other studies. In particular, Biederman and Gerhardstein (1993) reported
essentially viewpoint-invariant performance on some of the objects used previously by Edel-

man and Biilthoff (1992), to which distinctive single parts have been added. A subsequent



detailed investigation, in which the number of distinctive parts was manipulated in addi-
tion to object orientation, showed, however, that recognition always becomes poorer with
increasing change in viewpoint, although this dependence is at its weakest for objects with

one unique part (Tarr et al., 1997).

1.2 Shape space effects and the role of similarity

The assumption that the processes and the representations involved in identifying specific
individuals are different from those used for categorization (Jolicoeur, 1990) has been recently
put to an explicit test in a series of experiments, in which objective similarity between stimuli
(and, consequently, the categorical level of their distinction) varied in a controlled fashion
(Edelman, 1995a).

Subjects in those experiments were trained to discriminate between two classes of com-
puter generated 3D objects, one resembling monkeys, and the other dogs. Both classes were
defined by the same set of 56 parameters, which encoded sizes, shapes, and placement of
the limbs, the ears, the snout, etc. Interpolation between parameter vectors of the class
prototypes yielded shapes that changed smoothly between monkey and dog. Within-class
variation was induced in each trial by randomly perturbing all the parameters. After the
subjects reached 90% correct performance on a fixed canonical view of each object, discrim-
ination performance was tested for novel views that differed by up to 60° from the training
view. In all the experiments reported in (Edelman, 1995a), higher inter-stimulus similarity
was associated with an increase in the mean error rate and, for misorientation of up to 45°,
with an increase in the degree of viewpoint dependence. On the one hand, when the inter-

stimulus similarity was low, performance was essentially independent of viewpoint, despite



the lack of qualitative (in Biederman’s terms) contrasts between the classes in that particular
experiment. On the other hand, in an experiment where qualitative contrasts were present,
viewpoint dependence was strong, especially in the high-similarity condition. These results
suggest that a geon-level (Biederman, 1987; Biederman and Gerhardstein, 1993) difference
between stimuli is neither strictly necessary nor always sufficient for viewpoint-invariant
performance.

The studies we mentioned so far concentrated on the quantification of the effects of
viewpoint on recognition, and on the interaction between these effects and those of similarity
among the objects that were to be recognized. While these studies explored the effects of
the relative location of the stimuli both in the view space and in the shape space, the
former exploration has been more thorough. For example, the experiments of (Biilthoff and
Edelman, 1992) involved parametric control over viewpoint along two mutually orthogonal
dimensions, whereas the study of (Edelman, 1995a) only manipulated the similarity between
the two classes of stimuli, which is a one-dimensional quantity. Thus, in the experiments
reported below, we chose to concentrate on a parametric exploration of the effects of shape-
space proximity (similarity) between the stimuli, the issues of viewpoint having been deemed

of a secondary importance, in view of the previous findings in this field.

2 The ORTHO experiment

The first experiment involved two classes of objects (p; class, py class), defined by prototypes
p1 and py (see Figure 1). The objects were jointly parameterized by a number of variables
that controlled their appearance. Each object thus corresponded to a point in the parameter

space (Figure 2). The shape of the objects was manipulated by combining two orthogonal



directions of displacement in the shape (parameter) space — in parallel and in perpendicular
to the line connecting p; and py (Figure 3). Altogether, 15 exemplar objects for py class that
were to serve as the stimuli in the test phase of the experiment were formed by this procedure

(Figure 8).

2.1 Motivation

One may note the parallel between the layout of the stimulus space in the present experiment
and in the INTER/EXTRA/ORTHO experiments of (Biilthoff and Edelman, 1992). In that
study, two groups of views of the same target object, separated by a 75° rotation in depth,
were shown to the subjects in the training stage. The subjects then had to discriminate
between new views of the target and views of some distractors, with the former situated
on the same great circle of the viewing sphere (in between the training views, or outside
the arc they defined), or on an orthogonal great circle. The significantly less than perfect
performance of the subjects on all three kinds of test views (including those in between the
training views) provided evidence against a particular family of theories of generalization of
recognition to novel views.!

In the present study, our aim was to examine various theories of categorization, that is,
generalization of recognition to novel shapes. Consequently, the shape-space arrangement
of the stimuli in our experiments combined key elements of the view-space arrangement

used in (Biilthoff and Edelman, 1992) with the introduction of controlled shape contrasts

between two classes of stimuli, as it was done in (Edelman, 1995a). Specifically, our two

! Specifically, this constituted evidence against the exclusive reliance of recognition on linear view interpo-
lation (Ullman and Basri, 1991), which predicts perfect performance on novel views that can be represented

as linear combinations of familiar ones.



class prototypes differed by a so-called qualitative contrast (Biederman, 1987): the sign of
the bulge of the generalized-cylinder parts. Theories that postulate reliance on such contrasts
(e.g., Biederman’s Recognition By Components, or RBC) predict viewpoint-invariant near-
perfect discrimination performance for the two class prototypes, and for stimuli derived from
the prototypes by a parameter-space displacement which is orthogonal to the line connecting
p1 and py. The same prediction can be derived from theories that postulate involvement of
metric features, but do not allow for the possibility of an interaction between the different
orthogonal dimensions of the feature space (for an example of such a theory, see Ashby and
Perrin, 1988). The reason for this prediction is that a variation which is orthogonal to the
difference between p; and py should not affect discrimination.

At least one class of theories of representation and recognition does predict an effect for
the manipulation described above. Namely, lower performance for stimuli that are farther
from the line connecting the two prototypes (Figure 4) is predicted by exemplar-based the-
ories (Nosofsky, 1988; Edelman, 1998)? but not by theories that postulate the construction

of a decision surface (Ashby and Perrin, 1988).

2.2 Method

Eleven subjects were trained to discriminate between the two prototypes in a l-interval
forced-choice task. In each trial, an image of one of the two prototypes was briefly (300 msec)
presented on the screen of a Silicon Graphics workstation, in binocular stereo (using LCD
shutter glasses synchronized with the display). The subject was required to press the right or

the left key on the computer mouse, depending on the class to which the stimulus belonged;

2These theories may be considered the shape-space analog of the interpolation approach to the recognition

of novel views of objects (Poggio and Edelman, 1990).



an incorrect response triggered a beep (only during the training phase of the experiment).
The object could be seen from any of four viewpoints, spaced evenly around the viewing
sphere.

The subjects were trained for a minimum of 30 trials, until they reached a 90% correct-
response performance level (computed on the trailing 30 trials of the session). They were
then tested (for 360 trials) on shapes obtained by varying the prototypical parameters both
orthogonally (ORTHO) and in parallel (PARA) to the line connecting the prototypes in the

parameter space, as described above.

2.3 Results

Eight of the 11 subjects who participated in the experiment performed above chance in
the test phase (the mean error rate of these was 23%). For these subjects, the error rate
(computed over the four test views and the three repetitions per condition) increased with
the ORTHO parameter-space displacement between the stimulus and the corresponding pro-
totype. A General Linear Models analysis (using procedure GLM; SAS, 1989) showed this
effect to be significant: F(2,63) = 2.9, p < 0.08. The effect of the PARA displacement was
close to nil: F(2,63) = 1.7, p < 0.19.3

A stronger effect was masked by the large individual differences (the error rates of the
eight subjects ranged between 4% and 34%). When these were taken into account (by incor-
porating the subject variable into the analysis), the effect of ORTHO displacement became

stronger: F'(2,28) = 5.0, p < 0.01, and a significant effect of PARA displacement emerged:

3In the computation of these effects, we collapsed the data over the two directions of ORTHO shift away
from the prototype p2, due to considerations of symmetry. Thus, the number of degrees of freedom in the

F statistics was 2 in both cases.



F(2,28) = 3.3, p < 0.05. Importantly, there was no interaction between these effects and
that of subject. A direct comparison of the sums of squares computed by GLM indicated that
the effect of ORTHO (SS = 998.0) was somewhat stronger than that of PARA (SS = 657.8).
Figure 5 shows the mean error rate and response time, plotted against the ORTHO and the

PARA displacement.

2.4 Discussion

The results of the first experiment clearly indicate that the parameter-space location of the
stimuli mattered more than the qualitative contrasts (which were always present) between the
two classes that had to be distinguished. Moreover, the stronger effect of the ORTHO relative
to the PARA displacement suggests that both prototypes participated in determining the
response to the test stimuli. This pattern exactly mimics the distinction between the ORTHO
and the INTER/EXTRA effects in the experiments described in (Biilthoff and Edelman, 1992),
where the subjects’ generalization performance was worse for views extending in the ORTHO
direction, compared to the other two. We stress again, however, that there the manipulation
of the stimuli was carried out in the view space (that is, the exemplars were rotated versions
of the “prototype”), whereas in the present experiment the manipulation was in the shape

space (the exemplars differed from the prototype by their shape).

3 The NEAREST-NEIGHBOR experiment

The next experiment we describe was designed to gain further support for the idea that
proximities to both prototypes contribute to the categorization process. If the visual system

indeed relies on the computation of distances between the stimulus and prototypical memory



traces in some feature space, it may use those distances in two different manners. The
first possibility is that the identity of the prototype nearest to the stimulus is the sole
determinant of the response. We term this the NEAREST-NEIGHBOR hypothesis; nearest
neighbor decision rules are ubiquitous in computer vision approaches to recognition, and
constitute a central, albeit seldom acknowledged, assumption behind computational theories
of human object recognition. The second possibility is that a number of close neighbors of
the stimulus jointly determine the nature of the response.

To distinguish between these two possibilities, we examined the responses of the subjects
to a fixed set of stimuli, while manipulating the location of one of the two class prototypes
(see Figure 6). Importantly, the manipulation left the test stimuli themselves always within
the half-space dominated (by proximity) by the other, fixed, prototype. According to the
NEAREST-NEIGHBOR hypothesis, the performance on the test stimuli should not change
under the proposed manipulation. In contrast, theories that postulate the involvement of all
sufficiently close prototypes (Poggio and Edelman, 1990) predict that performance will vary
as the distance between the two prototypes changes (Edelman, 1995a). Assuming that the
system’s response is based on matching the pattern of prototype activations elicited by the
stimulus to patterns memorized during training, the expected changes in performance are to

the worse, as illustrated in Figure 6.

3.1 Method

The stimulus set and the course of each trial were the same as in the first experiment. Of
the 15 stimuli associated with prototype py, only the five belonging to the middle column

were used (see Figure 6). These were crossed with three possible locations of prototype p;,
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which we termed FAR, INTERMEDIATE, and NEAR, yielding 15 test conditions (as in the

1 Note, however, that the subject’s performance was always assessed on

first experiment).
the same five physical objects that belonged to ps class. The results reported below only

pertain to the responses given to those objects.

3.2 Results

Thirteen of the 18 subjects who participated in this experiment performed above chance
(mean error rate of these was 18.0%). When averaged over these subjects, the effect of
moving prototype p; was marginal: F'(2,180) = 1.6, p = 0.2.°

As in the previous experiment, a stronger effect was masked by the large individual
differences (the error rates of the 13 subjects ranged between 5% and 34%). When these
were taken into account (by incorporating the subject variable into the analysis), the effect
of moving p; became more significant: F'(2,96) = 2.9, p < 0.06; importantly, there was no
interaction between this effect and that of subject. Pairwise contrasts among the levels of this
effect indicated n.s. differences between levels 0 and 1 (F' = 1.67, p = 0.2) and levels 0 and 2
(F =1.19, p = 0.28), and a significant difference between levels 1 and 2 (F = 5.68, p < 0.02;
these two levels correspond to the intermediate and the farthest locations of prototype p1,
relative to py). Figure 7 shows the mean performance in this experiment, plotted against

the PARA displacement of prototype p;.

4The location of p; in the test phase was manipulated by dividing the entire sequence of test trials into
three blocks, each of which corresponded to FAR, INTERMEDIATE, or NEAR condition. The order of the

blocks in the test session was randomized across subjects.

5Because this experiment concentrated on the effect of the displacement of prototype p; in the PARA

direction, the data were collapsed over the ORTHO displacement.
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3.3 Discussion

The results of this experiment demonstrate the sensitivity of the visual system to the general
setting of the categorization task with which it is confronted (cf. the recent review of the
role of the task in categorization in Schyns, 1998). If the classification decision were carried
out by comparing a representation of the stimuli (which remained fixed throughout the
experiment) with that of the closest class prototype (which remained fixed as well), a constant
performance would have ensued. We found, however, that the performance has been affected
by the relocation of the second prototype relative to the first (closest) one, in clear violation

of the prediction of the NEAREST NEIGHBOR hypothesis.

4 General discussion

The objective of the two experiments we described was to gather quantitative data regarding
the process whereby the shape of an object is labeled as belonging to one of two classes. To
minimize the effects of prior familiarity with the stimuli, we used novel shapes, generated
to tight specifications. Although this choice allowed us a high degree of control over the
stimulus set, the resulting task turned out to be too difficult for eight out of twenty-seven
subjects, who failed to perform above chance during the test phase. This difficulty should

be kept in mind while discussing the implications of our findings.
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4.1 On the interdependence of the dimensions of the represen-
tation space

In the study of visual object processing, the foremost issue is the nature of the representation
space wherein tasks such as categorization are carried out. To clarify this issue, we asked,
specifically, whether the dimensions of the relevant space are independent. The results of
experiment 1 suggest that they are not: our subjects performed worse on shapes that were
progressively more different from the class prototype acquired during the training phase,
even though this difference was orthogonal to the (qualitative) distinction between the two
classes. This finding is consistent with the results of a recent series of studies of categorization
in pigeons and people (Mackintosh, 1995; see also McLaren et al., 1994). In those studies,
introducing a modification into the feature-space (in our terms, the shape-space) location
of the stimuli was shown to affect performance, even when the modification was orthogonal
to the learned categorization. Thus, our results indicate that the visual system does not
always rely solely on the single most distinctive contrast between the categories, even if this
contrast is “qualitative” or “nonaccidental” (using the terminology adopted by Biederman,
1987).

In an unpublished manuscript, Bar and Biederman (1995) claim that a comparison of the
effects of nonaccidental and quantitative shape changes on orientation invariance must be
accompanied by a proper scaling of the two.5. Our main goal is to investigate the effects of
shape change along a dimension that is orthogonal to a predefined shape contrast between

two class prototypes (rather than to compare numerically the effects of qualitative and

6Bar and Biederman attempted such scaling by varying the degree of shape change in each case so as to

obtain a fixed change in performance at the reference orientation
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quantitative manipulations). Scaling, therefore, would only be a concern here if in our
stimulus set the nonaccidental contrast were infinitesimal and the other one not. To dispel
this concern, we have computed the relevant image-space distances between corresponding
views of the stimuli (shown in Figure 8). The distance between images of the two class
prototypes, p1 and ps, Was daif class = 14.95.7 In comparison, the distance between prototype
ps and an outlying exemplar of its class (top row, middle column in Figure 8, left) was
(same class = 7-21. Neither of these distances is infinitesimal compared to the other. Thus, we
can recapitulate our conclusion: the shape change underlying dgame class (Which is only half
as large as dgiff class) Tesulted in a significant deterioration in the classification performance,

despite being orthogonal to the learned classification task.

4.2 On the shortcomings of “nearest-neighbor” models

Even if the location of the stimulus in a shape representation space — and not merely its
location along the line connecting the two class prototypes in that space — determines the
subject’s performance, the question of the nature of the shape space (that is, the nature of
the relevant features) still remains open. Rather than attempting to characterize the features
explicitly (an undertaking that is notoriously resistant to a purely psychological approach),
we chose to find out whether or not the features that the stimulus shares with the closest
prototype alone determine the performance. The outcome of the second experiment reported

above suggests that both prototypes contribute to the perceptual categorization decision.

"The units here are immaterial. Note that this distance provides an objective measure of the smallest
magnitude of the dissimilarity between the two objects, attained when the objects are aligned with each
other. When averaged over different orientations, this distance is essentially the same for all pairs of shapes

that are as similar to each other as our stimuli.
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An intriguing computational hypothesis consistent with our findings holds that the in-
ternal shape space is spanned by a vector of proximities of the stimulus to a number of
“reference” or prototypical objects, whose role can be played by the class prototypes (Edel-
man and Duvdevani-Bar, 1997; Cutzu and Edelman, 1998). The implications of this hy-
pothesis, according to which the features by which an object is judged are its similarities to
other objects,® as well as a discussion of its compatibility with recent psychophysical and
neurobiological findings on object representation, can be found in (Edelman, 1998).

In summary, the results of the two experiments we reported above contradict the pre-
diction of theories of recognition that postulate exclusive reliance on qualitative contrasts
(Biederman, 1987) or on proximity to a decision surface (Ashby and Perrin, 1988; Maddox
and Ashby, 1993), and support the notion of a metric representation space, with the sub-
jects’ performance determined by proximities to more than one reference point or prototype
(Nosofsky, 1988; Nosofsky, 1991; Kruschke, 1992; Edelman, 1995b; McKinley and Nosofsky,

1996; Edelman, 1998).
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Figure 1: Two prototypical hedgehog-like objects, similar to those we used in our experiments
(both “hedgehogs” are shown at the same orientation). Left: p; class, right: ps class.
Each object is composed of a number of limbs protruding from a common center; the limbs
are generalized cylinders, similar to Biederman’s (1987) geons. The two prototypes are
distinguished by qualitative (nonaccidental) contrasts (sign of bulge <>/waist >< of the
limbs; see Figure 3). In addition, a number of quantitative parameters such as the degree
of bulge/waist, the amount of taper, length, etc., control the exact shape of each instance
object. Note that the qualitative contrasts emerge from the accumulation of quantitative

changes, as illustrated in Figure 2.
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Figure 2: Each object can be represented by a single point in a parameter (shape) space.
Changing the quantitative parameters (“morphing”) corresponds to a movement of the
shape-space representation of the object. This figure illustrates the morphing sequence that
connects the two prototype objects. Although the changes between the successive images
are minute, they accumulate to make up easily perceptible (and, eventually, “qualitative”)

differences between the endpoints of the sequence.
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Figure 3: The parameter-space arrangement of stimuli. The parameter-space locations of
the two prototypical objects are marked by p; and p,. The two orthogonal directions of
shape variation are bulge (increase/decrease) and taper (proximal to distal or vice versa).
Specifically, the shift from p; to ps corresponds to a gradual change from a waist-like to a
bulging profile of the hedgehog’s limbs or vice versa; the orthogonal direction corresponds
to an equally gradual change of limb shape that tapers from the proximal towards the distal
end to a shape that tapers in the opposite direction. See Figure 8 for an illustration of the

entire array of stimuli corresponding to this parameter-space pattern.
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Figure 4: The parameter-space arrangement of the stimuli and the expected performance
in the ORTHO experiment. The subjects were trained to discriminate between the two
prototypes, p; and p,. They were then tested on the discrimination of stimuli produced by
a shape-space variation orthogonal to the contrast between the two prototypes. Black dots:
prototypes, grey dots: py class objects used in the experiments, white dots p; class objects

(not used). See section 2 for a discussion of the predicted results and the actual findings.
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Figure 5: The mean performance of the eight subjects who responded above chance in the

first experiment, plotted against the ORTHO and the PARA displacement (see section 2.3).
The three PARA displacement values, denoted symbolically by the numerals 1,2,3, appear
along the abscissa in the plots; the five ORTHO values correspond to the ordinate. The
location of prototype py corresponds to the point whose coordinates are (2,3). Altogether,
the 15 data points are arranged in a 3 x 5 grid around prototype ps (see Figure 3); the
direction towards the other prototype in these plots is along the increasing abscissa values.
Left: error rate. Note the general increase in the error rate for test stimuli that are closer to

the other prototype. Right: response time.

24



{predicted by the;
:hearest neighbor:
theories:

" P, offset

Figure 6: The parameter-space arrangement of the stimuli and the expected performance
in the NEAREST-NEIGHBOR experiment. The two prototypes, p; and ps, are as before. In
this experiment, the location of p; relative to ps varied along the line connecting the two
prototypes. Performance (discrimination between the two classes) was tested for the same
physical stimuli, whose location in the parameter space corresponds to the middle column
in the 3 x 5 grid of points surrounding p,;. Black dots: prototypes, grey dots: p; and p; class
objects used in this experiment, white dots: p, class objects not used here. For a discussion

of the expected performance, see section 3.
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Figure 7: The mean performance of the 13 subjects who responded above chance in the
second experiment, plotted against the PARA displacement of prototype p; (see section 3.2).
Left: error rate. Right: response time. The error bars show the standard deviation of the
corresponding means. The three values along the abscissa (prototype proximities 1, 2, 3)
correspond, respectively, to the FAR, INTERMEDIATE, and NEAR conditions, described in

the text.
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Figure 8: All the stimuli objects. The perception of variants of the learned prototype objects
was probed with 15 exemplars made out of prototype p,y. All these exemplars, whose shape-

space locations form a 3 x 5 grid centered on p,, are illustrated here.
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