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Abstract

In human vision, the processes and the representations involved in identifying specific
individuals are frequently assumed to be different from those used for basic-level classifi-
cation, because classification is largely viewpoint-invariant, but identification is not. This
assumption was tested in psychophysical experiments, in which objective similarity between
stimuli (and, consequently, the level of their distinction) varied in a controlled fashion. Sub-
jects were trained to discriminate between two classes of computer generated 3D objects, one
resembling monkeys, and the other dogs. Both classes were defined by the same set of 56
parameters, which encoded sizes, shapes, and placement of the limbs, the ears, the snout, etc.
Interpolation between parameter vectors of the class prototypes yielded shapes that changed
smoothly between monkey and dog. Within-class variation was induced in each trial by ran-
domly perturbing all the parameters. After the subjects reached 90% correct performance on
a fixed canonical view of each object, discrimination performance was tested for novel views
that differed by up to 60° from the training view. In experiment 1 (in which the distribution
of parameters in each class was unimodal) and in experiment 2 (bimodal classes), the stimuli
differed only parametrically and consisted of the same geons (parts), yet were recognized
virtually independently of viewpoint in the low-similarity condition. In experiment 3, the
prototypes differed in their complement of geons, yet the subjects’ performance depended
significantly on viewpoint in the high-similarity condition. In all three experiments, higher
inter-stimulus similarity was associated with an increase in the mean error rate and, for
misorientation of up to 45°, with an increase in the degree of viewpoint dependence. These
results suggest that a geon-level difference between stimuli is neither strictly necessary nor
sufficient for viewpoint-invariant performance. Thus, the standard characterization of basic
and subordinate-level processes in visual recognition may need a revision.

1 Features of recognition

The issue of representation is of central importance in recognition, as it is in other areas of vision.
Consequently, the development of successful recognition schemes may be aided by progress in
finding out how objects and object classes are represented in human vision. Theories of recog-
nition have proposed different approaches to the representation problem. A prominent recent
example is structural description in terms of geons (generalized cylinders representing object
parts) in the RBC, or recognition by components, scheme (Biederman, 1987). An alternative



approach (Ullman and Basri, 1991; Poggio and Edelman, 1990) calls for representing objects by
small collections of 2D images. It has been shown how recognition can be performed using such
representations, e.g., by a process of interpolation between the stored 2D images.

In human vision, the representations used for identifying specific instances of object classes
(the so-called “subordinate level”) are frequently postulated to be different from those used for
basic-level classification (Jolicoeur, 1990). On one hand, the recently demonstrated viewpoint
dependency of subordinate-level recognition (Rock and DiVita, 1987; Tarr and Pinker, 1989;
Edelman and Biilthoff, 1992; Biilthoff and Edelman, 1992) is consistent with theories that
hold that the visual system represents three-dimensional objects by storing several of their
two-dimensional views. Developments in computational vision, and especially new approaches
to model-based recognition (Ullman and Basri, 1991; Poggio and Edelman, 1990; Edelman
and Poggio, 1992), support such a possibility. On the other hand, psychophysical findings on
basic-level recognition seem to point towards the representation of object prototypes in a more
symbolic manner, for example by collections of volumetric primitives or components (Biederman,
1987).

Does the visual system rely on distinct sets of representations and processes for subordinate
and basic levels of recognition? A recent proposal (Edelman, 1991) outlined a possible unified
approach to recognition at both levels, based on the notion of “features of recognition.” The
central tenet of the proposed account is that recognition normally requires neither 3D recon-
struction of the stimulus, nor the maintenance of a library of 3D models of objects. Instead,
information sufficient for recognition can be found in the 2D image locations of object features.
The choice of features and their complexity may vary among objects. For example, a pineapple
can be recognized by its characteristic pattern of spiny scales. The main feature in this case is
textural and is distributed over the object’s surface. In comparison, the relevant features of a
peanut are both its texture and a characteristic outline. To consider a more complex example, an
aircraft can be classified as such by the presence of wings, which may be considered as complex
features. At the same time, for the image of an aircraft to be recognized, e.g., as a fighter or a
passenger jet, more basic features such as contour elements and corners must be appropriately
situated in the image (in the vicinity of the locations of corresponding features in the image of
a prototypical aircraft).

The highlights of the approach that was proposed in (Edelman, 1991) were as follows:

1. Versatility: Recognition starts with the extraction of a large variety of image-based fea-
tures.

2. Plasticity: Recognition procedure for a given object at a given category level is synthesized
at need and is optimized with practice.

3. Hierarchy: One of the ways of optimizing recognition performance involves formation of
compound features out of simpler ones, and subsequent reliance on such features.

4. Invariance/diagnosticity tradeoff: Some of the features are well-localized within the 2D
image-based reference frame. Exclusive reliance on such features under certain circum-
stances makes recognition viewpoint-dependent. In comparison, features defined over ex-
tended regions are likely to support viewpoint-independent performance, at the expense



of the ability of the system to discriminate among members of the same basic category
that differ only in local details.!

The predicted tradeofl between viewpoint invariance of a feature and its diagnosticity, or the
degree of discrimination among object instances that it affords, deserves some clarification.
Consider, for instance, a domain of objects composed of generalized cylinders and polyhedra.
To recognize such objects, a visual system can use local features such as image-plane positions
of object corners or edges, as well as extended features such as patterns of shading over object
surfaces. The two types of features will, in general, lead to different performance. When the
pose of the object relative to the viewer changes, the projected locations of the corners will
shift. Unless this shift is compensated for (e.g., by pose recovery and model alignment (Ullman,
1989)), recognition of unfamiliar views of the object will be poor. In comparison, the shape of
a shaded patch can in principle be extracted regardless of the pose of the object to which it
belongs (as long as the patch is visible). At the same time, when the pose is fixed, projected
corners, edges, or other localized features offer better discrimination among similar shapes than
shading (cf. Biilthoff and Mallot, 1988).

In human subjects, difficulty in recognizing novel views is a central characteristic of perfor-
mance in tasks that require discrimination among members of the same basic category (Biilthoff
and Edelman, 1992; Edelman and Biilthoff, 1992). When the objects are to be classified at the
basic level, recognition performance depends on viewpoint to a much lesser extent (Biederman,
1987; Biederman and Gerhardstein, 1993). These observations suggest that the two patterns
of performance emerge in response to the different levels of detail that must be addressed in
subordinate and basic-level recognition. If this is true, then one would expect the extent of
viewpoint invariance in subjects’ performance to be affected by a manipulation of the relevant
level of detail, determined by inter-object similarity. The present paper reports an experimental
demonstration of this effect in human subjects, and its computational modeling and analysis.

**¥* Figure 1 here ***

2 Psychophysics

2.1 Experimental methods

In three experiments designed to demonstrate the tradeoff between viewpoint invariance and
discriminative power of features, subjects were trained to tell apart parameterized computer-
generated three-dimensional monkey and dog-like objects (see Figure 1). The subjects were
shown a succession of isolated static images of objects belonging to these two classes, which had
to be discriminated by pressing one of two buttons on a computer mouse. Each trial was initiated
by displaying a fixation aid in the center of the screen for 250msec. Immediately afterwards, the
stimulus image was displayed for 20msec, and was followed by a mask (an image of a collection
of 20 tapered cylinders, with size, orientation, location, and taper factor randomized anew for
each trial). The subsequent trial followed 500msec after the subject’s response. The display
interval was short, to prevent the subjects from employing a conscious discrimination strategy,

1 Essentially non-spatial features such as distinctive color that are viewpoint-invariant because their perception
has little to do with viewing geometry are not considered here.



and to keep performance below ceiling, so that manipulation of independent variables in the
experiments would have an opportunity for a discernible effect.

**¥* Figure 2 here ***

During training the objects always appeared at a limited range of attitudes (£10°) around
a fixed orientation, corresponding roughly to the “three quarters” frontal view as defined by
Palmer et al. (1981). Auditory feedback was given for incorrect responses, until the subject
reached 90% correct performance in the trailing 20 trials. At that point, the subject was notified
by an auditory signal that the testing stage was about to begin. During testing there was no
feedback, and the objects appeared at attitudes that differed from the training attitude by a
rotation in depth around either the horizontal or the vertical axis. The subjects’ performance
was measured by the combined percentage of correct positive responses to the two objects. This
measure of performance is non-parametric, and is not affected by the subject’s bias towards
either of the two possible responses (Green and Swets, 1966, p.404).

2.2 Experiment 1

In the first experiment, the parameter distribution corresponding to each of the two object classes
was unimodal (each parameter had an independent Gaussian distribution, with a standard
deviation of 0.075 times the mean value of that parameter.). The main independent variable in
this experiment was the distance between the centers of the two distributions (see Figure 2, top).
The two distributions were closer in the first than in the second session for four subjects, and
vice versa for another four subjects. The mean response time was 741 £ 17msec, and the mean
percentage of correct responses (CR) was 78.5 + 1.6%. The lack of speed-accuracy tradeoff was
signified by a negative correlation between response time and percent correct (#(1,68) = —3.7,
p < 0.0005). A multiple-range Duncan test of the CR means by subject divided the subjects into
two non-overlapping groups, with CR > 80% in the larger group (five subjects) and CR < 70%
in the smaller group (three subjects). The data from the three subjects in the poor-performance
group were omitted from subsequent consideration (see section 2.5 for a discussion). The mean
CR after this deletion was 83%.

**¥* Figure 3 here ***

The data were then subjected to a homogeneity-of-slopes analysis of variance (ANOVA),
using the SAS GLM procedure, with Subject specified as a random class effect, Similarity as
a fixed class effect, and D (misorientation of the stimulus relative to the training attitude) —
as a continuous effect. The analysis revealed significant effects of Similarity (#(1,22) = 27.7,
p < 0.0001), of the misorientation D (F(1,22) = 8.0, p < 0.01), and the interaction Similarity
x D (F(1,22) = 3.1, p < 0.09). The main effect of Subject was n.s. (#' < 1). Separate analyses
for the two levels of Similarity (NEAR and FAR prototypes in the parameter space) showed a
marginal effect of D in the FAR condition (F(1,9) = 2.9, p = 0.12), and a significant effect of D
in the NEAR condition (#(1,9) = 8.0, p < 0.02).2

Linear regression analysis (SAS procedure REG) revealed a similar pattern of different slopes
in the two similarity conditions. The regression in the FAr condition was n.s. (the slope not
significantly different from 0). The slope of the linear regression in the NEAR condition was

®The effect of Subject was n.s. in the NEAR condition, but was present in the FAR condition (F(4,9) = 6.2,
p < 0.01). The interaction between Subject and D when separated by Similarity levels could not be estimated
from the present design.



—0.31 4+ 0.14 (regression significant at p < 0.035). These figures support the notion of the
invariance-discrimination tradeoff predicted by the features of recognition theory.

2.3 Experiment 2

In the second experiment, each of the two classes of objects consisted of two subpopulations,
or modes (see Figure 2, bottom). Each of the two modes in a class was Gaussian, with the
same standard deviation as in the previous experiment. The distance between the means of the
two modes was always 0.15 times the distance between the “reference” points in the parameter
space that corresponded to the prototypical monkey and dog. Of the two modes, one was always
situated at the appropriate reference point, and the other was either in between the reference
ones (on the line in the parameter space connecting the prototypes), or outside them.

*¥*¥* Figure 4 here ***

This arrangement of stimuli was reported by the subjects to be more difficult to learn (this
difficulty was also reflected in the longer training sessions), possibly due to the bimodal distribu-
tion of parameter values within each object class.®> Ten subjects participated in this experiment.
The mean response time was 850 £ 15msec, and the mean percentage of correct responses was
80.5+0.8%. The lack of speed-accuracy tradeoff was signified by a negative correlation between
response time and percent correct (#(1,198) = —4.0, p < 0.0001). As in the previous experi-
ment, data from subjects whose mean CR was below 80% and who were grouped in the lowest
performance interval by the Duncan test were discarded (there were four such subjects).

The performance of the remaining six subjects as a function of the misorientation of the
stimulus with respect to the training attitude is plotted in Figure 4. The plot of CR vs. D for
the inner mode of the NEAR condition revealed a “knee” at D = 45°. A comparison of least-
squares adjusted means, produced by the GLM procedure, confirmed this impression (means
for D = 15°,30°,45° all different from each other at p < 0.01; means for D = 45°,60° not
significantly different from each other). Thus, the subsequent analysis was carried out for D €
[15°,45°] only (this decision is discussed in section 2.5).

The analysis was carried out by a homogeneity-of-slopes ANOVA (Subject x Mode x D; for
an illustration of the four levels of Mode, see Figure 4, left panel), using the GLM procedure.
There was a strong main effect of D (F(1,39) = 70.4, p < 0.0001), and a significant Subject x
Mode interaction. A hint of a D x Mode interaction was also present (#(3,39) = 1.5, p = 0.22),
which prompted a separate by-Mode linear regression analysis. The regression results were
highly significant in all four modes, and the slopes were, respectively, —0.38+0.14, —0.294+0.15,
—0.38 &£ 0.09, and —0.57 & 0.11. The last result shows that the dependence of CR on D was
indeed higher under high similarity (the inner mode of the NEAR condition) than in the other
three conditions.

®Research by Holyoak and others showed that subjects are semsitive not only to the mean tendencies of the
distributions of stimulus parameters, but also to their variability (Fried and Holyoak, 1984). Bimodal distributions
are initially treated as if they were unimodal, leading to impaired performance on the exemplars that are deemed
to be “outliers.” It may take many hundreds of trials for the tacit assumption of unimodality to be dropped
(Flannagan et al., 1986).



2.4 Experiment 3

The results of experiments 1 and 2 indicate that it is not necessary for two objects to differ in their
part (geon) structure to obtain performance that varies little with viewpoint. Specifically, such
performance was obtained for the monkey and dog stimuli, provided that they were sufficiently
widely separated in parameter space, even though those two object classes had exactly the same
geons in the same nonaccidental relationships with respect to each other. Experiment 3 was
an attempt to show that geon difference, in addition to not being strictly necessary, is also not
always suflicient for obtaining viewpoint-invariant performance.

**¥* Figure 5 here ***

The stimuli in experiment 3 were versions of the monkey and dog shapes that were modified
so as to have five separate nonaccidental contrasting features. These features were obtained by
turning parts that were previously cylindrical or ellipsoidal in both objects into different geons
in each of them. For example, the tapered-cylinder foreleg in the monkey became a concave
generalized cylinder, and in the dog it became convex. The entire set of newly introduced
contrasts was such that the objects could not be distinguished merely by the presence or absence
in the image of a geon of a given type. The degree of nonaccidental contrast was varied with the
blending parameter a, so that, for instance, the convexity and the concavity of the generalized
cylinders became less or more prominent. Still, because at their closest separation (of 0.70
times the distance between the reference modes) the two NEAR modes were distinct enough, the
nonaccidental contrasts remained noticeable under all conditions.

Five subjects participated in this experiment. The mean response time was 781 £ 24msec,
and the mean percentage of correct responses was 85.5 £ 1.5%. The lack of speed-accuracy
tradeoff was signified by the lack of a positive correlation between response time and percent
correct (¢(1,98) < 1, n.s.). One of the five subjects was rejected by the mean CR criterion (same
as the one employed in the analysis of the previous two experiments).

Figure 5 shows a plot of CR vs. D for the remaining four subjects. The curve for the NEAR
condition, but not for the FAR condition, revealed an upward concavity, therefore the subsequent
analysis was carried out only for D € [15°,45°] to facilitate the comparison of the linear trends
in the two conditions (see the discussion in section 2.5).

A homogeneity-of-slopes GLM analysis of variance (D X Similarity x Subject) showed a
significant main effect of D (F(1,11) = 10.3, p < 0.008), and a significant Similarity x Subject
interaction (#(3,11) = 11.3, p < 0.001). Data were pooled over levels of Mode (the effects
of Mode were n.s.). As in experiment 2, there was an indication of possible D x Similarity
interaction (#(1,11) = 1.7, p = 0.22), and a separate by-Similarity linear regression analysis
was carried out. The slopes in the FAR and the NEAR conditions were, respectively, —0.11 £+
0.10 (regression n.s.), and —0.27 £ 0.14 (regression significant at p < 0.06). Thus, here as
in experiment 2, the dependence of CR on D was higher under high similarity (in the NEAR
condition).

2.5 Discussion

2.5.1 Qualifications

The conclusions that may be drawn from the data presented in this section are subject to two
qualifications. The first of these has to do with the rejection of data from poorly performing



subjects. Each experimental session started with a training phase, and the subject could only
pass on to the testing phase if his or her performance on the training images was better than
90%. The rejection criterion for the data from the testing phase was then set at a mean correct
rate of 80%, which allowed for the lower performance in generalization to novel views, while
discarding data from subjects who, in a sense, failed to learn the task.

The second qualification is concerned with the range of misorientation D for which the linear
trends reported above hold. In experiment 1, the range of D was 15° to 45°, and the trends
there were clearly discernible. In the other two experiments, however, D was in the interval
[15°,60°], and a separate consideration of low and high misorientation effects had to be made.
Specifically, the linear trends in these experiments were only apparent up to D = 45°. The
bottoming out of the effects of D on CR for D > 60° may be attributed to the onset of a
different viewpoint-dependence (or rather, viewpoint invariance) mechanism than the one that
is at work for smaller values of D. This phenomenon warrants further investigation, but it does
not preclude obtaining a meaningful characterization of human performance for D < 45°.

2.5.2 Summary of psychophysical findings

Subject to the above qualifications, the results of the three experiments can be summarized as
follows:

o A geon-level difference between stimuli was not necessary for nearly viewpoint-invariant
performance: the two stimuli in experiments 1 and 2 differed only parametrically, and had
the same complement of geons, yet were recognized relatively independently of viewpoint
in the FAR condition of experiment 1.

o A geon-level difference between stimuli was not sufficient for achieving viewpoint invari-
ance, as indicated by the significantly viewpoint-dependent performance of subjects in the
NEAR condition of experiment 3.

o In all three experiments, increasing the inter-stimulus similarity affected two characteristics
of recognition performance:

— mean percentage of correct responses CR deteriorated;

— the degree of viewpoint dependence, as reflected in the slope of the regression of
CR on stimulus orientation relative to training, increased (the slope became more
negative).

Altogether, the performance of the 15 (out of the total of 23) subjects whose performance passed
the acceptance criterion described above suggests that the standard characterization of basic
and subordinate-level processes in visual recognition may need a revision. The next section
describes computational simulations that hint at a possible direction such a revision could take.

3 Simulations

According to the psychophysical data described above, the dependence of human recognition
performance on viewpoint varies with inter-stimulus similarity in a manner that is compatible
with predictions of the features of recognition (FOR) approach, outlined in section 1. One way



to gain a computational understanding of these psychophysical results is through simulation
of the experiments. This section presents such a simulation. The model used to replicate the
psychophysical experiments was based on an interpolating classifier that represents 3D objects by
collections of their 2D views. The classifier used Radial Basis Functions to interpolate among
the stored 2D views of objects (Poggio and Edelman, 1990). Previous experience with this
approach to the modeling of subordinate-level recognition of 3D objects had been positive (see,
e.g., Bilthoff and Edelman, 1992). However, so far the problem of representation of individual
views of objects has been circumvented by supplying the classifier with representations assumed
to be computed by a separate mechanism. The present work makes a step towards clarifying
the nature of representation of individual views, by preceding the classification stage of the RBF
model with a simple feature extraction stage, and by investigating the extent to which human
performance in recognition can be replicated by the resulting scheme.

**¥* Figure 6 here ***

3.1 Transduction stage

The feature extraction method used in the simulations was chosen to satisfy two criteria. First,
the method had to be generic rather than elaborate and specific (employing any of the more
sophisticated available approaches to feature extraction developed in computer vision would
have amounted to forcing an answer to the question of the features of recognition). Second,
the method had to be computationally viable. Feature extraction by convolution of the input
image with a bank of localized receptive fields (RFs) meets both of the above requirements: it
does not commit the entire simulation framework to a particular choice of high-level features,
and it has a record of success in modeling low-level visual functions such as hyperacuity (Poggio
et al., 1992), as well as higher-level functions such as face recognition (Edelman et al., 1992).
Related methods of feature extraction have been proposed repeatedly in the past (e.g., Amari,
1978; Nishihara and Poggio, 1984; Snippe and Koenderink, 1992; Edelman, 1992). In the
simulations described here I assumed the individual RFs to possess a Gaussian profile, with an
x/y aspect ratio distributed uniformly between 0.1 and 10.0. The density of the coverage of the
input image by RFs decreased from the center outward, also according to a normal distribution.
Separate simulations were run for three values of the number of the RFs (which determines the
dimensionality of the representation passed on to the subsequent classification stage): 150, 200,
and 400. A typical arrangement of the RFs with respect to an input image is illustrated in
Figure 6.

3.2 Classification stage

Classification of the input represented by the vector of activities of the transducer receptive
fields was performed by a Radial Basis Function (RBF) classifier (e.g., Moody and Darken,
1989). The classifier was first trained on ten images of each of the two stimuli objects (these
images were taken from the same range of viewpoints that was used in the training of human
subjects). The twenty training images were taken to be the twenty basis function centers of the
classifier, which was trained to output +1 for the images of the monkey, and —1 for the images of
the dog. The classifier’s performance was then tested using exactly the same images as seen by
the human subjects in experiment 2. The outcome of a trial was considered to be correct if the
output of the classifier had the correct sign (there was no attempt to model noise at the decision



stage). The simulated experiment was repeated for three different values of the parameter that
determined the width o of the basis functions.* The three values of the ¢ factor, combined
with the three values of the number of receptive fields in the transduction stage, yielded a 9-fold
replication of the simulated experiment. The results of the simulations are presented below as
means and standard errors of the percentage of correct responses of the classifier over these nine
runs. Note that each simulation run consisted in fact of two testing blocks, each preceded by its
own training stage, just as in the real experiments there were always two sessions, each with a
separate training and testing stage.

3.3 Simulation results

The results of the simulations are summarized in Figure 7. A comparison of this figure with
the corresponding summary of human data that appears in Figure 4 reveals some similarities,
as well as major discrepancies. Two apparent similarities are the order of performance levels
in the different modes (the best for the outer mode in the FArR condition, and the worst for
the inner mode in the NEAR condition), and the slower deterioration of performance with D
in the outer mode in the FAR condition, up to and including D = 45°, relative to the other
three modes. The most noticeable discrepancy is in the absolute level of the performance floor:
human performance remained well above chance for all tested values of D, while the model’s
performance dropped to chance at D = 60°.

*¥*¥* Figure 7 here ***

3.4 Discussion

The simulated experiment described above attempted to replicate human performance in the real
experiments using a simple two-stage model of recognition, in which transduction was followed
by interpolating classification. Despite the much stronger sensitivity of the model to viewpoint,
it did surprisingly well, given that it only stored images of the stimuli represented by collections
of locally averaged intensity values, whereas both the objective specification of the stimuli and
their intuitive description involved 3D volumetric primitives. This may be taken as an indication
that recognition in the human visual system relies at least to some extent on view interpolation
(cf. Poggio and Edelman, 1990; Biilthoff and Edelman, 1992).

Following Biederman (1987), it may be conjectured that using nonaccidental features such as
combinations of receptive fields that signal the presence of collinear or parallel contour segments
will lead to a better performance at large misorientations than that exhibited by the simple
model. Guidelines for enhancing the feature extraction ability of this model can be found in the
recent psychophysical data on interactions between spatial filters in human vision (Polat and
Sagi, 1993), and in neurobiological evidence for long-range lateral connections in the primary
visual area in mammals (Gilbert, 1988; Katz and Callaway, 1992). It remains to be seen whether
endowing the two-stage model with nonaccidental feature detectors will enable it to perform
above chance at large misorientations, without resorting to an elaborate multistage approach
such as Hummel’s recent implementation of the Recognition By Components theory (Hummel
and Biederman, 1992).

*The value of ¢ was computed as follows. First, the mean separation S of the vectors in the entire ensemble
of inputs was computed (this is the value of & recommended by (Saha and Keeler, 1990)). Second, o was set to
either 0.5, 1.0, or 2.0 times S.



4 Conclusions and future work

The present work studied the interaction between class similarity and viewpoint dependence in
recognition. Intuitively, one expects an increased sensitivity to viewpoint in the discrimination
between highly similar objects, if these can only be distinguished by paying attention to small
details that change appearance or become occluded when the objects rotate in space. This
intuition was a major motivation in the development of the features of recognition framework,
and is supported by the psychophysical results presented above. These results, however, clearly
warrant further work. The following open issues seem to be the most important at the present
stage:

4.1 The contribution of the primary visual areas to recognition

A full functional simulation of the parvo stream in the primary visual areas of the mammalian
cortex (V1 and V2), including spatial filters at multiple scales (Wilson and Bergen, 1979),
log-polar mapping (Cavanagh, 1985), contour completion (von der Heydt et al., 1984), and
lateral interactions between filters (Polat and Sagi, 1993; Edelman, 1992), should be employed
in the transduction stage of the model. A success of the resulting model would signify that, in
certain tasks, recognition may require little machinery beyond that available in V1 and V2 (the
model’s second stage — interpolating classifier — can be implemented as well by a weighted sum
of receptive fields such as those found in the primary visual cortex).

4.2 The structure of the psychological representation space

The modeling approach adopted here assumed that views of 3D objects are represented by
points in a multidimensional metric space of the activities of a collection of receptive fields.
Psychophysical methods such as multidimensional scaling (Kruskal and Wish, 1978) should be
employed to explore the structure of this space.

4.3 Psychology of decision-making in recognition

Another assumption was that the identity of the input view is decided by comparison with
internally represented views, according to a variant of the nearest-neighbor criterion. Some of
the relevant open questions here are concerned with the details of the decision criteria adopted
by human subjects, and with the influence of learning and of the stimulus parameters on these
criteria. Specifically, it would be interesting to determine whether the feature vector for a
new input is compared with an explicitly represented decision surface constructed in the feature
space, or with representations of previously encountered exemplars corresponding to the familiar

views, or with a set of prototypes each of which stands for a class of familiar objects (Nosofsky,
1988; Edelman, 1993; Maddox and Ashby, 1993).

4.4 Computational analysis

A computational analysis of possible sources of the observed orientation effects in recognition
appears in appendix A. The results stated there indicate that the dependence of performance
on stimulus orientation can be explained by either one of two computational mechanisms: a
single-basis RBI preprocessor, or a Bayesian decision module (both used in conjunction with
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the nearest-neighbor approach in the representation space). Future work will address computa-
tional issues left open by appendix A, and will explore ways to distinguish between the possible
explanations psychophysically.

4.5 The generalization of the results to other object classes

The lack of software tools for the automatic generation of object classes jointly parameterized
by isomorphic sets of variables hampers the extension of the results reported here to additional
objects. One way around this technical difliculty may be to use as stimuli collections of 3D
geon-like parts in random configurations (cf. Biederman and Gerhardstein, 1993). If the random
objects are evolved via a controlled perturbation from real 3D objects, this approach can also
help clarify the role of prior everyday exposure in the recognition process, possibly through the
demonstration of an object superiority effect (Weisstein and Harris, 1974) for real objects.

4.6 Summary

The psychophysical results reported in this paper suggest that viewpoint invariance, character-
istic of basic-level classification, and viewpoint dependence, a trait of subordinate-level recogni-
tion, may be more closely related than previously thought. The possibility of varying the degree
of viewpoint dependence of the subjects’ performance by manipulating objective similarity be-
tween the stimuli indicates that a unified account of recognition, suggested in section 1, may
be feasible. Moreover, the extent to which such a unified account may be based on feature ex-
traction coupled with exemplar-based classification appears to depend on further developments
of feature extraction methods, beyond the simple approach taken by the simulations described
here.
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A A computational formulation of the invariance / diagnos-
ticity tradeoff

The tradeoff between relative invariance with respect to the viewing position supported by a
given choice of features, and the degree of discrimination between objects that these features
allow has been predicted in (Edelman, 1991) as a possible manifestation of the unity of the
mechanisms underlying basic and subordinate-level recognition. In this section, I explore two
possible general approaches to the analysis of this tradeoff. To simplify the analysis, it is assumed
that individual views are represented as points x € R*, and that the decision mechanism is a
variant of the nearest-neighbor scheme.

Let Xéﬁ) be any two distinct views of object A, and XéB) be an arbitrary view of object B.
Denote the action of the feature extraction stage by a vector-valued function f(x): R* — R*.
Then, for the feature extraction process to lead to a gain in viewpoint invariance, it is required
that

(£ (x9) . (=) < d (x4, ) ()

where d is the metric on R* used in the nearest-neighbor scheme. At the same time, for the
feature extraction to lead to an increase in object discriminability, it is required that

0 (£ (x9) (=) > d (<9, x) B

Generally, the feature space will be of a different dimensionality than the input space. Therefore,
care must be taken when distances before feature extraction are compared to those after feature
extraction: they may fall in different ranges merely because of the different dimensionalities. In
section A.1 this problem is avoided by normalizing the distances before comparison.

Assuming that views are represented by orthographic projections of spatially localized fea-
tures, and using the notion of reachability of projections of 3D objects defined in (Moses and
Ullman, 1992), one can show that requirements 1 and 2 cannot be simultaneously satisfied for
all views of all objects. This result, however, seems to be too weak to be of any practical signifi-
cance: it would be more useful to find out, for example, whether the two conflicting requirements
can still be satisfied simultaneously on the average, or for a majority of viewpoints.

A.1 The tradeoff as a by-product of the RBF classification

Let us assume now that that the nearest-neighbor classification stage is preceded by an RBF
preprocessor, with a single Gaussian basis function, corresponding to the single stored view (see
Figure 8). In that case, the recognition rate for other views of the same object can be improved
merely by increasing the width o of the basis function. This manipulation, however, will cause
an increase in the false alarm rate, that is, in the tendency of the classifier to overgeneralize
(Edelman and Poggio, 1992).

**¥* Figure 8 here ***
To quantify this effect, let v, € R* v, € R?**, and y € R be, respectively, the reference view
stored as the RBF' center, a test view of the same object, and the output of the basis unit (% is
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the number of features in the object). We can compare the effect of the misorientation relative
to the reference view on two distances, one computed before and the other one after the RBF
stage. The “raw” distance is

Py = V2 = vil]? = [Px, = PT(0)x|] 3)

where x, € R3* is the feature vector for the reference view before projection, P : R3* — R?* is
the orthographic projection matrix, and 7'(a) is the transformation matrix corresponding to a
rotation by a with respect to the reference orientation.® The distance after the RBF stage is

(4)

where ¢ is the width of the Gaussian basis function used in the RBF stage. Note that dppp
starts at 0 for |a] = 0 and asymptotes at 1/v/27o for |a| — 7. Both the asymptotic value
of dppr and its rate of change are influenced by o. To assess this influence numerically, ten 10-
vertex “objects” consisting of clouds of unlabeled feature points in 3D were created by choosing
the z, y, and z coordinates of each feature independently and randomly according to a uniform
probability density from the [—10.0, 10.0] interval. Given those objects, a plausible value for o
can be set, e.g., by requiring that drpr|ja|=r/4 = 0.5dRrBF||a|=r- A numerical solution of this
equation yields o = 9.6.°

One can now estimate the average effects of the object orientation a on the two distances,
drqw and drpr, by computing the appropriate partial derivatives and integrating over the rele-
vant range of orientations, say, [0..7/2] radians. Let

1 1 _1(|PVr—PT(a)Vy|\? 2
dhpr = (yr — 1)’ = <—_ € 5 ( > ))

2ro 2ro

o 252 (7,0) do

0]

S drpr (0,0) da

/2
D _ fO / 8%To:lw (07 a) da (6)
raw = — /2
Jo ! dray (0,0)da

(5)

DRrBF

Numerical evaluation of these expressions at the chosen value of o = 9.6 yields Drgr = 1.29 <
Dyaw = 1.76, that is, on the average, the dependence of dpgpr on misorientation to training is
smaller than the dependence of d,4,, (here and below all the numerical results are averages over
the ten test objects).

**% Figure 9 here ***
How do the changes in o affect the viewpoint dependence of a system that uses a single-center
RBF preprocessor? Figure 9 shows a plot of the partial derivative %ﬂl vs. o and |a|. One
can observe that for the chosen value of o = 9.6 the viewpoint dependence of the system’s

®The components of o can be, e.g., the Euler angles encoding the object’s orientation. The object’s misori-
entation relative to an arbitrary reference viewpoint can be measured by a single rotation around an axis whose
orientation in space can be defined, but is of no importance if the object possesses no intrinsic or natural orien-
tation due, e.g., to the presence of a major axis of symmetry. This single rotation is denoted in what follows as
la].

5The method for choosing o based on average inter-object distance, mentioned in section 3.2, is less appropriate
here, because each object is assumed here to be recognized by a separate module, as in (Poggio and Edelman,
1990).
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performance increases with an decrease in o. Recall that the value of ¢ affects the false alarm
rate of the system, and assume that the system can adapt to changing conditions by adjusting
this value. If the false alarm rate grows (e.g., due to an increased similarity between the objects,
as in the transition between FAR and NEAR conditions in the psychophysical experiments),
it can be reduced by decreasing the value of 0. According to Figure 9, this would cause an
increase in viewpoint dependence of the system’s performance, similar to what was found in the
psychophysical experiments.

A.2 The tradeoff as a by-product of the decision-making step

The invariance/diagnosticity tradeoff may also arise as a by-product of the decision-making
process. In deciding whether two views that produced two given feature vectors belong to the
same object, the significance of the difference between the feature vectors must be assessed.
Two factors supply the reference against which this significance is to be judged: (1) the intrinsic
variability of exemplars within each of the object classes, and (2) the differences between the
classes. Note that the first of these factors was present in the experiments reported above, but
was kept constant. The second factor, however, was varied, and its variation was associated
with a change in the percentage of correct responses, and a concomitant change in the degree
of viewpoint invariance. From the preceding discussion, it may be expected that reducing the
distance between object classes will make changes in the feature vector caused by a shift in
the viewpoint relatively more prominent (this is indeed what was found in the psychophysical
experiments).

This situation can be analyzed using an ideal-observer approach (see, e.g., Knill and Kersten,
1991). Let v; be a test view that the observer is to classify as belonging either to an object
whose reference view is vy, or to another object whose reference view is vy. Let us assume that
the observer’s decision, say, in favor of the first object, is based on the likelihood ratio:”

P (v1|vy) P (vy|vy) ‘ P(vy)
P (va|vy) P(vvz) P(vy) (")

In the present psychophysical experiments, the prior probabilities of the appearance of each of
the two objects were the same, so that we only need to consider the ratio

R = :R'Rpriorz

P(vyvy) _ Py (8)
P(Vt|\72) P2
that is, the probability of obtaining view v; from object 1, divided by the probability of obtaining

the same view from object 2. Assuming that a test view is attributed by the observer to the
object whose prototypical view is the closest to it, we can compute P; and Ps:

L=

P = /p(v,\?l;an,T)dv (9)
S

P, = /p(v,§11+d;an,T)dv (10)
S

"Evidence to the effect that subjects assign an exemplar to a given category on the basis of its likelihood of
having been generated by the category can be found in (Fried and Holyoak, 1984). For a more general treatment
of likelihood ratios in the contexts of perceptual decisions, see (Green and Swets, 1966).
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where o, is the standard deviation of the normally distributed noise in the parameter space, T’
represents the effect of object rotation, and the region of integration is S = {v s.t. |[v — v{| <
|v — va|} (see Figure 10). Note that in equation 10 v; 4 d is substituted for vs.

*%% Figure 10 here ***

*¥* Figure 11 here ***

We can now use Monte-Carlo integration to estimate the dependence of L = P;/P, on the
variance in object appearance, and how it is influenced by the dissimilarity between the two
object classes. In what follows, no distinction is made between the two factors that influence
object appearance: parameter variation and orientation. The reason for this is that both these
factors (modeled here by noise, normally distributed around vy or vy, with std.dev.=c,) have
the same qualitative influence on L; the quantitative details are irrelevant at the present level
of analysis. The dissimilarity is manipulated below by blending object prototypes, as in the
psychophysical experiments (see section B.1). Let a be the blending parameter that controls
the distance between object prototypes:

vi = (1—a)vi+avy (11)
vy = avi+(l-a)v, (12)

According to the above definition, for @ = 0 the prototypes v{, v} are at their “original” sep-
aration, determined by vy, vy, while for @ = 0.5 they become equal: v| = v). Figure 11 (left)
shows a plot of the likelihood ratio L vs. @ and o,,. The likelihood ratio is large (appears clipped
in the plot) for small a and small o, and decreases when the values of both these parameters
increase. A contour plot of a polynomial fit to L(a,o,,) shows the rate of the fall-off of L with
increasing o, to be higher for high values of a. That is, the influence of the factors that con-
tribute to image appearance variability (noise and rotation) grows when the prototype objects
become more similar to each other.

B Parameterization of the stimuli objects

B.1 3D graphics tools for the study of object representation

The features of recognition framework (see section 1) predicted a tradeoff between the dis-
criminative power and the degree of viewpoint invariance of the basic features used in object
representation. A crucial component in an experimental demonstration of this tradeoff is control
over similarity between different stimuli. Such control is easily achieved, e.g., for the wire-like
stimuli of Edelman and Biilthoff (1992). However, the wire objects, all of which belong to the
same basic category, cannot serve as stimuli in an experiment that is to address the issue of
basic-level classification.

*%* Figure 12 here ***

Smooth control over shape is possible even for complex objects, if these are appropriately
parameterized (cf. Hofstadter, 1985, p.241). Given a parameterization of two objects that can be
described by two points x1,x2 € R" (where R" is the n-dimensional parameter space), an object
that is a blend of the two can be defined as ax; + (1 — a)xz, where a is the blending constant.
If this linear combination is convex (that is, if 0 < a < 1), then the blended object is, in a
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sense, “in between” the two original ones. Allowing the parameters to vary randomly around
the central values of x1,x3 (e.g., according to a normal distribution with moderate variance)
leads to objects that are random variations on the central or prototypical themes.

Figure 1 shows a family of images of 3D objects that were obtained with the procedure
outlined above and were used in the psychophysical experiments. There were two classes of
objects, one resembling monkeys, and the other dogs (according to Snodgrass and Vanderwart
1980, monkey and dog belong to separate basic-level categories). Both classes were defined by
the same set of 56 parameters, which encoded sizes, shapes, and placement of the limbs, the ears,
the snout, etc. Applying to the prototypical (central) members of the two classes the blending
formula with o changing by small steps between 0 and 1 caused the resulting object to change
its shape smoothly between that of a monkey and that of a dog.

B.2 A list of the parameters used in creating object shapes

To illustrate the parametric relationship between the two object classes used in the experiments,
monkey and dog, this section lists the names and the values of the 56 parameters that defined
the object prototypes.

Parameter Name # monkey dog
#define SIZE 0 4.0 4.0
#define HEAD_LENGTH 1 0.2 0.2
#define HEAD_ECCENTRICITY_1 2 0.8 0.8
#define HEAD_ECCENTRICITY_2 3 1.0 1.0
#define SNOUT_LENGTH 4 0.1 0.15
#define SNOUT_ECCENTRICITY_1 5 1.3 0.5
#define SNOUT_ECCENTRICITY_2 6 1.5 0.8
#define EAR_LENGTH 7 0.01 0.015
#define EAR_ECCENTRICITY_1 8 10.0 10.0
#define EAR_ECCENTRICITY_2 9 8.0 5.0
#define NECK_LENGTH 10 0.4 0.3
#define NECK_RADIUS 11 0.6 0.06
#define NECK_TAPER 12 1.3 1.3
#define TAIL_LENGTH 13 0.8 0.6
#define TAIL_RADIUS 14 0.03 0.1
#define TAIL_TAPER 15 0.5 0.2
#define EYE_SIZE 16 0.02 0.02
#define EYE_THETA 17 3.6 3.6
#define EYE_PHI 18 -1.0 -1.5
#define THIGH_LENGTH 19 0.7 0.5
#define THIGH_RADIUS 20 0.2 0.16
#define THIGH_TAPER 21 0.5 0.5
#define LEG_LENGTH 22 0.5 0.25
#define LEG_RADIUS 23 0.1 0.08
#define LEG_TAPER 24 0.5 0.5
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Figure Legends:

Figure 1: A family of images of two classes of parameterized 3D objects, obtained with the
blending procedure described in appendix B. The objects were created and rendered using the
GL language on a Silicon Graphics 4D/35GT workstation. The illustration shows the two class
prototypes, four blended objects, and the effects of random perturbation of parameters (top)
and of object rotation (bottom left).

Figure 2: The relationships between the two classes of stimuli objects in the 56-dimensional
parameter space (illustrated here schematically as 1-dimensional). Top: In experiment 1 the
controlled parameter was the distance (NEAR or FAR) between the distributions corresponding
to the two classes. Bottom: In experiments 2 and 3 the distributions were bimodal, and for each
of them one of the modes was fixed in the parameter space.

Figure 3: Experiment 1. Left: a schematic illustration of the experimental conditions. Right:
Percentage of correct responses CR in the low and high inter-class similarity conditions (Far
and NEAR modes; upper and lower curves, respectively), plotted vs. the angular distance D to
the training orientation (means and standard errors of five subjects).

Figure 4: Experiment 2. Left: a schematic illustration of the experimental conditions. RIGHT:
Percentage of correct responses CR in the four experimental conditions (top to bottom curves:
outer and inner modes under low inter-class similarity (FAR conditions); outer and inner modes
under high inter-class similarity (NEAR conditions). The abscissa represents the angular distance
D to the training orientation. Data are means and standard errors of six subjects.

Figure 5: Experiment 3: Left: a schematic illustration of the experimental conditions. Right:
Percentage of correct responses CR for the two similarity conditions, FAR (upper curve) and
NEARr (lower curve), plotted vs. the angular distance D to the training orientation. (see sec-
tion 2.4 for details).

Figure 6: A snapshot of a typical distribution of receptive fields used in the transduction step
of the simulated experiment (in this example, there are 150 receptive fields; see section 3.1),
overlayed on an image of one of the two stimuli (monkey, shown in Figure 12; the overlay image
here has been subjected to edge detection for presentation clarity).

Figure 7: Simulation: percentage of correct responses for the inner and outer subclasses, in the
two experimental conditions — low inter-class similarity (FAR; curves marked by “I” and “O7”),
and high inter-class similarity (NEAR; curves marked by “i” and “0”). The abscissa represents
the angular distance to the training orientation. Data are means and standard errors of 9 runs
(see text). Compare with Figure 4.
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Figure 8: A nearest-neighbor classifier preceded by an “invariance enhancer” module, imple-
mented as an RBF network. Section A.1 analyzes the output of a simplified RBF module
consisting of a single basis unit (indicated in the illustration by an arrow). Generally, the out-
put of a vector-valued module is a linear combination of the vector of activities of basis units
(Poggio and Edelman, 1990).

Figure 9: A plot of the dependence of performance on viewpoint, as reflected in the value of
8‘?% (a,0). The dependence on viewpoint is seen to increase with decreasing o around the
chosen value of o = 9.6, for all relevant values of |a].

Figure 10: A diagram of the decision situation in an experiment that involves discrimination
between two objects. For illustration purposes, the space of images of all possible objects is
shown here as two-dimensional. The points corresponding to the images of the two object
prototypes are denoted by vy and vy. The task in the experiment is to decide which of the two
objects gave rise to the test image, v;.

Figure 11: Left: The likelihood ratio for the decision that the input view belongs to object #1,
given that it falls closer to vy than to v, (see Figure 10), plotted vs. the blending parameter o
and a measure of the variability of the object’s appearance o,. The data are means over five
pairs of objects (the same random objects used in the other simulations in the appendix). Each
point in the plot was obtained with a 50-sample Monte-Carlo integration of equations 9 and 10.
Right: A contour plot of a 3rd-degree bivariate polynomial fit to L(«,0,). For o, < 15, the
density of contours in the direction of increasing o, grows with a.

Figure  12: An  image of ome of the two stimuli  objects (the
monkey).
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