
Dynamical Emergence Theory (DET):  
A Computational Account of Phenomenal Consciousness 

 
Roy Moyal, Tomer Fekete, and Shimon Edelman 

 
December 2, 2019 

 
Abstract 

 
Scientific theories of consciousness identify its contents with the spatiotemporal structure of neural 
population activity. We follow up on this approach by stating and motivating Dynamical Emergence 
Theory (DET), which defines the amount and structure of experience in terms of the intrinsic topology 
and geometry of a physical system’s collective dynamics. Specifically, we posit that distinct perceptual 
states correspond to coarse-grained macrostates reflecting an optimal partitioning of the system’s state 
space—a notion that aligns with several ideas and results from computational neuroscience and cognitive 
psychology. We relate DET to existing work, offer predictions for empirical studies, and outline future 
research directions. 
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First, conscious awareness, in the present view, is interpreted to be 
a dynamic emergent property of cerebral excitation. 

 
         — Sperry (1969) 

 
1   Terms and Definitions 
What does it mean to see? Students of visual perception will remember this question from the opening 
paragraph of David Marr’s book Vision (1982), to which he offered the answer “To know what is where 
by looking.” Although the program of Marr and Poggio (1977), which sought to explain perception on the 
computational, algorithmic, and implementational levels, has led to many successes (Poggio, 2012; 
Hassabis, Kumaran, Summerfield & Botvinick, 2017), it has also sidestepped the more serious challenge 
of understanding the relationship between the structure of neural population activity and that of 
phenomenal consciousness (Edelman, 2016). 
 
In cognitive neuroscience, phenomenal consciousness is typically operationalized in terms of behavioral 
criteria—for instance, in the case of sensory awareness, the ability to report detection (either verbally or 
nonverbally; Dehaene, Changeux, Naccache, Sackur & Sergent, 2006). Perceptual phenomena such as 
binocular rivalry (in which visual awareness is partially suppressed by presenting a different signal to each 
eye; Tong, Meng & Blake, 2006), in particular, have been utilized in conjunction with neuroimaging and 
electrophysiology, offering clues as to the qualitative differences between neural population responses 
that are accompanied by reportable percepts and those that are not (Dehaene, 2014). Alongside these 
empirical efforts, neurocomputational accounts that aim to derive the necessary and sufficient conditions 
for phenomenal consciousness from first principles, such as Integrated Information Theory (IIT; Oizumi, 



Albantakis & Tononi, 2014; Tononi, Boly, Massimini & Koch, 2016) and Geometric Theory (GT; Fekete, 
2010; Fekete & Edelman, 2011), have undergone continuous development.  
 
Our account complements and extends these theories to accommodate recent data and promising 
hypotheses (reviewed in Moyal & Edelman, 2019). Specifically, it brings together several ideas from 
neuroscience, psychology, and the philosophy of mind, to all of which we are indebted: 
 

• The need for an axiomatic basis or a set of minimal assumptions for a theory of phenomenal 
consciousness (Tononi, 2008; Fekete & Edelman, 2011; Oizumi et al., 2014).  

 
• The formal isomorphism between the structure of phenomenal consciousness and that of neural 

population dynamics (Smart, 2004; Spivey, 2006; Edelman, 2008a; Barrett, 2014), both of which 
are necessarily observer-independent (i.e., intrinsic to the system in question; Fekete & Edelman, 
2011; Tononi, 2008). 

 
• The emergence of macrostates in the system’s activity space (Crutchfield, 1994; Shalizi, 2001; 

Atmanspacher, 2016; Hoel, Albantakis, Marshall & Tononi, 2016) whose transitions give rise to 
changes in qualia (which, given the existence of just-noticeable differences in every modality, 
should be separable; cf. Krueger, 1989). 

 
• The metastability that may characterize these macrostates (Kelso, 1997; Friston, 1997; Freeman 

& Holmes, 2005; van Leeuwen, 2007; Rabinovich, Huerta & Laurent, 2008; Rabinovich, Huerta, 
Varona & Afraimovich, 2008; Tognoli & Kelso, 2014; Deco, Kringelbach, Jirsa & Ritter, 2017; 
Cocchi, Gollo, Zalesky & Breakspear, 2017). 

 
Our focus is thus distinct from that of theories concerned with higher-order awareness (e.g., 
phenomenological self-models; Metzinger, 2003, 2007, 2018). We seek, instead, a functional and 
computational understanding of the relationship between the structure of a system’s collective dynamics1  
(section 1.2) and that of the basic awareness it is capable of producing (Edelman, 2008a,b; Fekete & 
Edelman, 2011; Edelman, Moyal & Fekete, 2016)—which, in its minimal form, consists in representations 
of some aspects of the world (e.g., one’s body and its interactions with the environment; Sperry, 1969, 
1970). The veracity of any proposed mapping between a system’s dynamics and phenomenal content is 
testable, even if one is only willing to admit a strictly operational definition of awareness. 
 
The core of the thesis we formulate and motivate below is as follows: the contents of phenomenal 
consciousness are isomorphic to causally effective, coarse-grained macrostates defined over the system’s 
dynamics. These macrostates, more specifically, are the cells of a generating or a Markov partition of the 
state space (cf. Allefeld, Atmanspacher & Wackermann, 2009; Atmanspacher, 2016). In the wakeful brain, 
such partitions may be afforded by the itinerant nature of neural population activity, which often exhibits 
highly coordinated firing patterns punctuated by abrupt, large-scale transitions (a metastable regime; 
Shanahan, 2010; Tognoli & Kelso, 2014). Empirically, one may characterize such transients by examining 
the geometric and topological structure of a space spanned by measurements of the system’s state (e.g., 
spikes or local field potentials). A review of the neurophysiological data substantiating this approach, with 

 
1 Because our notion of structure is relational (determined by properties of a system’s collective dynamics), it does not rule 
out physical interpretations or extensions that are non-local. 



a focus on the role of long-range thalamocortical coordination in mediating visual awareness and attention, 
is provided elsewhere (Moyal & Edelman, 2019). 
 
In the remainder of section 1, we define our terms and highlight important theoretical links between the 
concepts introduced above. In section 2, we spell out our minimal assumptions, state our Dynamical 
Emergence Theory (DET), and define three measures: representational capacity (which should also reflect 
the system’s level of consciousness; Koch, Massimini, Boly & Tononi, 2016), the amount (richness) of 
experience, and the nature (structure) of experience. In section 3, we situate DET in relationship to 
existing work, provide suggestions for future empirical studies, and outline some of its predictions. 
 
1.1 Multiple Realizability 

Our construal of computation is broad (Edelman, 2008b2; Fekete & Edelman, 2011). Be it implemented 
in discrete or continuous systems, computation inheres in the pattern of transitions among well-defined 
states, whose boundaries may be defined intrinsically or based on externally imposed rules (a crucial 
distinction that we revisit later). Computation is thus multiply realizable, in that a particular operation may 
be implemented using different physical components. What matters is the functional organization of the 
system’s elements, not their identities, insofar as certain differences in the latter do not alter the former 
(cf. Chalmers, 1995; Silberstein & McGeever, 1999, p.196ff).  
 
Multiple realizability entails that some properties of the physical substrate of a given computation may 
not directly reflect its organizational structure. As a trivial example, consider the molecular composition 
of an organism: though it changes continually during the course of metabolism (e.g., Thompson & Ballou, 
1956), the organism’s functioning and behavior (i.e., its causal contribution on higher levels of 
organization) arise from the patterns of molecular interactions. We shall argue here that phenomenal 
content, similarly, reflects the existence of multiscale structure in the collective dynamics of physical 
systems whose elements, up to their function, are fungible. 
 
1.2 Structure and Complexity 

To dispel any ambiguity, we define a system as a set of elements, each being a variable (which may 
correspond to some physical object or volume) whose states can be represented numerically and evolve 
over continuous time according to a system of differential equations. Though this definition is purposely 
broad, the mathematical formalism and tools developed in the context of the neural field approach 
(Coombes, beim Graben, Potthast & Wright, 2014) may be used to further constrain it, with precise 
implications that cleanly map onto DET (e.g., metastability; Schwappach, Hutt & beim Graben, 2015). 
 
We theoretically define structure as the pattern of dependence among the states (actual or measured) of a 
system’s elements in some time interval of interest. Its complexity, which should correspond to the 
representational capacity afforded by the dynamics3, may then be defined as a convex (upward) function 
of the dimension of the state space or the number of degrees of freedom (Atmanspacher, 2016; Moyal & 
Edelman, 2019). When the system’s state space is low-dimensional (e.g., when all neurons fire 
synchronously or at a consistent phase lag for a prolonged period of time), the richness of its 

 
2 For a formal definition of computation in systems with continuous dynamics, see Siegelmann and Fishman (1998). 
 
3 In the case where the representations are intrinsic—that is, arise from the structure of the dynamics (clustering in the state or 
trajectory space) and are not arbitrarily determined by an external observer (see section 2.1). 



representations would be low. That would also be the case when all states are equally likely (dots are 
evenly spread throughout the space) and the dimension tends to the number of elements. This notion, 
which is closely related to that of Integrated Information (Tononi, 2008), is central to both DET and IIT.  
 
These provisional definitions suggest a natural (soft or graded) partitioning of any nontrivially structured 
dynamical system into functional levels of organization, based on the extent to which information about 
some components’ time series is encoded in others. This property is utilized by algorithms that quantify 
directed causal influence in nonlinear systems, such as convergent cross mapping (Sugihara et al., 2012; 
Ye, Deyle, Gilarranz & Sugihara, 2015; Clark et al., 2015).  
 
1.3   Emergent Macrostates 

How might structure of the kind described in the previous subsection arise in the brain? The concept of 
emergence, which is central to the study of complex systems (e.g., Crutchfield, 1994; Bar-Yam, 2004; 
Halley & Winkler, 2008; Collier, 2013; Hoel, Albantakis & Tononi, 2013; Ladyman & Wiesner, 2018), 
is often invoked in biology and cognitive science as a possible answer (Thompson & Varela, 2001; Le 
Van Quyen, 2003; Rudrauf, Lutz, Cosmelli, Lachaux & Le Van Quyen, 2003; Kauffman & Clayton, 2006; 
van Leeuwen, 2007; Kirchhoff & Hutto, 2016). In terms of system dynamics, emergence can be seen as 
the self-organization of functional, effective macrostates over time4 (Crutchfield 1994). Here, we use the 
term in the sense of Allefeld and Atmanspacher (2009, p.1) to refer to the mapping that exists between the 
micro-level description of the system and a particular macro-level, symbolic description that is 
topologically equivalent to it (Atmanspacher, 2016).  
 
Emergent macrostates can be identified from the dynamics of a physical system through coarse-graining 
(e.g., Shalizi & Moore, 2003; Hoel et al., 2016), which amounts to the aggregation of a system’s states (or 
state space trajectories) into equivalence classes based on some of their statistical properties. Such a 
discretization is necessary given the existence of minimally distinguishable qualia (Krueger, 1989). The 
macrostates, furthermore, must arise out of either a Markov partition (Allefeld et al., 2009) or a generating 
partition (Kolmogorov, 1958; Sinai, 1959) of the original domain—one in which, all things being equal 
(that is, without structural changes resulting, e.g., from learning), the boundaries between the macrostates 
are preserved over time under the system’s dynamics (Atmanspacher, 2016). As Shalizi and Moore (2003, 
p.1) point out, this ensures that the macrostates are self-consistent (stable over time; Harbecke & 
Atmanspacher, 2012, p.168 and appendix). Thus, the resulting recasting of a system’s collective dynamics 
in terms of emergent coarse-grained macrostates is not merely an observer-relative description thereof 
(Shalizi and Moore, 2003, p.1). 
 
2   Dynamical Emergence Theory (DET) 
2.1   Minimal Assumptions 

Having defined these key terms and concepts, we are now ready to spell out the minimal assumptions on 
which DET is based. Our aim here is to whittle down the list of requirements posed by GT (Fekete & 
Edelman, 2011; Edelman & Fekete, 2012) and IIT (e.g., Oizumi et al., 2014), retaining only those 
necessary for explaining how phenomenal representational states map to the collective dynamics of a 
physical substrate. Specifically, the Inherence and Structure requirements stated below are necessary for 
enabling a computational account of phenomenality: 

 
4 A precise definition of self-organization is offered by Shalizi (2004, p.118701-1). 



 
• Inherence. The phenomenal experience of a system is an observer-independent property thereof 

(i.e., is intrinsic to it) rather than a matter of outside interpretation or attribution, and so must be 
any characteristics that define its physical substrate. 

 
• Structure. The structure of phenomenal experience—which, fundamentally, reflects discernment 

among qualia5—must be formally isomorphic to that of the system’s emergent macrostates and 
their transitions. 

 
An additional property arises as a consequence of our definition of intrinsic structure (section 1): 
 

• Effectiveness. Phenomenal experience is a functional (as opposed to epiphenomenal) trait. In other 
words, its states and transitions are causally and predictively effective. 

 
We posit that the necessary conditions of Inherence and Structure are also sufficient. In other words, if 
the pattern of macrostate transitions over the collective dynamics of a physical system implements 
intrinsic discernment (Fekete & Edelman, 2011, p.807), then the system exhibiting this pattern possesses 
some degree of phenomenal experience. Importantly, the system’s representational capacity and amount 
(richness) of experience depends on the complexity of this structure (section 2.3). 
 
The Inherence requirement, importantly, rules out digital computation in its familiar form as a candidate 
medium for phenomenal experience. As pointed out by Fekete and Edelman (2012), the representational 
states in digital computers are defined by convention—by means of an externally imposed mapping 
between the values of physical variables and the symbols they stand for—and therefore are not intrinsic 
to their physical substrate (Tononi, 2008, p.219; Fekete & Edelman, 2011, p.808). 
 
2.2 The Substrates of Experience 

In keeping with the paradigm of Marr and Poggio (1977) and with the principle of multiple realizability, 
we propose to treat the implementational substrate (IS) and computational substrate (CS) of phenomenal 
consciousness separately6.  
 
We define the former (IS) as the collective dynamics of a physical system in a time interval of interest—
a segment of its state space trajectory. The latter (CS) is the set of intrinsically structured, causally 
effective, coarse-grained macrostates of the IS.  
 
Phenomenal experience, then, is the system’s trajectory through its set of macrostates (CS). This definition 
closely follows that of Fekete and Edelman (2011), except that here we argue that the CS-level symbolic 
dynamics constitutes a functional, emergent property of the IS. 
 
This theoretical move codifies the assumption that distinct physical systems should be capable of 
experiencing identical qualia if the quasi-discrete macrostates approximated by their dynamics are 

 
5 Qualia “enable one to discern similarities and differences: they engage discriminations.” (Clark, 1985). 
  
6 We wish to stress that, by separating the implementational and computational substrates (and by appealing to emergence), we 
do not mean to imply that the latter is somehow nonphysical. Rather, we hold that it is a structural property of the system’s 
collective dynamics or of some underlying physical field (cf. Barrett, 2014). 



isomorphic7 (consider, for instance, two neuronal ensembles—one biological and one artificial—with 
identical state transition functions). It also alleviates some of the boundary problems that may arise from 
the commonly perceived need to pick an “objectively” right grain for the dynamics in question (Fekete, 
van Leeuwen & Edelman, 2016) by appealing to the multiscale nature of both neural population dynamics 
and phenomenal experience8.  
 
2.3   Quantifying Experience 

Any explicit theory of phenomenal experience should be accompanied by quantitative measures that agree 
with its structure and capture theoretically interesting aspects thereof (e.g., Balduzzi & Tononi, 2009; 
Fekete & Edelman, 2011; Oizumi et al., 2014; Fekete et al., 2016; Mediano, Seth & Barrett, 2019). 
Appropriate measures, in our view, should summarize structural properties of the CS (ideally, ones with 
clear cognitive counterparts), afford predictive and explanatory power, and be computationally tractable.  
 
Though the space of possible measures is vast, we hold that three basic types are warranted (all defined 
with respect to a particular time interval): one to quantify the system’s overall representational capacity 
(RC), one to quantify the richness or amount of experience (AE), and one to characterize the structure or 
nature of experience (NE) and the similarity between (possibly hierarchical) macrostates.  
 
2.3.1   Representational Capacity (RC) 

The quantitative definition of representational capacity developed by Fekete (2010), which DET retains, 
is based on the concept of the trajectory space of a dynamical system—namely, the space of all trajectories 
(paths through the state space) of a given duration9 that are possible under the given dynamical regime.  
 
Fekete (2010) posits a ranking of representational states (such as varying degrees of arousal) by their 
complexity. Specifically, he suggests that linearly combining various measures of complexity derived 
from labeled data can allow one to define a scalar state indicator function (SIF): higher values of this 
function are obtained for more complex trajectories, and same-capacity states correspond to the level sets 
of the SIF10. Because representational capacity was defined by Fekete (2010) as the coupling between the 
complexity of trajectories within a state and the complexity of the structure of the entire (state dependent) 
trajectory space, the latter was given by the intrinsic structure of these level sets, as quantified by their 
topological complexity.  
 
Intuitively, the least complex trajectory space is one in which there are no “holes,” corresponding to 
systems in which all trajectories are possible. A system whose dynamics yields a uniformly filled 
trajectory space (such that any trajectory is allowed) fails to give rise to an intrinsic distinction between 
different regions of this space (in DET’s terminology, macrostates or equivalence classes), and therefore 

 
7 GT holds that a topological equivalence between the two systems’ trajectory spaces should be sufficient (cf. Edelman & 
Fekete, 2011), but this should be tested empirically to the extent possible. 
 
8 This corresponds to what William James (1890, p.608) called “the specious present”: “no knife-edge, but a saddle-back, with 
a certain breadth of its own on which we sit perched, and from which we look in two directions into time.” 
 
9 This formalization of trajectory spaces is only applicable to trajectories of finite duration. 
 
10 A level set of a scalar-valued function is a set of points in its domain for which its value is equal to some constant. 



between different trajectories (recall section 1.2). The lower bound on the amount of experience is thus 
zero. In comparison, spaces with nontrivial homological structure are clustered (Fekete, 2010, p.81).  
 
To make the measure of representational complexity sensitive to the expected structure stemming from 
the hierarchical nature of the perceptual domain’s dynamics, a multiscale approach is called for. One such 
approach is persistent homology, which seeks topological structure that remains unchanged across a 
certain contiguous range of scales at which it is evaluated (Zomorodian & Carlsson, 2005; Edelsbrunner 
& Harer, 2008; Fekete et al., 2009). 
 
2.3.2   The Amount of Experience (AE) 

We propose to decouple the notion of representational capacity from that of the amount (or richness) of 
experience a system is having in a particular time interval. This move can be justified by observing that 
the complexity of neural population activity patterns (and the reported phenomenal experiences associated 
with them) can be changed by adjusting one’s sensory input, all without altering one’s level of arousal. In 
vision, for example, the dimensionality of stimulus-evoked EEG patterns is often positively correlated 
with the geometric complexity of the input (e.g., Müller, Lutzenberger, Preißl, Pulvermüller & Birbaumer, 
2003).  
 
Thus, the topological complexity of individual state space trajectories (IS-level) could serve to quantify 
AE11. Though such a measure would inevitably be positively correlated with the system’s level of 
consciousness—ranging from coma to full alertness—and with the topological complexity of its trajectory 
space (which we used to define RC), it would additionally quantify ongoing changes in the richness of the 
experienced qualia (e.g., relative to some baseline).  
 
One empirical motivation behind tying AE to the topological complexity of an individual trajectory (of 
sufficient length) is a theorem due to Takens (1981), which guarantees that the topology of a dynamical 
system can be approximated from a series of samples of just one of the system’s variables. More recently, 
Deyle and Sugihara (2011) offered a generalized formulation of the theorem, which allows for faster 
convergence when several variables are tracked. Their convergent cross mapping algorithm (Sugihara et 
al., 2012), in particular, may allow for a relatively precise characterization of the directed causal influences 
between components, beyond that afforded by traditional functional and effective connectivity analyses 
(Friston, 2011). The ability of time-delay embedding to serve as a basis for our AE measure, provided that 
it scales up from toy examples, is also indicated by the recent work of Garland, Bradley, and Meiss (2016), 
who used it to reconstruct the topology (specifically, the multiscale homology) of the Lorenz attractor 
system from time series data.  
 
In this connection, it is interesting to note that it is possible to reconstruct the topology of a dynamical 
system from “point cloud” (as opposed to temporal sequence) data, if a distance function over points is 
available (e.g., Singh et al., 2008; Carlsson, 2009; cf. Fekete, 2010 and Fekete & Edelman, 2011). The 
distance function itself can also be estimated from data (e.g., Talmon & Coifman, 2013; Talmon, Mallat, 
Zaveri & Coifman, 2015; Talmon & Coifman, 2015; Yair, Talmon, Coifman & Kevrekidis, 2017; Sulam, 
Romano & Talmon, 2017). 
 

 
11 A topologically complex trajectory would correspond to a class of rich ongoing experiences. Note that the precise shape of 
a trajectory that belongs to such a class is constrained, but not uniquely determined, by its complexity. 



2.3.3   The Nature of Experience (NE) 

Scalar characterizations of phenomenal experience (RC and AE), on their own, would be incomplete. A 
third empirical measure is needed that would be structured to a degree and in a manner that match that of 
experience. Importantly, it should allow one to quantify the similarity between the experiences of different 
systems, or of the same system on different occasions.  
 
There are thus two complementary aspects to the nature of experience (NE). First, given a set of 
experiences, their similarity function should induce a tree-like structure, akin to that of perceptual and 
conceptual spaces (which are all “tangled hierarchies”; e.g., Edelman 2008a, Fig. 6.13)12. Second, the 
ongoing structure of experience over time takes the form of a directed graph wherein each node is a 
macrostate. Since the system may remain in the same macrostate (region of the state space or field 
configuration) for an arbitrary duration (e.g., when viewing a red dot for 500ms as opposed to 600ms), 
this information should be indicated by a scalar associated with each node in the graph.  
 
Because there are many ways to define a similarity function that would properly capture these two aspects 
of NE, we are reluctant to single out a particular one a priori. Practically, however, we propose to identify 
appropriate distance functions over estimated macrostates by testing how well they reflect similarity 
ratings and just-noticeable differences (cf. Krueger, 1989; Edelman, 1998). 
 
2.3.4 A Note on Measurements 
 
Under the proposed approach, representational capacity and the amount of experience correspond to the 
topological complexity of the trajectory space or the trajectory itself (respectively) while the nature of 
experience—with all its idiosyncratic and likely ineffable nuances—corresponds to the structure of the 
CS-level macrostates and transitions.  
 
We stress that both measures are intended to be empirical; their values must be estimated using a sliding 
window and are expected to fluctuate as the clique of the system’s elements that affect the trajectory of 
interest changes (e.g., in response to external perturbations). Nevertheless, they should offer insight into 
the intrinsic topology and geometry of the system, even when the estimation is based on observations that 
are rather crude in comparison with the actual dynamics (e.g., EEG data). In those cases, we propose to 
treat the measures as relative, not absolute. Rather than interpret the values they yield for a specific 
perceptual state, we propose to use them to draw comparisons among several such states, each 
corresponding to some well-defined and controlled baseline (as suggested in section 3.2). 
 
Now that we have specified the core principles of DET, we proceed to place it in the context of other, 
similar-scope theories and ideas from neuroscience, list some predictions for empirical studies, and 
explore avenues for future research. 
 
3    Discussion 
DET spans several levels of the Marr-Poggio explanatory hierarchy. On the one hand, our assumptions 
belong on the computational level. We posit that the problem that phenomenal consciousness is meant to 
solve is that of intrinsic discernment (“this, not that”, as per the Structure constraint), which is inexorably 

 
12 For example, crimson is a kind of red, which in turn is a kind of color. This structure would be reflected in the clustering of 
the trajectories. 



bundled up with valuation (e.g., the valence of the ongoing experience). This results in intrinsic differential 
valuation of outcomes and therefore differential predisposition toward courses of action. On the other 
hand, the key questions we address belong on the algorithmic and implementational levels, insofar as they 
have to do with system’s dynamics (and coarse-grained macrostate transitions) as the physical substrate 
of experience. It may seem odd to require that a computational theory, which postulates that phenomenal 
consciousness is multiply realizable, concern itself with the level of physical implementation. The 
different levels, however, typically constrain each other (Edelman, 2012, p.1122). In this case, since the 
brain is the only system known to implement awareness, constraints arising from neural organization and 
function must be imposed. 
 
3.1   DET and Existing Work 

The seminal paper by Crick and Koch (1990), which reinvigorated the scientific study of consciousness 
in the 1990s, did so by encouraging the search for its neural correlates. Though this research program has 
been successful (Koch et al., 2016), it does not yet explain why particular mechanisms are conscious and 
others are not. This is also true of mechanistic accounts that identify phenomenality with stable “explicit” 
representation (O’Brien and Opie, 1999), global dissemination of information (Baars, 2005; Dehaene, 
King, and Marti, 2014), or convergence to an attractor (Malach, 2012), to single out just a few hypotheses. 
Why should any of these qualities of brain dynamics necessarily give rise to felt experience? Is every 
stable or globally shared (Baars, 2005) representation conscious? We hold that, to answer these questions, 
one must consider the functional role of conscious states, and that is the approach we take by insisting that 
the dynamics exhibit transitions between causally effective macrostates. Neurocomputational approaches 
that align with this view are briefly discussed next. 
 
3.1.1   Neurodynamical Frameworks 

In response to his early critics, Sperry (1970, p.586) wrote: “The objection that the hypothesis [of 
dynamical emergence of consciousness] remains vague on details is of course valid and must probably 
continue to apply […] for some time to come.” Decades later, the missing details finally came to be 
seriously pondered, in papers with titles such as “A cinematographic hypothesis of cortical dynamics in 
perception” (Freeman, 2006), or “What needs to emerge to make you conscious?” (van Leeuwen, 2007). 
Several of these neurodynamical perspectives, which attribute a functional role to the transient 
stabilization of neural activity on multiple spatiotemporal scales (e.g., Kelso, 1997; Friston, 1997; 
Rabinovich et al., 2001; Kaneko and Tsuda, 2003; Freeman & Holmes, 2005; Tognoli & Kelso, 2013; 
Rabinovich, Tristan & Varona, 2015), are compatible with DET.  
 
Biological and artificial neural networks, when poised on the “edge of chaos” (Legenstein & Maass, 2007), 
have been observed to undergo transitions between quasi-stable states (Scarpetta, Apicella, Minati & de 
Candia, 2018). These states often manifest as alternating periods of increased and decreased 
synchronization (at different spatiotemporal scales; van Leeuwen, 2007) whose structure consistently 
reflects particular stimulus properties (Rabinovich, Huerta & Laurent, 2008). Such dynamics are often 
referred to as a metastable regime (Rabinovich, Huerta, Varona & Afraimovich, 2008; Deco & 
Kringelbach, 2016)—one in which the system’s components constrain each other’s states without visiting 
attractors (Tognoli & Kelso, 2014). Metastable dynamics are characterized by “periods of stable coherence 
that are themselves inherently unstable” (Friston, 1997), a relative balance between integration and 
segregation, and the emergence of complex patterns of activity (Tononi, Sporns & Edelman, 1994; 
Bressler & Kelso, 2001) as the state space trajectory itinerates between structured submanifolds (Friston, 



1997). Several teams have provided more specific formulations of this idea. Rabinovich et al. (2001), for 
instance, define the metastable regime as a series of transitions between saddle fixed points connected by 
unstable manifolds (“winnerless competition”; Rabinovich, Simmons & Varona, 2015), while Tsuda, 
Koerner, and Shimizu (1987) propose that neural activity tends to dwell near “attractor ruins” (a behavior 
dubbed “chaotic itinerancy”; Tsuda, 1991, 1996, 2013, 2015; Kaneko & Tsuda, 2003).  
 
All of these possibilities align with our main thesis—namely, that phenomenal experience can be reduced 
to symbolic dynamics (CS) by defining intrinsically separable macrostates over the state space of some 
physical substrate (IS). They also formalize the notion of multiscale spatiotemporal organization (cf. 
Fekete & Edelman, 2011)—which, as recent electrophysiological data suggest, may manifest as nested 
oscillations in the thalamocortical network (e.g., Bonnefond, Kastner, & Jensen, 2017). Dynamics of this 
kind could mediate attentional effects (Edelman & Moyal, 2017): strong perturbations (e.g., high-intensity 
or behaviorally relevant peripheral input) would dissolve existing phase-aligned population activity 
patterns and give rise to others. These ideas may be tested more thoroughly by supplementing classic 
techniques (such as time-frequency analysis and classification) with convergent cross-mapping (e.g., 
Clark et al., 2015; for determining the functional organization of a system), recurrence analysis (e.g., 
Marwan, Romano, Thiel & Kurths, 2007; for identifying macrostates), and various time series motif 
discovery algorithms (e.g., Yeh et al., 2018). 
 
A complete neurodynamical theory of consciousness would not only map the structure of neural activity 
to a set of well-defined equivalence classes (related by a metric), but also explain why such macrostates 
arise. This latter theoretical goal may be pursued by exploring the relationship between criticality and 
representational capacity (e.g., Haldeman & Beggs, 2005; Beggs, 2008; Fekete et al., 2018; Moyal & 
Edelman, 2019). Specifically, it has been proposed that the wakeful brain self-organizes to operate near a 
phase transition (Beggs & Timme, 2013; Ma, Turrigiano, Wessel & Hengen, 2019), a view supported by 
studies linking the fine-tuning of certain control parameters (such as neural gain) to the optimization of 
signal propagation distance and of the ensemble’s representational capacity (or the size of its state 
repertoire; e.g., Haldeman & Beggs, 2005). 
 
3.1.2   Integrated Information Theory (IIT) 

Integrated Information Theory (IIT; Tononi, 2008; Oizumi et al., 2014; Tononi et al., 2016) is among the 
leading computational theories of consciousness. It has originally been formulated for binary discrete 
dynamical systems; thus, Oizumi et al. (2014, p.4) state that they “[…] consider systems in which the 
elementary mechanisms are discrete logic gates or linear threshold units […] and assume that these 
mechanisms are the ones mediating the strongest causal interactions.” Attempts to map IIT’s formalism 
to continuous dynamical systems are, for the most part, fairly recent (Hoel et al., 2016; Esteban, Galadí, 
Langa, Portillo & Soler-Toscano, 2018) and constitute a significant departure from the theory’s original 
formulation. While DET’s Inherence and Structure requirements (section 2.1) correspond, conceptually, 
to IIT’s axioms of intrinsic existence and composition, we hold that the other axioms postulated by IIT 
(integration, information, and exclusion) are in some respects ill-defined, subsumed in the first two, or 
unnecessary.  
 
The definitions of the quantity and quality of experience offered by IIT (which formalize their notions of 
integration and information) involve computations over all possible transitions into and out of a 
momentary state. These are not just intractable (due to the overwhelming combinatorics) but ill-defined 
in principle, due to the need for a complete knowledge of “all possible” predecessor and successor states 



(the problem, more specifically, applies to the probability distributions used to define Phi, the amount of 
consciousness; Barrett and Mediano, 2019, p.4). On the other hand, generating partitions, Kolmogorov-
Sinai entropy, and recent generalizations thereof can be defined for ergodic and non-ergodic systems 
(Barrett & Mediano, 2019), and the empirical measures that DET calls for are tractable. 
 
The conceptual foundations of IIT depend critically on its exclusion principle: “of all overlapping sets of 
elements, only one set can be conscious—the one whose mechanisms specify a conceptual structure that 
is maximally irreducible (MICS) to independent components. A local maximum of integrated information 
[…] is called a complex.” (Oizumi et al., 2014, p.9). This applies also to set of mechanisms related by 
emergence, so that when causal roles of mechanisms on different levels are compared, as they have been 
by Hoel et al. (2016), the one level whose unique contribution is the largest is considered privileged, to 
the exclusion of others (this, presumably, is the organizational level on which consciousness resides). 
Arguably, this notion reflects a conflation of the implementational level (“elements”) with the 
computational level (“conceptual structure”). Since consciousness is a property of the system’s collective 
dynamics (which, physically, could mean the state of some underlying field; Barrett, 2014), attempts to 
define phenomenal structure (CS) in terms of a particular subset of its physical elements (IS) may be 
misguided. 
 
Given that discrete dynamics can be approximated by a system whose dynamics on a different (lower) 
level is in fact continuous, IIT necessarily faces a boundary problem: the need for an intrinsic, objective 
criterion as to which level of dynamics is the relevant one (Fekete et al., 2016). Arguably, IIT’s postulate 
that only the “complex” exists dismisses all lower-level dynamics. Our preferred alternative to the causal 
exclusion postulate is the idea of proportionate causation, as introduced by Yablo (1992) and discussed 
by Harbecke and Atmanspacher (2012). We also side with Shalizi (2004), who writes that “coarse-
grainings […] are generally multiple levels of more or less detailed descriptions, all simultaneously valid 
for the same physical system.” 
 
The last point of comparison between DET and IIT that we touch upon here is their respective definitions 
of the measure of consciousness (recall section 2.3). According to IIT, “the ‘shape’ of the constellation of 
concepts in qualia space completely specifies the quality of a particular experience and distinguishes it 
from other experiences” (Oizumi et al., 2014, Fig.15). In future work, the IIT notion of qualia space 
(Balduzzi & Tononi, 2009) can be contrasted with DET’s definition of representational structure in terms 
of the geometry of the system’s CS-level trajectory. Furthermore, just like DET distinguishes between the 
amount and nature of experience, it has been recently proposed that in IIT there should be a distinction 
between the quantity of experience and its content (Krohn & Ostwald, 2017). 
 
3.1.2   Geometric Theory (GT) 

Intrinsic structure of the requisite kind is central to GT (Fekete and Edelman, 2011). While DET can be 
seen as a direct descendant of that theory, there are also key differences. First, our operational definition 
of the amount of experience (section 2.3.2) differs from that of representational capacity proposed by 
Fekete (2010)—crucially, it allows the two to vary somewhat independently, in recognition of the fact 
that changes in the complexity of neural activity may occur even when the level of consciousness (which 
imposes an upper bound on the complexity of the intrinsic representations a system may maintain) is kept 
constant. Second, DET identifies the contents of experience with the dynamics over emergent macrostates 
(the CS-level)—a question left open in Fekete and Edelman (2011, 2012) and Fekete et al. (2016). Third, 
DET explicitly allows for the multiple realizability of phenomenal content. Fourth, by acknowledging that 



causal structure may span multiple levels of organization of the IS, DET avoids sliding down an 
explanatory slippery slope towards smaller and smaller scales, in search for “the” level where the physics 
of consciousness is to be found.  
 
3.2   Predictions and Future Directions 

In evaluating any computational theory of phenomenality that includes quantitative measures of 
consciousness, it is important to set realistic criteria for success. First, regarding representational capacity 
(RC) and the amount of experience (AE), relative rather than absolute values should be of main interest. 
Second, with regard to the nature of experience (NE), which deals in graph-like structures, a metric needs 
be defined that would allow for the comparison of such structures in a manner that would match behavioral 
reports. With these considerations in mind, we proceed to outline some suggestions for empirical studies 
and future inquiries. 
 
First, we propose to estimate, for a variety of EEG (and perhaps fast fMRI; Grill-Spector & Malach, 2001; 
Davis & Poldrack, 2013) data, RC as defined by Fekete (2010) and our measures of AE and NE. The 
results should be compared across changes in the participant’s level of arousal (including the rest vs. task 
distinction) and types of stimulation (“simple” stimuli, such as undifferentiated fields of uniform color, 
and composite stimuli, such as shapes or scenes of increasing complexity). Though RC and AE should 
both covary with arousal and reflect the difference between rest and a simple stimulus, the latter should 
also capture differences between more and less complex sensory stimuli. Differences in NE, as expressed 
in the representational distance between responses evoked by different stimuli (either in the IS-level state 
space or per the metric defined on NE graphs) should closely correspond to similarity ratings and other 
psychophysical measures.  
 
It is also possible to vary the same stimulus along some dimensions (e.g., the orientation or color of a bar). 
While AE should be invariant to many such changes13, NE and the empirical metric defined over it should 
correctly reflect the perceived distance between the presented stimuli as reported by the participant. For 
complex stimuli that form a controlled pattern in the design space, the configuration formed by NE in the 
similarity space should reflect the design pattern. This corresponds to the notion of second-order 
isomorphism (Shepard, 1968; Shepard & Chipman, 1970) between representation spaces and the world 
(e.g., Cutzu & Edelman, 1996; Edelman, Grill-Spector, Kushnir & Malach, 1998; Edelman, 1998; Op de 
Beeck, Wagemans & Vogels, 2001). 
 
One may also look for differences in AE and NE between a reference state and a reportable perception 
state or between states of unawareness and awareness obtained for the same physical stimulus (e.g., using 
forms of binocular rivalry). Staircase procedures could be used to probe the neural correlates of minimal 
changes in qualia (in the classic sense of Crick and Koch, 1990). DET predicts that the best correlates (in 
the explanatory-predictive sense) will be found at the level of emergent macrostates estimated from 
measurements of local field potentials or spike rates.  
 
Furthermore, we expect that the (high-dimensional) dynamics of the ensemble of neural activities and the 
(much higher-dimensional) dynamics of the ensemble of synaptic strengths will reflect the same 
(relatively low-dimensional) space of emergent macrostates and corresponding dynamics, perhaps on 

 
13 The question of whether AE (the topological complexity of IS-level trajectories) would be invariant to changes in 
orientation, color, or other visual dimensions is interesting in its own right.  



different time scales. As Klopf (1972, p.46) points out, the neuron- and the synapse-based takes on the 
activity of the brain complement each other. A similar dual view of brain dynamics has been offered more 
recently by Buzsáki (2010), who coined the concept of “synapsemble” (synaptic ensemble) to complement 
the concept of an ensemble of neurons and stressed that synaptic weights can also vary on a rapid time 
scale. In preparations in which synapse-level dynamics can be tracked, it should be possible to apply 
macrostate identification algorithms (section 2.3) and examine these ideas empirically. 
 
Another prediction that we include here, as an aside, has to do with the evolution of emotions and their 
relationship to behavior. Consider an evolving population of agents, each endowed with a representation 
space implemented by an open dynamical system, engaged in sequential behavior, capable of learning in 
response to behavioral outcomes, and situated in an environment that rewards forethought. We expect the 
representation spaces for perception and action, harbored by such agents, to evolve trajectory dynamics 
embodying aversion or tropism with respect to various regions in the representation space. 
 
In this connection, it is interesting to note that the question of what phenomenal consciousness is for (e.g., 
Campbell, 1974; Thompson & Varela, 2001; Noble, 2008; Cleeremans, 2008; Dehaene et al., 2014; 
Godfrey-Smith, 2016; Pierson & Trout, 2017) is typically treated somewhat separately from the question 
of the function and computational nature of emotions (e.g., Sloman et al., 2005; Lowe & Ziemke, 2011; 
John, Zikopoulos, Bullock & Barbas, 2016; Pessoa, 2017; Bach & Dayan, 2017). Neurodynamical 
perspectives may be of use in forming a common answer to these two questions. They may also help us 
understand why (in the functional sense) and how (in the implementational sense) so much of the brain’s 
activity is unconscious. 
 
Finally, one computational mechanism that is capable of implementing metastable dynamics in the service 
of sequential behavior is competitive queuing (CQ), which has been called upon by cognitive theories of 
memory, planning, decision making, and language (Houghton & Hartley, 1996; Cooper & Shallice, 2006; 
Bullock, 2004; Cisek, 2012; Edelman, 2017). The prospect of tying the concept of metastability to CQ is 
particularly intriguing in light of the postulated causal role of conscious states. 
 
3.3   Conclusion 

Dynamical Emergence Theory (DET) aims to map the structure of phenomenal experience to that of the 
dynamics (actual or observed) of the physical substrates that give rise to it. Minds are, as Minsky (1985) 
quipped, what brains do; following Sperry (1969) and others, we posit that some such brain doings—
specifically, the transitions between coarse-grained macrostates of neural population activity—amount to 
phenomenal experience. DET modifies the approach of Fekete and Edelman (2011) and complements 
existing theories, such as Global Workspace Theory (Baars, 2005; Dehaene et al., 2014) and Integrated 
Information Theory (Tononi, 2008; Oizumi et al., 2014). The theoretical concepts applied here, along with 
the tentative operational definitions offered, can inform future work on the neural basis of phenomenal 
consciousness.  
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