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Abstract

The problem of representing the spatial structure of images, which arises in visual object processing,
is commonly described using terminology borrowed from propositional theories of cognition, notably,
the concept of compositionality. The classical propositional stance mandates representations composed
of symbols, which stand for atomic or composite entities and enter into arbitrarily nested relationships.
We argue that the main desiderata of a representational system — productivity and systematicity — can
(indeed, for a number of reasons, should) be achieved without recourse to the classical, proposition-like
compositionality. We show how this can be done, by describing a systematic and productive model of the
representation of visual structure, which relies on static rather than dynamic binding and uses coarsely
coded rather than atomic shape primitives.

1 Problematic issues in the representation of structure

The focus of theoretical discussion in visual object processing, which for a long time concentrated on
recognition-related problems such as viewpoint invariance, has recently started to shift to the representa-
tion of object structure, following a particularly forceful statement of the issue by (Hummel, 2000). View-
or appearance-based solutions to recognition-related problems developed and tested on a variety of object
classes (Ullman, 1998) have been termed “holistic” because they do not explicitly represent or act upon
the internal relational structure of objects (Edelman, 1998). As such, view-based recognition models are
expected to be unable to deal with issues of visual structure. Borrowing an example from (Hummel, 2000),
a holistic system can be made to discriminate an object composed of a circle atop a square from another one
in which the square is on top of the circle, but it is not likely to be able to report that these two objects are
also structurally similar (i.e., that they share parts).

This argument can be related to broader issues in cognitive science by invoking the observation that the
main difficulties in the processing of structure lie in achieving productivity and, more importantly, system-
aticity, two traits commonly attributed to human cognition in general (Fodor and Pylyshyn, 1988; Fodor,
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1998). As it happens, the best-known theory of structure representation in vision (Biederman, 1987; Hum-
mel and Biederman, 1992) is both productive and systematic — as arenafiositionalapproaches that
construe objects as composed of a small number of generic parts conjoined by universally applicable cat-
egorical relations. Nevertheless, we consider the issue of systematicity in vision to be far from settled, in
view of the assumptions made by the classical compositional approaches.

The most crucial of these is the assumption of the possibility of dynamic binding of parts to slots in
relational structures. Any model that incorporates this assumption is equivalent in its computational power
to A-calculus, and therefore to a Turing Machine (Church, 1941). Considerations of parsimony dictate that
the computational mechanism behind a model be not more powerful than absolutely necessary, lest the
modeling be reduced to an exercise in programming. In the context of biological vision, considerations
that discourage appeals to general-purpose computation or symbol manipulation are especially pertinent,
given the controversial status of neuronal-level theories of dynamic binding (Roskies, 1999). Consequently,
we chosenotto assume that dynamic binding can be used to model the processing of structure in primate
vision, or, by implication, that the problem of systematicity in vision has been already solved by the classical
theories.

In this paper, we examine the possibility of achieving systematicity within an approach to structure rep-
resentation that relies on static binding and is based on an existing theory of recognition and categorization
(Edelman, 1999). We first describe an implemented computational model that uses distributed representa-
tions and static binding to attain a degree of systematicity on unfamiliar stimuli. We then survey data from
the psychology and the neurobiology of visual structure representation suggesting that the systematicity in
biological vision is limited in a manner implied by the proposed computational framework. A formal defi-
nition of visual systematicity and a discussion of its relationships to computational semantics are offered in
an appendix.

1.1 The problem of productivity

Intuitively, a cognitive system is productive if it is open-ended, that is, if the set of entities with which it
can deal is, at least potentially, infinite. The most often-cited example of a productive system is language:
people both produce and comprehend quite an impressive variety of sentences, with no clear limit to their
number. In the context of visual recognition, the productivity challenge is to represent an unlimited variety
of objects in a finite-resource system.

The stipulation that the representational system rely on finite resources rules out any solution to the
productivity problem that is based on rote memory. If, however, the system can interpolate among examples
stored in memory, its representational capabilities can be greatly extended (Poggio and Hurlbert, 1994). For
instance, novel views of familiar objects can be recognized by interpolation among a few familiar views
(Poggio and Edelman, 1990), and novel instances of familiar shape classes can be categorized by interpola-
tion among stored class prototypes (Edelman and Duvdevani-Bar, 1997a). Moderately novel categories too
can be dealt with, on the basis of analogy to familiar ones (Edelman and Duvdevani-Bar, 1997b).

Within this framework, radically novel categories can only be treated by extending the system’s reper-
toire of stored prototypes. Although it may seem that the need for extra memory would make the achieve-
ment of productivity problematic, this does not have to be so. Postulafirgdupper limit on the resources
to be used unduly constrains the range of possible approaches to productivity. Indeed, a significantly sub-
linear (e.g., logarithmic) growth of the required resources with the size of the problem can usually be ac-
commodated in practice, as discussed in any textbook on computational complexity (Aho et al., 1974).

In view of this abstract (computational-level) observation, and given the existing practical approaches to



recognition and categorization that exhibit productivity, we consider this problem to be of lesser importance
than systematicity, which is the focus of this paper.

1.2 The problem of systematicity and its relationship to classical compositionality

In the general context of cognition, the problem of systematicity has been described by (Fodor and McLaugh-
lin, 1990), p.184, thus:

[A]s a matter of psychological law, an organism is able to be in one of the states belonging to
the family only if it is able to be in many of the others [...] You don't find organisms that can
think the thought that the girl loves John but can’t think the thought that John loves the girl.

Systematicity is commonly considered to be the crux of the debate focusing on the representational theory
of mind (Fodor, 1987; Kaye, 1995). Despite the importance of this concept, the debate surrounding it has
probably been less productive (and less systematic) than it could be, because systematicity “has rarely been
well defined” (Prinz, 1994). The following definition seems to be the closest the field has come to a formal
approach:

Definition 1 (Hadley, 1997, p.140)A cognitive agent, C, exhibits systematicity just in case its cognitive
architecture causally ensures that C has the capacity to be in a propositional attitude (A) towards proposition
aRb if and only if C has the capacity to be in attitude (A) towards propositiBn.

The systematicity of human verbal behavior with respect to simple sentences such as “John loves Mary” is
considered by many to be a proof that cognitionaspositional In its classical mathematical formulation
(Frege, 1993), the principle of compositionality is the idea that the meaning of a whole (say, a string of
symbols) is a function of the meaning of its parts (i.e., of the individual symbadfshon-technical writing

in cognitive science, compositionality came to be construed as a recipe for building complex structures out
of simpler ones, by concatenation-like operations. More often than naot, it is considered as a challenge to
be met by a sophisticated representational framework, along with productivity and systematicity (Fodor and
Pylyshyn, 1988; Bienenstock, 1996; Bienenstock et al., 1997). In particular, Fodor and Pylyshyn (1988,
p.41) tend not even to distinguish between compositionality and systematicity, remarking that “perhaps they
should be viewed as aspects of a single phenomenon.”

We contend that this approach constitutes a category mistake. Generally speaking, compositionality
does not belong in the same class of phenomena as systematicity, because it is not a problem in the same
sense that productivity and systematicity are. A classical (Fregean) compositional representation, in which
symbols standing for a few generic and primitive (atomic) entities enter into arbitrarily nested relations,
would be automatically both productive and systematic (just as propositional calculus is). One must realize,
therefore, that compositionality is a (possible) means, not an end in itself: if productivity and systematicity
can be attained in some other fashion, the need for classical compositionality would be obviated. Thus, the
standard “proof” that assumes systematicity and infers compositionality, which Fodor repeatedly describes
as an “argument from the best explanation,” commits a logical fallpeyit{o principii), akin to claiming
that birds must be lighter than air because they can fly; cf. (van Gelder, 1990), p.378.

In vision, the challenge of systematicity inherent in Definition 1 is typically illustrated by examples
such as those in Figure 1: a system that can make sense of dbjecfcircle above square) should
also be able to make sense®f= (square above circle) (Hummel, 2000). This propositional construal

LA discussion of formal compositionality in the context of computational semantics appears in appendix A.
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Figure 1. According to a classical definition, a representation is systematic if its ability to encode some com-
bination of symbolic constituents entails the ability to encode other combinations of the same constituents
(section 1.2). This figure illustrates a straightforward extension of such combinatorial systematicity to vi-
sion. (A): a system that can represent a man riding a donkey should also be able to represent a donkey riding
a man (top:A Physician Riding a Donkeypy Niko Pirosmanashvili; bottoniYou Who Can't Do Anything

by Francisco Goya).B): the call for systematicity implicit in (Hummel, 2000) uses the example depicted
here. C): the computational experiments reported below use composites consisting of pairs of numeral
shapes to test for systematicity.

of systematicity, which relies ultimately on concepts imported from symbolic logic, is problematic, for two
reasons.

First, the very coaching of the problem of representation in propositional terms amounts to adopting the
ontological stance of reifying discrete parts (cf. Figure 2), which in Definition 1 are designated by symbols
a andb. This stance may, in fact, not be defensible in vision (Edelman, 2002). Because of the pixellated
nature of the lowest-level representation in any visual system that involves a spatial sampling of images, any
visual object can be thought of, trivially, as composed of discrete “parts.” Such parts, however, need not be
in any sense real, and need not afford any useful insight into the object’s nature (Smith, 2001). Moreover,
(images of) many objects — even those designated in English by count nouns, such as boots, shellfish,
apples, worms, branches — are not readily decomposable into middle-scale parts (as opposed to pixels).

Second, even for objects that are clearly decomposable into middle-scale parts, the need for representing
these parts rearranged according to a different plan is questionable. For example, a face is typically perceived
as a particular arrangement of two eyes, a nose and a mouth; the need to represent an object composed of
these same parts in a different configuration virtually never arises outside the laboratory. Likewise, an image
of a quadruped animal is normally seen to possess a head, a body, and four legs; a random rearrangement of
these would, however, no longer count as an image of an animal.

Despite these problems, situations clearly exist in which the ability to represent middle-scale parts (in
a member of category for which such a description is appropriate) is important and must be insisted upon.
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Figure 2: In vision, structural descriptions (a compositional approach, in which object shapes are described
in terms of relatively few generic components, joined by categorical spatial relationships chosen from an
equally small fixed set) is widely regarded as the only computational theory that is at all capable of delivering
productivity and systematicity (Biederman, 1987; Bienenstock et al., 1997; Hummel, 2000). This illustra-
tion shows a hypothetical solution to the systematicity problem based on the principle of compositionality.
Let us denote a square shapedwnd a circle byB. Without loss of generality (cf. (Zadrozny, 1994), sec-

tion 2), we may only treat here the relatiabove which we denote by the symbple.g.,A B standing for

“A aboveB”). Left. an interpretation functionf, maps the two primitive shapes into their corresponding
atomic symbols, as followsf(A) = a, f(B) = b. Right: the systematicity of the classical compositional

scheme is manifested in its ability to assign an intuitively correct interpretatiﬂ’qmi» b.a, given that it

can interpret another shapéj B I ab consisting of the same components and utilizing the same relation
(“above”). The dot ina.b denotes concatenation. See section 1.2 for a discussion.

For example, for shape classes such as quadruped animals, the detection of the common parts (head, legs)
may aid superordinate-level categorization. Typically, in such cases the parts are specific to a superordi-
nate category (rather than generically applicable across all categories), and are likely to be functionally
significant.

The constraint on representation implied by these latter observations may be wntext system-
aticity: a system that has the notion ohaad(a part of an animal — say, a cow) ohandsef(a part of a
telephone), must also be able to detect the head of another animal (say, a pig), and the handset of an answer-
ing machine. We observe that this variety of systematicity is actually subsumed under Definition 1: if the
relationa Rb is taken to be assertifgead_of (a, b) in the context ofiead(a) A cow(b), thenbRa would be
well-formed (albeit rather meaningless).

Lastly, the general-purposmnfigurational systematicitthat is made explicit by Definition 1 is cer-
tainly applicable to the representationsaienesomposed of discrete middle-scale objects. In this case, a
straightforward translation of the definition into the visual domain is entirely unproblematic: a system that
can represent the presence of a chair to the left of a talig)(n one scene must be capable of representing
a table to the left of a chaibfa) in another.

In the balance, despite serious conceptual problems surrounding it, visual systematicity rooted in Defini-
tion 1 has a broad intuitive appeal, which needs to be analyzed and acted upon. The action plan we develop
in the rest of this paper has three components. First, we propose an intuitive formulation of compositionality
tailored to vision and illustrate it by introducing a computational model of structure processing that employs
distributed representations to address the core problem besetting classical, part-based systematicity — the
nature of the parts in question. Second, we present a characterization of the limited systematicity exhibited
by human observers gleaned from behavioral literature, along with neurobiological findings concerning the
mechanisms that may support quasi-systematic visual perception. Third, we use the model, and the the-



ory of structure representation behind it, to derive concrete testable predictions for further behavioral and
physiological experiments.

2 A computational scheme for distributed representation of structure

According to Definition 1, systematic treatment of a structured stimulus is ensured if any relevant relation
defined on the representations of its constituents is equally applicable to all possible argument combinations:
if aRb is well-defined, so must beRa.> As we argued above, the visual world does not come equipped
with a priori structuring tools such as the two-place relati®rirom the propositional calculus example.
Representational systems typicaitgposestructure on the visual world, and the main issue with which

we are concerned here is how to do that within a philosophically reasonable and computationally feasible
ontological framework that also exhibits at least some degree of systematicity. In this matter, theories such
as Recognition By Components (Biederman, 1987; Hummel and Biederman, 1992) follow the example of
propositional calculus, by adopting symbols standing for generic parts (“constituents”) of objects, along
with “crisp” categorical spatial relations such alsoveor alongside as representational primitives. The
resulting scheme is classically compositional (just as propositional calculus is) and therefore systematic, but
its systematicity comes at a price, which we find too high, for reasons already discussed.

Figure 3: The Chorus of Fragments (CoF) model of structure representation (Edelman and Intrator, 2000)
relies on the principles of distributed representation and of (static) binding by retinotopy. The circle and the

square are bound to each other by virtue of appearing in those locations in the visual field (the “corkboard”)

that correspond to the receptive fields of the measurement units.

2.1 Coarse coding and binding by retinotopy: a Chorus of Fragments

An alternative, non-classical approach to systematicity is to represent an object by a set of non-categorical,
non-generic measurements that are somehow spatially structured. We propose to use location in the visual

2Note that this propositional formulation does not require, say,itRatbetrueif aRb is, only they both bevell-defined This
point may be illustrated by letting® stand for the relation- (greater thar: the two propositions3 > 2 and2 > 3, are both
well-defined, albeit only one of them is true.



field in lieu of the abstract frame that encodes object structure. Intuitively, the constituents of an object are
then bound to each other by virtue of residing in their proper places in the visual field; cf. (Clark, 2000), p.74.
The visual field can then be thought of as a corkboard, whose spatial structure supports the arrangement of
shape fragments pinned to it (Figure®3yhis scheme exhibits effective systematicity by virtue of its ability

to represent different arrangements of the same constituents, as required by Definition 1. Coarse coding
the constituents (e.g., representing each object fragment in terms of its similarities to some basis shapes)
renders the scheme productive. Coarse coding also alleviates the ontological concerns that arise in classical,
propositional schemes that postulate an alphabet of generic all-or-none parts. We call this approach to the
representation of structure the Chorus of Fragments, or CoF (Edelman, 1999).
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Figure 4: a Chorus of Fragments: encoding object structure by an ensembteatfwherecells (cf.
section 4). Each such cell can be seen as performing a measurerhesft the similarity between
the stimulus and reference shapat location/. In this illustration, six reference-shape measurements
(t € {1,2,3,4,5,6}) are replicated across two locatioris € {1,2}), resulting in a 12-dimensional
what+whererepresentation.Top: an objectO; = AfB, shown here as composed of fragmedtand
B, is mapped by the measurement functiéng } into a2 x 6 matrix S;, whose rows correspond to mea-
surements taken at different image locations. The valués(@f/) are depicted as the little “thermometers”
associated with each reference shapettom: the representation of obje€, = BtA, which is struc-
turally related toO;. Configurational systematicity of this scheme with respect to objects- AyB and
0O, = BiA manifests itself in pairwise correlations betwe#itl1, -) andS»(2, -), and betweer$; (2, -) and
Sa(1,-), as discussed in section 2.4.

3Cf. Wittgenstein: “The essential nature of the propositional sign becomes very clean when we imagine it made up of spatial
objects (such as tables, chairs, books) instead of written signs. The mutual spatial position of these things then expresses the sense
of the proposition” Tractatus Logico-Philosophicuproposition 3.1431).



2.2

The principles behind the model

We now discuss in detail the constraints on the measurement system implied by the intuitive approach just
presented (a formal treatment is given in the appendix). Consider the application of the proposed method
to the square/circle systematicity challenge, illustrated schematically in Figure 4. The illustration shows the
two “structured” objects from Hummel's example, represented by the outputs of six classes of measurement
functions. Each class is parameterized by the location of the function’s spatial support (in neurobiological
terminology, itsreceptive fieldiwith respect to the center of the visual field (marked by the cross-hairs).

Two instances of each class, corresponding to two locations, are shown; for example, the first measure-
ment function in the top row is “tuned” to the same shape as the first one in the bottom row, but the two differ
in the optimal location of the input. Effectively, each instance of a measurement function can be thought

of as

possessing a tuning curve both in the space of different possible objechdpeespade and in the

space of their locations (the “space” space). By virtue of these properties, the measurement functions bear
an operational resemblance to the receptive fields of neurons, found at various stages of the mammalian vi-
sual system, that are tuned to stimulus features such as shape and location (Logothetis and Sheinberg, 1996;
Tanaka, 1996); see section 4.

The central characteristics of this scheme of object representation are as follows:

C1

C2

C3

C4

C5

C6

The choice of thebject fragment$o which the measurement functions are tuned should be governed
by probabilistic principles such as Minimum Description Length (MDL), which dictates that the frag-
ments support an informationally parsimonious coding of the data; see, e.g., (Zemel and Hinton,
1995). These principles are outside the scope of the present paper; for some initial psychophysical
and computational explorations of this issue, see (Edelman et al., 2002; Edelman et al., 2003).

The ensemble of measurement functions can represent, in a distributed fashion, an object that is not
the optimal stimulus for any of them. This is simply a reflection of the principle of coarse coding,
which has been widely used in cognitive modeling (Hinton, 1984; Edelman, 1999), and which has a
solid basis in neurobiological data; see, e.g., (Rolls and Tovee, 1995; Vogels, 1999).

The measurement functions need not be generic, and need not combine orthogonally (intuitively, they
may partially overlap). This design choice, which we justify on the grounds of learnability and ease of
use, is related to the idea of using empirically determined, possibly overcomplete basis sets in signal
representation (Chen et al., 1999).

Constituents (fragments) of the spatial structure of the object are bound to each other by virtue of
being bound to their proper places in the visual field, obviating at least the location variety of the
binding problem (Treisman, 1996).

The representation is effectively systematic, subject to certain conditions (Definition 3, appendix A).
Specifically, it has the ability, as a matter of principle, to recognize as such objects that are related
through a rearrangement of middle-scale parts (as in Hummel's example).

The representation is not compositional in the classical Fregean sense, mainly because fragments
of images need not constitute a minimal, orthogonal basis (cf. appendix A). At the same time, our
schemedoesdescribe composite objects in terms of their spatial constituents (image fragments that
are the members of the set of measurement basis functions).



A pilot implementation of this scheme has been described in (Edelman and Intrator, 2000); the example
described next is designed specifically to explore aspects of systematicity that are at the core of the present
discussion.

(A) the five training stimuli (B) multiple fixations per stimulus
78 0
\

above center
below center

centered shifted down shifted up

XT (C) Gaussian "fragment" windows
X =
H

Figure 5:Left (A):a 10-unit CoF model, only two of whose units are shown explicitly. Thevitvat+where

units, labeleelow center andabove center |, are responsible, respectively, for the bottom and the

top fragments of the input image. The model is trained on five composite objects consisting of the 10 digit
shapes (1/6, 2/7, 3/8, 4/9, 5/0). Each unit is trained for two-way classification of its input fragment; due
to the unary coding of the classification results, this makes for 20 output dimensions for the entire model.
Note that the training set is limited in that each of the 10 digit shapes appears always in context either above
or below the center of the composite “object.” An important measure of the model’'s systematicity is its
ability to transcend this limitation (as illustrated by Figures 8 andr@jht top (B):multiple fixations of the

same stimulus during training (but not during testing) are required for a systematic treatment of structure.
The “below center” units are trained to discriminate between centered and shifted-down inputs; the “above-
center” units are trained to discriminate between centered and shifted-up inputs. Knowledge of the shift of
the fixation point relative to the center of the object can be provided during training by an efferent copy of
the gaze control information (Arbib, 197Right bottom (C)fragments are defined by non-crisp, Gaussian
windows corresponding to the spatial receptive fields of the bottom and top units. See section 2.3 for an
explanation of the model’s architecture and training regimen.

6 (lower fragment of "1/6" centered)
1 (lower fragment of "1/6" shifted down),
1 (upper fragment of "1/6" centered)
6 (upper fragment of "1/6" shifted  up)



2.3 Animplementation of the model

The implementation of the CoF model described here (see Figure 5) reliebatrwhereunits, which
respond selectively both to stimulus shape and to its location (Rao et al., 1997; Op de Beeck and Vogels,
2000). The model uses Gaussian windows to roughly address shape fragments in image-centered coordi-
nates. During learning, it relies on multiple fixations to train multiple versions of the same-shape (“what”)
unit for different locations (“where”); a single fixation of the stimulus suffices for interpreting it during
testing. The model operates directly on gray-level images, pre-processed by a simple simulation of the pri-
mary visual cortex (Heeger et al., 1996), with complex-cell responses modified to use the MAX operation
suggested in (Riesenhuber and Poggio, 1999).

Each of the 1@vhat+whereunits is trained, on multiple fixations of a single composite object, to satisfy
jointly two criteria: (1) to discriminate among the two relevant positions of the object relative to fixation
(the “below center” units are trained to discriminate between centered and shifted-down inputs; the “above-
center” units are trained to discriminate between centered and shifted-up inputs; see Figure 5, left); (2)
to provide an estimate of the reliability of its output, through an autoassociation mechanism attempting to
reconstruct the stimulus image. The learning mechanism (whose outputs are labeled in Figure 5, left, as
R andC, for Reconstruction and Classification) is implemented as a radial basis function network (Matlab
procedurenewgrnn). The twoC-outputs of a unit provide a two-dimensional, coarse coded representation
of any shape sufficiently similar to either of the two fragments (digits) of its composite training object; cf.
(Edelman and Intrator, 1997; Edelman, 1998). The reliability estimate (in Figure 5, left, this is the recon-
struction errorA, which modulates the classification outputs) carries information about category, allowing
the C-outputs for objects from radically novel categories to be squelched (Pomerleau, 1993; Stainvas and
Intrator, 2000).

In the present implementation of the CoF model, atat+whereunit is assigned to the top and one
to the bottom fragment of each object given to the system. Because each of wieath@vhereunits is
trained for a two-way classification, the resulting representation of a composite stimulRdiagensions,
as illustrated in Table 1. The manner in which these units get to process various portions of the input image
involves two assumptions.

Multiple fixations. First, we assume that during learning the system performs multiple fixations of
the target object, effectively providing thehat+whereunits with a basis for interpolating the space of
fragment translations (Figure 5, right top). To simulate multiple fixations, the training set contains 100
versions of the images, shifted by, dy], wheredx anddy are uniformly distributed in the range6 and
+20 U 128 4+ 20 U —128 =+ 20, respectively (image size is 256 pixefs)Note that the distribution ofly
corresponds to fixations that focus roughly on the center and on the top and the bottom edges of the image.

Gaussian windows.Second, we assume that eadmat+whereunit is given as input the entire stimulus
image multiplied by a Gaussian gain profile (Figure 5, right bott®nfi)is important to realize that this
mechanism can only address the problem of configurational systematicity when coupled with some means
of treating a fragment equivalently when it appears in different regions of the visual field. In the CoF
model, this functionality is provided by the multiple fixations performed during the training phase (the
implications of this assumption are discussed in section 5), and by interpolation between data acquired in
different fixations.

“It should be possible to trade off the number of fixations for better tolerance against minor translations of the input.
Swindow-like gain fields, first described in the context of a single-cell study of cortical area V4 (Connor et al., 1997), have
been used in the computational modeling of translation-invariant object recognition (Salinas and Abbott, 1997) and of structure
representation (Riesenhuber and Dayan, 1997). Here, however, the role of the window is solelytodetvahereunit process,
instead of the entire input image, a fragment defined (in image-centered coordinates) by a Gaussian receptive field.
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>> out=learn_CoF_rbf_ver3({E,'Chars/Nums/1-above-7.iv',1,1,0.6,0.1,1},...
run’);

ABOVE, 1l-above-6: AT the CENTER -> 0.120825; shifted UP -> 0.000016
ABOVE, 2-above-7: AT the CENTER -> 0.000000; shifted UP -> 0.000000
ABOVE, 3-above-8: AT the CENTER -> 0.000000; shifted UP -> 0.000000
ABOVE, 4-above-9: AT the CENTER -> 0.000000; shifted UP -> 0.000000

ABOVE, 5-above-0: AT the CENTER -> 0.000000; shifted UP -> 0.000000

BELOW, 1l-above-6: AT the CENTER -> 0.000000; shifted DOWN -> 0.000000
BELOW, 2-above-7: AT the CENTER -> 0.102116; shifted DOWN -> 0.008013
BELOW, 3-above-8: AT the CENTER -> 0.000001; shifted DOWN -> 0.000033
BELOW, 4-above-9: AT the CENTER -> 0.000000; shifted DOWN -> 0.000000
BELOW, 5-above-0: AT the CENTER -> 0.000000; shifted DOWN -> 0.000000

WINNER ABOVE: 1
WINNER BELOW: 7

Table 1: The output of the Matlab function implementing the CoF model, given the image of 1 above 7

as stimulus (cf. Figure 8, left). The 20 dimensions of the distributed representation of this stimulus are
similarities to the various localized fragments, such as “bottom of 2-above-7.” Note that this happens to be
the model’s only notion of the shape “7” which is never seen in isolation. The wkiB&VHs “1-above-6

at the center”, and the winn&ELOWSs “2-above-7 at the center,” corresponding to the final interpretation

“1 above 7.
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Figure 6:Left: the CoF model conceptualized as a “computation cube” with two location dimensions (par-
allel to the picture plane) and a number of shape (“what”) dimensions, represented by processing planes
stacked behind each other in spatial register (three such planes are shown, tuned to the shapes of digits 1,
6, 9). Right: to determine that, say, a “6” is present in the image, the activities of units along the space
dimensions of the computation cube need to be summed, or, better yet, subjected to a maximum detection
(Riesenhuber and Poggio, 1999). This signal can then be fed back into the cube to determine the location of
the active units, supporting systematic treatment of structure; see Figure 7 and section 2.4. The summation
can be also seen as the estimation of the marginal probabilities of shapes and of their locations, which is
useful for unsupervised learning of a shape “alphabet” (Barlow, 1990; Edelman and Intrator, 2001).

2.4 Experiment 1: systematicity

The distributed representation of structure by an ensemblehat+whereunits, depicted in Figure 4, is
systematic by design, to the extent that the measurement functions implemented by the units can support
discrimination among the relevant objects irrespective of their location (see the appendix for a formal deriva-
tion of this conclusion). Intuitively, systematicity with respect to Fodor's example — “John loves Mary” —
requires that both “John” and “Mary” be identifiable when appearing in each of the two argument slots of
the “love” predicate. Likewise, in the visual example illustrated in Figure 1 (right top), the circle and the
square shapes have to be identifiable when appearing either at the top or at the bottom of a composite object.
A distributed model of systematicity would be incomplete, however, unless a mechanism is specified that
would allow it to realize that the same shape appearing on top of one object is at the bottom of another object.
In other words, a mechanism is needed that would be able to compare two distinct subsets of the dimensions
of the distributed representation (namely, the outputs ofathat+whereunits for whichwherestop with
those for whichwhere=bottom; see Figure 4).Such a comparison is trivially easy in a system that allows
dynamic binding, arbitrary routing, or random-access memory addressing. Our approach to systematicity
is, however, motivated by a desire to avoid postulating such operations, which are suitable for an exercise in
computer engineering, but are difficult to deal with in the context of a biological model. In the absence of

SWe thank John Hummel for insisting upon the need for an explicit mechanism of this kind. This point can be related to
much wider issues such as the nature of distributed representations, the need, if any, for “binding” in phenomenal experience,
and, ultimately, the so-called unity of consciousness. These issues are outside the scope of the present paper; for some relevant
observations, see (O’Brien and Opie, 1999; Edelman, 2002).
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Figure 7: The limited systematicity of the CoF scheme; see section 2.4 for a detailed explaFaii®ys-
tematicity for localized representations (objects composed of familiar fragments) is relativelipetsym:
systematicity for distributed representations is likely to be more difficult, and may require that localized
representations of the relevant fragments be created first.
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dynamic routing, the (static) model can still determine that two composite objects share fragments through
a two-stage procedure:

1. Compute marginals to detect presence of fragments (see Figure 6). The “where” information is lost
in this operation; in Figure 7, which offers a schematic example of the representations of 1/9 and 9/1,
the ascending signals do not distinguish between these two stimuli.

2. Trace the fragments back to the “what+where” layer, to determine their locations. Although this
operation requires descending (feedback) connections, these can be hard-wired; no dynamic binding
or routing needs to be postulated. In Figure 7, top, a descending query will activate the “what+where”
units responsible for the instances of “1” in 1/9 and 9/1.

The real challenge for this approach arises when viewing radically novel composite objects, for which
the representations are likely to be highly distributed (Figure 7, bottom). The issue is the difficulty of
computing marginals over distributed representations. The solution we offer is to marginalize (1) over units
spanning the dimensions of the coarse-coding space (Figure 7, top), and (2) over any combination of these
that merits a dedicated higher-level unit (Figure 7, bottom). This approach predicts that the perception of
a structured object that does not merit a dedicated unit (i.e., an object whose representation remains highly
distributed) will not be invariant under translation; nor will it be amenable to priming. We remark that
some evidence compatible with these predictions is already available (Nazir and O’Regan, 1990; Dill and
Edelman, 2001); probabilistic criteria that can help determine whether or not a structured stimulus merits a
dedicated representation are discussed, e.g., in (Barlow, 1990; Edelman and Intrator, 2001).
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Figure 8: An example of the systematicity of the CoF model on familiar fragmdrdft: the response

of the model to a novel composite object, 1 over 7; the bars show the meatandard error of 30 runs.

The vertical location of the composite object was distributed normally around the center of the image, with
o4y = 5.0 pixels. The interpretation was correct in all 30 trigiight: the response of the model to a novel
composite object, 6 (which only appeared in the bottom position in the training set) over 3 (which was only
seen in the top position). Here too the interpretation was correct — and the model’s behavior systematic — in
all 30 trials.

Combining the mechanisms illustrated schematically in Figures 6 and 7 with the implemented CoF
model, which uses 1@hat+whereunits, makes it feasible for the system to address the possible locations
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Figure 9. The systematicity of the CoF model on all possible combinations of the familiar fragments (the
10 digit shapes), plotted against the spread consignf the normal distribution in the vertical location of

the composite object. Fory, = 0, the interpretations offered by the model were correct in all 100 possible
test cases (10 digits on top 10 digits on the bottom). Each test run was repeated 10 times.

of a stimulus fragment (digit shape) in the digit pair examples. The resulting system responded largely
systematically to the learned fragments even when these were shown in novel locations relative to the cen-
troid of the composite stimulus (Figures 8 and 9). Indeed, given that systematicity may be more difficult to
achieve for some sets of stimuli than for others, it makes sense to treat it as a graded rather than an absolute
characteristic. One way to define graded systematicity is by considering the proportion of the “total vocab-
ulary” of inputs for which it holds (Hadley, 1994; Niklasson and van Gelder, 1994). This definition can be
easily adapted for use with visual stimuli: Figure 9 shows the proportion of the total number of digit pairs
which the CoF model interpreted correctly in experiment 1.

2.5 Experiment 2: productivity and systematicity

Our second experiment aimed to demonstrate that the CoF model is productive, in that it can behave sys-
tematically on structured objects composed of fragments it never saw during training. We used pairs of
uppercase letter shapes as stimuli, submitting two composite objects related by a letter swap to the model
and comparing the resulting representations, as illustrated in Figure 10. As before, each representation here
is a 20-dimensional vector; because the letter pair objects are unfamiliar to the model, their representations
tend to be more distributed than those of digit pairs.

The systematicity of these representations was assessed by computing the correlation between the first
10 dimensions of the representation of one composite object (say, E over I) and the second 10 dimensions of
the representation of its counterpart (I over E), and vice versa. Note that the computation of this correlation
involves bringing together different parts of the distributed representation vector; this is sanctioned by the
assumption of the existence of the hardwired routing mechanism depicted in Figure 7. To simplify the
computation, we first swapped the it above &mibwhalves of the representation of the first object, then
computed the Pearson correlation between the two 20-dimensional vectors corresponding to the two objects.
This computation was performed twice for each letter padb2 = 2 x 262), to allow for the possible
asymmetry between the two groupswahat+whereunits of the CoF model. The average correlation was
0.71+0.19 (mean and std. dev.); in comparison, the correlation obtained with 1352 random 20-dimensional

15



ABOVE ABOVE
T T T T T T

0.8r T 081 7

Figure 10: A quantitative assessment of the systematicity of the CoF model on unfamiliar shapes. A model
that has been trained on five pairs of digits is shown responding to two pairs of capital letters: E over | (left)
and | over E (right). Systematicity is defined as the correlation between the top row of the representation on
the left and the bottom row on the right and vice versa, as in Figure 4. The correlation in this triabfas

see section 2.5 for details.

vectors wa$) + 0.23.

Another way of assessing both the systematicity and the productivity of the CoF model is to examine
its representation of the letter pair objects for their ability to support categorization of single letters. A vi-
sual impression of this ability can be obtained from Figure 11, which shows the two-dimensional layout of
the (20-dimensional) CoF representation space, generated by multidimensional scaling, or MDS (Shepard,
1980). Interestingly, the result resembles the configuration derived by MDS from human letter discrimi-
nation data (Gilmore et al., 1979). More importantly for the present study, the representation of letters in
terms of similarities to digits is actually good for categorization: the simplest off-the-shelf learning module
(Matlab procedur@ewpnn), trained to al00% correct performance on half the data, yieldegb&% cor-
rect performance on the other half of the data. The only parameter requireziipnn, the basis function
spread constart, was set td).01 following a simple cross-validation search.

3 Psychological aspects of visual structure representation

We now proceed to examine théhat+whereapproach to systematicity in the light of some of the known
characteristics of human behavior in structure-related tasks. Rather than attempting a review of the “ob-
ject recognition” literature, we concentrate on specific findings that can be brought to bear on the critical
assumptions incorporated into the CoF model: the interplay between shape and location information, the
role of multiple fixations, hierarchical analysis of shapes, and, generally, the degree of systematicity of the
representations formed by human observers.
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Figure 11: The productivity of the CoF model. In this experiment, the representations of (pairs of) letters by
similarities to (pairs of) digits have been examined to determine their ability to support letter categorization.
The configuration of the 26 letters in the original 20-dimensional representation space has been embedded
into two dimensions for visualization purposes, using metric multidimensional scaling (MDS).

3.1 Limited systematicity

There is no doubt that human observers are capable of perfectly systematic behavior towards composite
objects such as “circle above square” (see Figure 1, right top), which can be considered a visual counterpart
of the “John loves Mary” example typically encountered in discussions of systematicity. In such stimuli,
every available cue, from Gestalt principles, through perceptual experience, to abstract knowledge, points
toward a decomposition into simple geometrical parts. It is known, however, that human observers are
not systematic in their perception of upside down images of objects such as faces, which possess a highly
overlearned “normal” orientation (Rock, 1973; Thompson, 1980). We suspect that humans are also less than
systematic with complex scenes such as those in Figure 1, left, unless given an opportunity to scrutinize
them, while modulating both the spatial scale and the location of the focus of attention, and bringing the
full power of conceptualization and symbolic reasoning to bear on the visual stimuMithough visual
systematicity for complex stimuli has not been studied to date, many available results indicate that observers
are limited in certain ways in their ability to represent even relatively simple spatial structures.

The role of multiple fixations. The first such limitation, which holds also for the CoF model, is the ap-
parent need for multiple fixations of the stimulus, discussed at length by (O’Regan &@00d). To cite
an example, (Schlingensiepen et al., 1986) found that without eye movements, observers had difficulty dis-

"In sentence comprehension, subjects are indeed less than systematic with stimuli such as “The girl who Paul saw after discov-
ering Alex proposing to dismiss had lunch in a cafe” (Chipere, 1997).
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tinguishing patterns composed of arrays of random black and white squares. Likewise, (Nazir and O’'Regan,
1990) trained subjects to distinguish among several shapes resembling Chinese characters under conditions
that prevented eye movements. They found that hundreds of trials were required even to discriminate be-
tween the stimuli, and that observers often failed to recognize the learned patterns at a new retinal location,
only half a degree away from the familiar position.

Imperfect translation invariance. More recently, (Dill and Edelman, 2001) found that performance in

a same/different discrimination task using articulated animal-like 3D shapes was fully transferred across
retinal location if local cues were diagnostic, but not if the decision had to be based on relative location of
various fragments. The findings of that study can be summarized as follows: translation and size invariance
hold for 3D stimuli (both familiar and unfamiliar) that can be discriminated on the basis of local shape
information (e.g., the thickness of this or that limb of the animal-like shape), but not for stimuli whose only
distinguishing cues are configurational or structural. This pattern of results suggests that this mechanism
treats local cues and structural information differently, in a manner that is compatible with the predictions
of the CoF model. Indeed, in an ensemblewdfat+whereunits the relational structure of the stimulus

is represented implicitly, in a distributed fashion. Unlike individual local features, structure would not,
therefore, be amenable to translation-invariant priming — as indeed reported by (Dill and Edelman, 2001).

The role of attention. In some situations, the representation of spatial relations requires spatial attention.
For example, the experiments of (Logan, 1994) examined the role of spatial attention in apprehending the
relationsabove below left, andright. Logan found that visual search was difficult when targets differed
from distractors only in the spatial relation between their elements, suggesting that attention is needed to
process spatial relations. Support for the idea that the grasping of spatial sftustned automatic, but

rather needs the mediation of attentional mechanisms comes from the work of (Wolfe and Bennett, 1997),
who referred to preattentive representations of objects as “shapeless bundles of basic features.” Likewise, a
review of the literature conducted by (Treisman and Kanwisher, 1998) suggests that “attention is required to
bind features, to represent three-dimensional structure, and to mediate awareness.”

The role of context. The classical, symbolic/propositional approach to the representation of composite
visual objects (Hummel and Biederman, 1992; Hummel, 2000) predicts context-independent performance
in structure-related tasks. In contrast, the perceptual symbol systems theory (Barsalou, 1999), which posits
image schema-like representations (not unlike the “corkboard” behind the CoF model), predicts context
sensitivity: the same visual feature would be “local,” hence potentially variable across concepts. Indeed,
this is what has been reported: “different local representatiomingsexist for RoBIN, BUTTERFLY and

JET, each capturing the specific form thaingstakes in its respective concept” (Solomon and Barsalou,
2001).

3.2 Interdependence of shape and location cues

An intimate connection between the representation of visual space (location in the two-dimensional visual
field, or the “where” information) on the one hand, and the representation of shape (the “what” information)
on the other hand is a basic tenet of the CoF model. At least in some recognition-related tasks, “what” and
“where” cues are indeed intertwined, as indicated by the findings of (Wallach and Austin-Adams, 1954).

8In the terminology of our model, this would correspond to “marginalization”; see Figure 7 and the accompanying explanation.
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These researchers found that the interpretation of an ambiguous shape could be biased by priming with an
unambiguous version, but only if both appeared within the same visual quadrant. A similar confinement
of the priming effect to a quadrant was found, in a subliminal perception task, by (Bar and Biederman,
1998); for other evidence of structuring of spatial categorization by quadrants, see (Huttenlocher et al.,
1991; Crawford et al., 2000). Interestingly, a lesion in V4, the highest area in the ventral stream where
quadrant information is still relatively well separated, can result in the subject being able to perceive the
constituents of a composite object, yet finding it difficult to determine their configuration (Gallant et al.,
2000).

The notion that the representation of an object may be tied to a particular location in the visual field
where it is first observed is compatible with the concepbbject file— a hypothetical record which is
created by the visual system for every encountered object and which persists as long as the object is observed
(Kahneman et al., 1992). Results obtained by Treisman and her associates, summarized in (Treisman, 1992),
indicate that “location” (as it appears, e.g., in the CoF model) should perhaps be interpreted relative to the
focus of attention, rather than retinotopically (more on the role of attention below).

(Cave et al., 1994) report an investigation of the way location is represented in the visual system. The
subjects in their study performed mental rotation of stimuli whose location varied from trial to trial. In one
of the experiments, distance between stimulus locations was varied systematically. Response time increased
with distance, suggesting that image representations are location-specific, In another experiment, the subject
had to make an eye movement to fixate the test stimulus. The subjects responded more quickly when the
test stimulus appeared at the same retinotopic location, not the same spatiotopic (allocentric) location as the
cue, suggesting that location is coded retinotopically in image representations.

Conjunctions of shape and location play a central role in the CoF model: such conjunctions are pre-
cisely the kind of stimulus the “what+where” units are supposed to be tuned to. (Saiki and Hummel, 1996)
examined the representational status of conjunctions of part shapes and relative locations, showing that in
object category learning subjects are particularly sensitive to these complex features. Participants in their
study learned categories defined by a part's shape and color (part-color conjunctions) or by a part’'s shape
and its location relative to another part (part-location conjunctions). The subjects were found to be better at
classifying objects defined by part-location conjunctions than objects defined by part-color conjunctions.

(Johnston and Pashler, 1990) studied the binding of identity and location information in disjunctive
rather than conjunctive feature search. Subjects searched a stimulus display for a color or a shape target,
and reported both target identity and location. The results of these experiments indicated a strong binding
of identity and location; in fact, no perception of identity without location was found (location, in contrast,

did seem to be represented to some extent independently of identity). A similarly central role of location
in defining the stimulus has been reported by (Shapiro and Loughlin, 1993), who used the negative priming
effect to investigate the nature of “object files” containing both identity and location information.

It is interesting to observe that subjects seem to perceive relative location as a graded rather than cat-
egorical cue (Hayward and Tarr, 1995). Following a linguistic analysis of the use of spatial prepositions,
(Talmy, 1983) suggested that their meanings collectively cover the range of possibilities (i.e., of the spatial
relations that need to be encoded) much the same way graded overlapping receptive fields cover the visual
space. Hayward and Tarr examined this idea experimentally, by mapping the spatial extent of regions in the
visual field in which one had to place objects so as to satisfy the subjects’ idea of the meaabuayef
below etc. They found that the accuracy of position estimates and the sensitivity to shifts in position varied,
and were both highest when the target object was in a spatial location where spatial terms had been judged
to have high applicability. These results indicate that the structure of space as encoded by language may be
determined by the structure of spatial relations in visual representation; they also support the idea of graded,

19



non-categorical representation of relative location, inherent in models such as CoF.

Figure 12: The Cook a painting by Giuseppe Arcimboldo. On the right, attention seems to be drawn
first to the global level of description (a face). Only subsequently, a breakdown of the gestalt and the
concomitant perception of constituent patterns, if any, may occur. Moreover, it seems to be difficult to attend
simultaneously to more than one spatial scale: either the vegetables, or the face, but not both, dominate
perception at any given time. On the left, there is no compelling gestalt, and no rivalry between coarse and
fine scales. Section 3.3 lists experimental data that support these intuitive observations.

3.3 Global precedence and shallow structure

Much of the current interest in the perception of structures that span multiple spatial scales has been inspired
by the work of (Navon, 1977), who argued for the precedence of global information (hence, large-scale
structure) over local (cf. Figures 12 and 13). Since then, the idea of precedence of global cues has withstood
extensive testing. For example, (Sanocki, 1993) describes integration priming experiments, in which primes
and targets were presented briefly, then masked. It was found that global, coarse-grained common-feature
primes presented early in processing facilitated discrimination between similarly shaped targets, even though
they provided no discrimination-relevant information. Moreover, global primes were more effective than
local ones early in processing, and this situation was reversed late in processing. The importance of attending
to the right level of structure is underscored by the work of (Venturino and Gagnon, 1992), who found, using
slides of natural scenes, that subjects are slower and less accurate when their attention and the forced-choice
alternatives dictated by the discrimination task are at different levels of stimulus structure.

In another investigation of this issue, (Love et al., 1999) tested the idea that “structural relations among
elements” influence the relative speeds of global and local processing in a same/different decision task.
With the perceptual salience of the global and local structure equated, advantages were still found in the
processing of global shape. In particular, Love’s subjects were able to process the relations among the
elements quickly, even before the elements themselves were identified.
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4 Neurophysiological aspects of visual structure representation

Neurobiological evidence is particularly germane in deciding the plausibility of the coarse coded, statically
bound approach to the representation of structure, given the origins of the conedyattefvherecells in a

study of the primate prefrontal cortex (Rao et al., 1997). In this section, we survey neurobiological data that
roughly parallel the behavioral findings mentioned above.

Neuronal mechanisms that can support the shape selectivity function of the units in the CoF model have
been found in the inferotemporal cortex by (Logothetis et al., 1995). Most of these cells respond selectively
to particular views of an object; responses of such cells can be combined to support selectivity to a specific
shape, largely irrespective of view. Numerous other reports of face and object selectivity are reviewed, e.g.,
in (Logothetis and Sheinberg, 1996; Rolls, 1996; Tanaka, 1996; Edelman, 1999).

Evidence concerning selectivity of the shape-tuned cells in the higher visual areas such as TEO and TE
to stimulus location has only recently begun to surface. For decades, the field has been dominated by the
idea of separate ventral (“what”) and dorsal (“where”) streams, derived initially from primate lesion studies
(Mishkin et al., 1983). According to this notion, cells at successive stages of the “what” stream are supposed
to have larger and larger receptive fields, culminating in absolute invariance with respect to translation.

The concept of translation invariance is closely related to that of configurational systematicity. In the
CoF model, two objects related through translation will be represented by different measurement functions;
if the measurements conform to Definition 3 (given in the appendix), the representation will be systematic,
yet the identity of the two objects would only become apparent through the expenditure of an additional com-
putational effort (e.g., through associative learning and subsequent generalization; cf. Figure 7 and (Hadley,
1997), p.145.). Systematicity, therefore, can be seen to stop short of requiring translation invariance, as it
only should: if the structure of an object is to be made explicit, it would not do to lose track of where exactly
each of its fragments is located. Not surprisingly, schemes that start by extracting translation-invariant rep-
resentations of objects — including a two-stream visual system that separates “what” from “where” — are
susceptible to the binding problem (von der Malsburg, 1995; Treisman, 1996), of the kind that our model
addresses through the use of the visual field itself as the scaffolding (or corkboard) for structure.

The separation between the streams has been questioned in a more recent survey (Ungerleider and
Haxby, 1994), in view of the many examples of information interchange. Moreover, cellswhtiewhere
variety, which are tunetdothto shape and to its location in the visual field, have also been found, in areas
V4 and TEO by (Kobatake and Tanaka, 1994), and in the prefrontal cortex by (Rainer et al., 1998); the latter
study is the one in which the concept oivhat and whereell has been coined. A study of the spatial recep-
tive fields of shape-selective cells in the inferotemporal cortex has been undertaken recently (Op de Beeck
and Vogels, 2000). The detailed maps yielded by this study indicate that the receptive fields in IT vary in
size @.8° — 26°), differ in their optimal position, and are graded (well-approximated by 2D Gaussians). The
authors conclude that these cells can code for the location of stimuli in the center of the visual field; we
suggest that they can also serve as building blocks in location-bound representations of structure proposed
here.

The idea that location binds together, statically, object fragments that belong together is supported also
by the lesion study mentioned earlier (Gallant et al., 2000), which highlighted the role of area V4 in the
perception of object structure. Another patient study, in which the locus of the lesion was in the pulvinar
nucleus, indicates that subcortical areas too may be involved in location-based binding (Ward et al., 2002).
In the monkey, the rostral part of the pulvinar is known to contain spatiotopic maps of the inferior and lateral
parts of the visual field; indeed, Ward et al. found that their patient had a deficit there in “the use of spatial
information in binding.”
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5 Discussion

In this section, we mention several related computational schemes of structure representation, and discuss a
number of open issues, such as learning the fragments, and the need to deal with nested structures.

5.1 Related computational schemes

As we pointed out in the introduction, the Recognition By Components theory of visual structure repre-
sentation (Biederman, 1987), incorporated into the JIM model of (Hummel and Biederman, 1992), is both
productive and systematic. The alternative approach described here was motivated by our desire to simplify
the computational (as well as philosophical) assumptions behind the representation of structure, and to base
it on uncontroversial characteristics of the primate visual system, such as retinotopy (Edelman, 1994; Edel-
man, 1999; Edelman and Intrator, 2000). Static binding by retinotopy has been adopted also by the most
recent version of the JIM model (Hummel, 2001). It is used there alongside dynamic binding, to process
stimuli faster and without need for attention, at the expense of some invariance to object transformations.
The base representation for both static and dynamic streams of this model is the same as in the earlier ver-
sions (a collection of categorical shape features that feeds detectors for generic part shapes, or geons). The
model accepts as input symbolic descriptions of line drawings of 3D objects, thus by-stepping a major hurdle
common to the part-based approaches: the need for reliable detection of the parts in raw images (Dickinson
et al., 1997; Edelman, 1997).

This difficulty is well known to workers in computer vision, where attempts to represent objects in
terms of the arrangement of their constituents typically use image snippets instead of categorical parts, and
robust statistical evidence accumulation instead of logical operations for inferring object presence (Burl
et al., 1998; Sali and Ullman, 1999; Heisele et al., 2002). We note that the issue of binding does not really
arise in a computer vision setting, for the reason stated in the introduction: once the full power of general-
purpose computation is assumed, binding becomes trivial. Nevertheless, it is interesting to observe that all
the schemes of the kind just mentioned describe structure in a “retinotopic” frame, by coding the image
locations of the constituents of an object.

Because the focus of the computer vision methods is on recognition and categorization, the issue of con-
figurational systematicity of the “circle above square” (“John loves Mary”) variety tends not to be discussed
there. In categorization, context systematicity (recognizing wheels as such in different cars) is a functional
necessity, while configurational systematicity is a bonus; it could be useful with scenes, but not with objects,
because scrambled objects do not look like anything in particular and cannot be categorized. In fact, even
in the field of computational neuroscience of vision, very few models address the issue of systematicity
explicitly. For example, a hierarchical competitive model of binding (Elliffe et al., 2002), based on princi-
ples similar to those of the Neocognitron (Fukushima, 1988), does not mention systematicity (the stimuli
processed by this model are composed of one to four line segments in tightly constrained mutual positions
and orientations).

A neural network model capable of learning non-classical, coarse-coded representations that aim ex-
plicitly at configurational systematicity has been described by (O'Reilly and Busby, 2002). This model
represents objects by distributed patterns of activation over eight features per location Withia array
of locations. Four possible relations are coded (right, left, above and below), and the inputs consist of two
objects. The model is trained to answer questions such as “what,” “where,” and “what relationship”; to do
so, it must bind object, location and relationship information. O’Reilly et al. demonstrate the generalization
of this capability to novel inputs: a model trained vdf% of the space of possible inputs generalized at
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80% correct; training or25% of the inputs led to 5% correct generalization. It is difficult to compare

those rather impressive figures with our results, because of the differences in input types and generalization
sets (our model used gray-level images of bipartite 3D objects, allowing only one kind of relation, vertical
stacking; generalization was assessed by training on digit pairs and testing on letter pairs).
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Figure 13:Left: shallow-scope compositionality. This illustration shows a large |€ttamposed of smaller
instances of & — a stimulus frequently used by psychologists in studies of local vs. global processing of
visual shapes (Navon, 1977). According to the principle of shallow scope, this stimulus would be described
as a large roughly centeréd or as a (smallY in a particular, possibly off-center location, but not simulta-
neously as afr and a collection off's. Right: recursively applicable compositionality. To make explicit the
structure of the stimulus at a finer scale than currently employed, a system that operates on the principles
we postulate must focus attention on the area of interest, and adjust its spatial resolution accordingly. Two
successive operations of this kind are illustrated here. We doubt that more than three levels (spatial scales)
of attention need to be involved in the analysis of commonly encountered structured objects.

5.2 Hierarchical systematicity

A system such as ours, in which only one structural level is made explicit at any given time, cannot attend
simultaneously to a hierarchy of levels. Intuitively, the forest, the trees, and the branches cannot be taken in
all together at the same time (see Figure 13). The level of representation maintained by such a system on
an instantaneous basis can be controlled via the spatial extent (scale) of the attention window. On the local
level, the focus of attention can be directed to the area of interest. If the relevant processing mechanisms
are self-similar across scalgghis combination of steerable attention and control over spatial resolution
will achieve precisely the desired effect: structure on several scales will be treated on an equal footing
diachronically (with only a single-scale representation being active at any given time).

The shallow-scope, single-scale-at-a-time approach to representation need not limit the ability of the
system to deal with nested structures. Such structures can be described recursively, by means of focusing
attention and increasing or decreasing the effective resolution. For example, at the entry level of categoriza-
tion (Jolicoeur et al., 1984), the human visual system may represent a human shape as comprising a head, a
body, arms and legs; the head may be further described as having a mouth, eyes and ears. At a close range,
smaller-scale details (e.g., the whites of the eyes) may be discerned; structurally, these would be linked to

%As they are in representations based on a wavelet expansion of the data (Strang, 1989; Field, 1993).
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other entities at the same scale (e.g., the pupils or the eyebrows), but not across scales (e.qg., the neck or the
hands)t?

Curiously, the “classical” systematicity (Definition 1) involves a proposition (the relati®b) that is
structurally “flat” in that it contains no explicitly appearing recursively embedded propositions. Despite its
basic reliance on a flat construction, this definition obviously does allow for the representation of multiply
nested structure, because each of the variablesan stand for an entire formula, e.@.= cQd, implying
(cQd)Rb. Leaving the recursion implicit is, in fact, a useful idea: if the nested structure were to be made
explicit, the definition of systematicity would have to contain a potentially very large number of formulas
— all the nodes of the lattice formed by recursive substitution of variables, up to a given depth. We believe
that the flat, implicitly recursive definition of systematicity is a good starting point for a future development
of a computationally effective scheme for the representation of hierarchical structure.

5.3 Learning the measurement functions

In this paper, we assumed that the scale of the fragments in terms of which images were to be represented had
been given to the system in advance, and, moreover, that all the fragments at that scale were to be encoded
(recall that the fragments seen during training were pairs of digit shapes, each of which was half the size
of the entire object). In reality, it would be up to the model to figure out that objects may be composed of
recurring fragments, and to self-organize in a manner that would allow it to deal with novel configurations of
those fragments (or with radically new inputs). This problem in unsupervised learning is, however, outside
the scope of the present paper. We show elsewhere how it can be addressed within a statistical inference
framework, and provide psychophysical and computational evidence that helps elucidate the role of various
criteria of statistical independence in this learning task (Edelman et al., 2002; Edelman et al., 2003). A
future work along these lines should probably also consider methods for learning distributed representations
of object transformations (Zemel and Hinton, 1995), and for evidence combination and distributed control,
both linear (Jacobs et al., 1991) and nonlinear (Lewicki and Sejnowski, 1998).

5.4 Predictions for psychophysics and neurobiology

The functional and the architectural assumptions incorporated into the CoF model generate specific predic-
tions that can be examined empirically by behavioral, electrophysiological and neuroanatomical methods.
For psychophysics, the first prediction is that multiple fixations over a radically novel structured stimulus
are needed if a rearrangement of its constituents is to be treated systematically. Second, assuming that the
“windows” through whichwhat+whereunits see the world are Gaussian, we predict that the systematicity
will be more limited for more highly interpenetrating non-convex fragments, even with controlled Gestalt
goodness. Third, we predict that a masking study would reveal a timing difference between the early (and
largely automatic) awareness of the shapes contained in a composite stimulus, and the late (and more goal-
driven) awareness of their locations within the whole — assuming that awareness is a top-down process that
reaches the topmost level of structural representation first (cf. Figure 7).

A related prediction holds for single-cell responses in areas V4 and TEO, which can be obtained by
electrophysiological means: same-area cells with larger spatial receptive fields should have longer latencies
relative to stimulus onset — assuming that sutlatcells are upstream fromhat+wherecells with smaller

10n a discussion of the hierarchy of terms for various body parts in English, Langacker notes the “nonexistence and oddity” of
expressions likébodytip or *facelash(compared tdingertipandeyelash, and the infelicity of sentences such&sn arm has 14
knuckles and 5 nailecompared tdA finger has 3 knuckles and 1 naisee (Langacker, 1990), p.8.
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RFs. For the latter, the peri-stimulus time histograms should be bimodal, with the first mode corresponding
to the response of the cell to the bottom-up signal, and the second to the combined effect of bottom-up
signal and top-down priming. Our second prediction for electrophysiology states that the multidimensional
ensemble response what+wherecells should contain rich information about the spatial structure of the
stimulus; when separated, say, into two populations, corresponding to the upper and the lower hemifields,
the response patterns should be systematic for stimuli related by spatial transformations such as those of
Figure 1.

Finally, we are intrigued by the possibility that the dimensions of selectivity postulated by the corkboard
theory of binding and by the CoF model may be mapped explicitly onto the functional architecture of the
inferotemporal cortex. Cast in neurobiological terms, the scheme of Figure 7 corresponds to an assertion that
what+wherecells with like what selectivity properties should be reciprocally wired to cells with the same
whatselectivity and a widewheretuning at a higher stage of processing. Although this prediction would
be difficult to test at the level of individual cells, it may hold also at the level of a cortical microcolumn,
in which case it could be testable by a combination of electrophysiological and anatomical methods (Lund
etal., 1993)1

5.5 Conclusions

The traditional route to systematicity and productivity — two issues that are indispensable for the under-
standing of advanced cognition — is via classical, propositional, part-based compositionality (Bienenstock
and Geman, 1995; Fodor, 1998). This approach, which is adopted in vision by Biederman’s Recognition By
Components theory mentioned earlier (Biederman, 1987), and by many others, is problematic, because of
the questionable ontological status of the parts it postulates, and because of the binding problem it creates.
In this paper, we showed that a representational system can be considerably systematic, without postulating
categorical parts, and without resorting to dynamic binding.

An early indication of the emerging central role of systematicity in the debate on the nature of cognitive
representations can be found in (Touretzky, 1989). This and many other works questioning the classical
notion of systematicity (van Gelder, 1990; Smolensky, 1990; Niklasson and Boden, 1997) focused on the
possibility of a “connectionist” alternative: a mode of distributed representation that would not be bound by
compositional rules. As a result, the debate is now waged mainly between the proponents of the classical
compositional view (such as Fodor) and those who favor some method of connectionist representation that
is altogether non-compositional (e.g., by virtue of being context-dependent), yet, in some sense, systematic.

Although we find much of the critique of the classical view offered by the connectionists pertinent
and useful, we do not believe that having to choose between the classical Fregean compositionality and a
radically non-compositional representation is a good idea. On the one hand, the classical compositional
(and therefore systematic) framework is trivially easy to implement on a symbolic computer, but are not so
easy for biological neural networks; on the other hand, non-compositional representations, which can be
easily learned by artificial neural networks, have difficulties with systematicity. The present paper espouses
a middle road between the two extremes corresponding to the two sides in this debate. In the compromise

"The columnar structure of the inferotemporal (IT) areas, mirroring in some respects that of the primary visual cortex, emerges
both from single-cell studies (Tanaka et al., 1991; Fujita et al., 1992) and from optical imaging of the cortex (Tsunoda et al., 2001).
No conclusive data are available to date concerning the make-up of the individual IT column, although there are indications that
cells selective to an orderly progression of different views of an object may be arranged in spatial proximity to each other (Wang
et al., 1998). It is also not known whether the columns in IT form a larger-scale structure such as the V1 hypercolumn. It would
be interesting to find out whether neighboring IT columns contain cells of similar shape selectivity (Wang et al., 2000), but with
varying spatial selectivity.
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we offer, the compositional framework is modified to gain much needed biological plausibility, by adopting
a distributed approach to the representation of the primitives, and a static, spatial basis for their structural
binding.

According to our configurational notion of systematicity, a representation is systematic if it can deal
equally well with various spatial arrangements of the same “parts.” Such behavior has been exhibited by our
model, lending support to the claim that distributed representation of primitives, coupled with the corkboard
approach to binding is a promising way of dealing with structure. We feel, however, that configurational
systematicity is not the only possible formalization of the intuitive concept of a good representation of struc-
ture. In the introduction, we mentioned one alternative: context systematicity, which calls for a principled
treatment of homologous substructures (heads of animals, wheels of cars) that recur in various larger-scale
structures. Although context systematicity seems to be subsumed under the configurational rubric, the for-
mer has not yet been defined, and the relationship between these two concepts is unclear. We hope that
this discussion will lead to the emergence of a more comprehensive rigorous notion of systematicity, and,
eventually, to the development of theories of structure representation that are intuitively acceptable, formally
adequate, computationally viable, and, crucially, amenable to implementation in the brain.
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A Compositionality and systematicity

Recent work in computational semantics (a field motivated equally by theoretical linguistics and by practical
needs arising from natural language processing) resulted in developments that are directly relevant to the
central concern of the present paper: the representation of structure in vision. The ideas surveyed briefly in
this appendix suggest that it is possible to represent structure systematically without necessarily adopting
the classical compositional approach.

A.1 A formal treatment of compositionality in computational semantics

In its most abstract form, the issue of compositionality is at the focus of attention in computational semantics
— the field which can be said to have originated with Frege’s work. Recall that according to Frege (1891),
a structure is considered compositional if its meaning (interpretationfusdaion of the meanings of its

parts. The following definition formalizes this idea, and leads to some interesting implications.

Theorem 2 (Zadrozny, 1994)Let M be an arbitrary set. Letd be an arbitrary alphabet. Let “” be a
binary operation, and lef be the set closure of under “”. Let m : S — M be an arbitrary function.
Then there is a set of functiodg™ and a unique map. : S — M™* such that for alls, ¢ € S

u(s.t) = uls)(u(t), and u(s)(s) = m(s).
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Essentially, this means that as longrasis a function (that is, a mapping that associates a single value
with its argument), the interpretation induced by it will be compositional. According to Zadrozny, “one

of the more bizarre consequences of [this Theorem] is that we do not have to start building compositional
semantics for natural language beginning with assigning meanings to words. We can do equally well by
assigning meaning tphonemeswr evenletters]...].”12 When applied to the problem of object structure
representation, this realization entails that even the smallest bits of images — pixels — can serve as a
basis for erecting a perfectly compositional edifice. This atomistic approach would be compositional, at the
expense of forcing one to assign an interpretation (meaning) to each and every pixel, a prospect which we
do not find at all appealing.

As noted by (Zadrozny, 1994), Theorem 2 shows that the compositionality principle is formally vacuous,
unless some constraints are imposed on the interpretation function (in the case of computational semantics,
on the homomorphism between the structure of an expression and its meaning). In a later work, Zadrozny
re-analyzes the concept of compositionality under the following assumptions: (i) that the meaning of a
construction be derived from the meanings of its parta systematic way(ii) that the meanings of the
parts have some intuitive simplicity associated with them, and (iii) that “one way of building composi-
tional semantics be better than another” (Zadrozny, 1999). Interestingly, this approach, which is based on
the Minimum Description Length (MDL) principl& parallels recent attempts to develop a compositional
framework for image analysis (Geman, 1996; Bienenstock et al., 1997). Note, however, that assumption (ii)
implies interpretational atomism and ontological commitment to the reality of meaningful “parts” — two
design choices we consider advisable to avoid, for reasons some of which have been detailed in the body of
the paper.

In traditional semantics, the assumption that isolated words have well-defined meanings which are then
recursively combined (Katz and Fodor, 1963) was found to be problematic (Lakoff, 1971). For example,
(Eco, 1976), p.98, points oumter alia, that words have multiple meanings, which, moreover, depend on
context. In vision, additional problems can be discerned. For instance, as we already noted, there are shapes
that do not admit a natural compositional description: what woulthbstructural decomposition of a loaf
of bread, or a shoe (Ullman, 1989)? For such objects, one would have to start with very simple atomic
primitives (pixels or edge elements), exacerbating the problem of finding a stable optimal (in the MDL
sense) description (Edelman, 1997).

A.2 Relational systematicity

In view of the central role of classical compositionality in semantics, it is especially interesting to note that
non-compositional approaches to the computation of meaning are now being considered in that field (Lappin
and Zadrozny, 1999):

[...] itis possible to construct a theory of meaning which is both non-compositional and sys-
tematic. This involves taking the meaning of a syntactically complex expression E to be the set
of values of aelation [our italics] on the meanings of E’s syntactic constituents rather than the
value of a function.

Lappin and Zadrozny proceed to give an example of such a scheme, in which meaning is effectively con-
strued as aet of possible interpretatiorrather than a single disambiguated interpretation. This interpre-

127adrozny then remarks: “But then the cabalists had always known it."
13The basic idea is to consider the simplest maximal description of the data that satisfies the postulate that the meaning of the
whole is a function of the meaning of its parts (Zadrozny, 1999).
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tation scheme maintains systematicity by fully preserving the information needed to establish (e.g., via
constraint propagation) the links between meanings of related expressions (Nerbonne, 1995; Lappin and
Zadrozny, 1999).

A.3 Relational systematicity in vision

A parallel can be drawn between this idea and the approach to systematicity used in the body of the present
paper, by comparing the multiple-interpretation approach to semantics to the multiple-measurement encod-
ing of visual objects. To realize the full extent of the analogy, one may identify the interpretation (the
“semantics”) of a given objeat (an “expression”) with theet of measurement functiofis; } responding
to that object. As shown next, this representation is systematic in Hummel's (and, we believe, in Fodor’s)
intuitive sense. Moreover, it is both systematic and non-compositional in the formal sense of (Nerbonne,
1995) and (Lappin and Zadrozny, 1999).

Let I be the set of images (intensity functions defined over some two-dimensional “window” ndgion
of R?), andU C I — the set of objects that may appear within these images. We denote two objects,
u,v € U, which differ only in location (i.e.3t € T, T being the set of translations acting on members

of U, such thatt(u) = v) asu L v. In what follows, a spatial reference frame encoding relative object
locations will serve as the counterpart of the abstract, symbolic compositional frame played by the Relation
in the propositional example (Definition 1).

Let M be a set omeasuremerfunctions, each defined over a windéW C YV and parameterized by
locationt € T, so thatm : U x T — R.1* The role of a measurement function is to provideesceptual
symbol(Barsalou, 1999), which stands for a particular visual event (namely, the presence in the Wihdow
of a certain pattern), and is theregyounded(Harnad, 1990) in the image. As we shall see next, such
measurement functions can be used to make the representation of visual objects systematic. The basic idea
is to consider relations that are literally two-place (that is, are defined over two spatial locations) as the
visual counterpart of the relatiaR from Definition 1 (as iruRb, or, equivalentlyR(a, b)), and to construct
these from localized measurements e M.

Definition 3 (Systematic measurement spacejhe set of measurement functiaof$ can support effec-
tively systematic representation if:

M1 Forthe class of stimuli of interest, any two locations can be discriminated by measurement functions
belonging to a clasd/ C M:

Yu,v € U such that u & v,3Im € M C M : m(u;-) # m(v;-)
Without this condition, there would be no two-place relations, let alone systematic ones.

M2 Any two stimuliu, v € U that can be discriminated at some locatigncan also be discriminated at
any other locatiort, that is distinguishable from it in the sense of M1:

Elmi e M : mi(u;tl) 7& mi(v;tl) = Elmj e M : mj(u; tz) 7& Mj(v;tg)

Note that the structural description scheme such as Recognition By Components (Biederman, 1987) is subsumed by the present
framework, if the measurement function is made to return a symbolic label which categorizes the object as a member of a small set
of generic shapes.
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In the terminology of Definition 1, this corresponds to the requirementithatlb be distinguishable

in any of the two argument slots &. Without this condition, interchanging the arguments around (as
called for by the standard notion of configurational systematicity) could in principle lead to a failure
of systematicity merely for the (trivial) reason of confusion between the objects that enter into the
relation R.

Corollary 4 Consider the two-place relation

R(t1 (u) ;12 (v)) = (mi (u;t) ,mj (vita))

A measurement system that meets conditions M1 and M2 is systematic in the sense of Definition 1: its
ability to deal with anyR(a, b) = aRb (that is, to distinguish it from some oth&{(x, y)) entails the ability
to deal withR(b, a) (while distinguishing it from any?(u, v)). To realize that, substitute in Definitiomil
att, for a andv att, for b, and apply Definition 3.

The immediacy of this conclusion underscores an observation we made in section 2.4 and elsewhere in
this paper: systematicity is easy if dynamic binding or, equivalently, symbol manipulation, is allowed. Itis
the challenge of implementation in neuronal hardware that makes the modeling of systematicity interesting.
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