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Abtraet. We describe a computational model of face recognition, which generalizes from 
single views of faces by taking advantage of prior experience with other faces. seen under a 
wider range of viewing conditions. The model represents face images by veclo~s of activities 
of graded overlapping receptive fields (m). It relies on high-spatial-frequency information to 
estimate the~viewing conditions, which are then used to normalize (via a h’ansfonnation specific 
for faces), and identify, the low-spatial-frequency representation of the input. The class-specific 
msformatian approach allows the model to replicate a series of psychophysical findings on 
face recognition and constitutes an advance over c m n t  face-recognition methods, which are 
incapable of generalization from a single example. 

1. Introduction 

The ability to recognize a novel view of a face previously seen under a restricted range of 
conditions is one of the more amazing feats of human vision. We describe a computational 
model of generalization from a single view in face recognition, built around the assumption 
that such generalization is made possible by the previous experience of the visual system 
with similar objects (i.e. other faces). In pruticular, we assume that the visual system 
stores information regarding the appearance of a considerable number of faces under a 
relatively wide range of conditions and ask how such information can be put to use in 
generalizing to novel views of an unfamiliar face. The answer suggested by our results 
provides an explanation of a number of recent psychophysical findings and may lead to a 
significant enhancement in the performance of  the^ present-day computer vision systems for 
face recognition which are, by and large, incapable of generalization from a single view. 

1.1. Psychophysical background 

A new insight into the computational basis of human generalization performance in face 
recognition has been achieved as a.result of a recent study that compared generalization for 
upright and inverted faces (Moses et a1 1993). In that study, human subjects performing 
an upright face discrimination task were found to generalize nearly perfectly to face 
images obtained under novel illumination and viewpoint direction. In comparison, for 
inverted faces, the generalization to novel views was significantly worse, even though the 
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experimental conditions required the subjects to discriminate between familiar views of the 
same inverted faces with high reliability before they were allowed to proceed to the testing 
stage. 

One may observe that images of inverted faces are statistically identical to those of 
upright faces on the pixel level. Poor generalization performance on inveaed faces thus 
constituted an important control, suggesting that the generalization mechanism in face 
recognition is object specific, rather than universal (i.e. valid for all images). Furthermore, 
the subjects’ ability to generalize from a single image of an upright face made the possibility 
of strictly-model-based generalization (which, in principle, requires more that one image to 
form a full 3D model) unlikely. Moses et al concluded that the generalization occurs at an 
intermediate or class-based level, where upright faces constitute a class distinct from that 
of inverted faces (despite the pixel-by-pixel equivalence in complexity of the two types of 
stimulus). 

The extensive experience of the human visual system with upright faces in everyday 
life constitutes the central difference between upright and inverted faces (Diamond and 
Carey 1986). Presumably, it is this experience that allows upright, but not inverted, 
faces to be recognized easily under a wide range of unfamiliar conditions (see figure 1). 
Indeed, proficiency in face recognition appears to be, to a considerable extent, an acquired 
ability. Children’s recognition of upright faces improves steadily from age six to ten, dips 
temporarily between ages 11 and 12, then climbs to an adult level (Carey et al 1980). 
In comparison, recognition performance on inverted faces does not change throughout life 
and remains significantly worse (Carey and Diamond 1977, Carey et a1 1980). Moreover, 
subjects who, following training, successfully recognize inverted faces under fixed viewing 
conditions still perform relatively poorly when required to generalize to a novel viewpoint 
or even a novel illumination (Moses er QI 1993). 
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1.2. Computational background 

1.2.1. Related work The main purpose of the present work is to formalize the intuitive 
notions of perceptual experience and class-based generalization, outlined in the preceding 
section. At least two different computational approaches to these issues have been 
suggested recently. The first of these (Basri 1992) concentrates on the relationship between 
classification and recognition and assumes the availability of a library of 3D models of 
prototypical objects. In the first stage of the recognition process in Basri’s system, the 
prototypes are aligned (Ullman 1989) with the input image. Alignment here is class based, 
in the sense that the transformation between the best-matching prototype and the input is 
taken to apply to the entire class of shapes which the prototype represents. In the second 
stage, this transformation is reused to align the individual members of that class with the 
image. 

The second approach, due to Poggio and Vetter (1992), avoids the need for a library of 
3D models. In their work, Poggio and Vetter show how class-specific transformations of 3D 
objects can be learned from examples of 2D object Views. For objects consisting of ‘clouds’ 
of points in 3D and represented by 2D Views obtained by projection, Poggio and Vetter define 
the notion of a linear class (i.e. linear combinations of a basis set of objects). Because of 
linearity, a transformed (e.g. rotated) version of an object that belongs to a linear class is 
a weighted sum of similarly transformed basis objects with the same coefficients and the 
same relationship holds for object views. Poggio and Vetter mention a possible extension 
of this approach from projections of points to images of surfaces using texture mapping. 
In a subsequent work, Beymer et al (1993) determine the transformation that relates two 
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Figure 1. An illustration of the idea of class-based processing. Top: Expenence with P 

number of shapes belonging to the Same class (in this case, the class of faces) undergoing 
a celtain transformation can serve s a basis for the generalization of that transformation to 
a new member of the same class of shapes (i.e. a new face). Bollom: Whereas in computer 
graphics applications the goal of this operation is to generate the image of the new face under the 
specified Vansfarmation (Beymer el 01 1993). recognizing a face from an unfamiliar viewpoint 
merely calls for the normalization of its representation in some feature space that preserves face 
identity (e.g. the space o f  properly chosen receptive fields): see section I.Z.I. 

images of a face using an optic-flow algorithm and apply this transformation to generate a 
similarly transformed image of novel face, from a single available view. 
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1.2.2. The present approach Objects are said to belong to the same class if they are 
more similar to each other than to other objects. Thus, we consider similarity to be of 
primary importance to the present work and require that a biologically credible definition 
of similarity between face images be provided before proceeding to model class-based 
processing in face recognition in human vision. The biological constraint on similarity 
is not entirely compatible with the coordinatebased features and the pixel-based image 
representations mentioned above, which do not fit the computational characterization of 
mechanisms of biological information processing well. Consequently, we have adopted the 
following guidelines in developing OUT approach to class-based processing. 

Represenrarion by receptive fields. In biological visual systems, a natural basis for 
the definition of similarity can be derived from ‘the concept of processing units with 
localized receptive fields (RFs). The RFs of the primary visual cortex correspond to the 
psychophysically defined spatial frequency channels of Wilson and Bergen (1979); activities 
of the graded-profile highly overlapping ws at the previous stages form the only input 
available to any processing stage in the visual pathway past the retina. The overlap between 
the constituent RFS has been shown to improve the utility of a representation (Snippe and 
Koenderink 1992). This improvement, however, saturates when the number of Ws reaches 
a few hundred, making a relatively small set of RFS nearly as useful as a full dimensionality- 
preserving coverage of the retinal space (Weiss and Edelman 1995). 

Clustering by face identity, We assume that the metrics of the internal representation 
space for faces reflect the true metrics prevailing in the objective ‘face space’, in the 
sense that different appearances of the same face (i.e. views taken under different viewing 
positions and illumination conditions) tend to cluster together. This assumption relies on a 
recent computational investigation, which found that images of the same face form tighter 
clusters at the higher levels of an w-based representation hierarchy resembling that found 
in mammalian vision (Weiss and Edelman 1995). 

1.2.3. Class-based generalization We assume that applying the same transformation 
(change of viewpoint or illumination) to images of different faces results in similar changes 
in the internal (w-space) representation of each face. Thus, the transformation that maps a 
prototypical view of a face to its appearance under specific viewing conditions is assumed 
to be similar across different faces.. This assumption can be illustrated by a simple diagram 
shown in figure 2, in which the similarity of the normalizing transformations across faces is 
expressed geometrically by the parallelism of the corresponding vectors in the representation 
space. Note the relationship between this diagram and Amari’s (1968, 1978) illustrations of 
the desirable properties of feature-space representations. As pointed out by Amari, effective 
feature-space representation of objects that may undergo certain transformations requires that 
those transformations should, in a sense, commute with the feature-extraction process. In 
the simplest case, the commutation property is satisfied merely because, in the appropriate 
representation space, transformation between fixed views corresponds to translation in a 
fixed direction, irrespective of the object identity. 

The assumption of similarity of the normalizing, transformations across faces constitutes 
the main working hypothesis of the present papert. Consider two viewing positions, V, 
and V I .  We conjecture that a face previously seen from VO can be recognized when seen 

The real ‘commuthoion diagram’ fums out, however. to be more complicated than the simple illusuafion discussed 
above; see figure 12. 
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Figure 2 Effective feature-space representation of abjects~ lhat may undergo certain 
transformations requires that Ulose transfomtions should commute with the feature-extraction 
process (solid m w s ,  see Amari (1968)). In this adaptation of Amari's commutation diagram 
the similar effect of transformation on the representations of different faces is taken 10 signify 
actual nF-space parallelism of the two transformation vectors, shown by thick lines. Key: M 
is morphing between different faces, R is transduction by a bank of receptive fields. T is 
transformation between different views. 

from VI because the system stores a snapshot of the w activity evoked by the exposure 
to the face in viewing position V, and compares the stored activity vector with the present 
one, taking into account experience with numerous other faces in both positions, V, and 
VI. Note that the same approach can be applied to the case of varying illumination, face 
expressions and different combinations of these parameters. 

2. Class-specific transformations in RF space 

To substantiate the notion of class-based generalization, we examine the expected behaviour 
of w-space representations of face images under various transformations of faces and 
compare the resulting computational predictions with data derived from artificial (computer 
graphics) and real (human) faces. 

2.1. A quantijication of geometrical similarity between faces 

We stat  by defining geometric similarity of human faces via a shape variation parameter 6 
that expresses the upper bound across individuals on the changes in each component of the 
normal at any point of a face. We assume that the normals N,, and NI% at two corresponding 
points of two faces fi and f2 satisfy the inequality 

in each of their components N'.  Thus, the resemblance of different faces to a certain average 
one can be described in terms of a single parameter 6. We further assume that this geometric 
similarity is properly reflected in the representational space of the visual system, namely, 
in the.similarity of the vectors of RF-activity changes between given Viewing conditions for 
different faces. 
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Figure 3. Faces obtained by random variation of the parameters in the face-geometry model 
(see seclion 2.3). 

Figure 4. One of the face models rendered under diffcrent viewpoint and illumination conditions. 

2.2. Theorerical predictions 

The similarity assumption can be substantiated by using the shape parameter 6 to place 
a bound on the RF-space transformation of face representations caused by changes in the 
viewing conditions (a detailed derivation is given in the appendix). The activity of each of 
the (linear) units that span the RF space is proportional to the intensity around the projection 
of some patch of the surface of the viewed object, integrated over the unit’s receptive 
field. Assuming that the reflectance function of the surface is predominantly diffuse (as is 
the case for faces), the activity of each RF will depend on the direction of the normal at 
the corresponding point on the surface, relative to the illumination vector. The RF-activity 
pattern will thus change if either the orientation of the face (and with it the directions of 
the normals) or the illumination change. We now address these two cases separately. 

Consider first the effect of a change in illumination conditions. Let X(fi) E W k  and 
X ( f h ) + A X ( f i )  be the RF-space representations of a face f, under two different illuminations. 
The ith component of AX(’#)  is then proportional to the change in the normal direction at 
the ith RF and can differ by at most S from person to person. As shown in the appendix, for 
two persons fi and f2, for whom the corresponding normals differ at most by 6, the length 
of the difference vector 11 A X ( / ) )  - AX(fl’II is bounded from above by 6. Furthermore, the 
cosine of the angle between AX(f1)  and AX(’2) is bounded from below by m. 

Consider now the effect of a shift in the viewpoint. The vector AX(’#)  - AX(’>) 
defined in the previous paragraph also depends on the interaction between changes in the 
illumination direction and in the viewpoint. The length of the difference vector and the 
lower bound on the cosine of the angle between AX(f1) and AX(f2)  thus depend both on S 
and on the minimal change in the projection of the normal onto the illumination direction 
caused by a shift in  the viewing position (i.e. min II(L. A N ) l l ,  where L is the illumination 
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vector and N is the normal vector). In the appendix, we show that the lengths of the vectors 
of w-activity changes can differ by at most 26/min[(L. AN)l and that the bound on the 
cosine of the RF-space angle between AXcfl)  and AX(&) is 41 - (B/min I(L. AiV)l)'. 

2.3. Class-spec@c transformations for anifrcial faces 

We have subjected the bounds on class-specific transformations in RF space, derived in the 
previous section, to empirical testing. To obtain a family of face shapes with controlled 
values of the geometric similarity parameter 8, we constructed a stylized model of a 
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Figure 5. The behaviour of the w-activity changes, caused by shifting the illumination s o m e  
from the left to the right side of Iix face, plotted against the similarity parameter S of the 
synthetic faces. Top: lengths of the vectors for different values of S and the predicted lower and 
upper bounds; Bottom: the angles between the vectors of RF-activity changes, and the predicted 
lower bound. 
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generic hunian face using computer graphics. The model, conkrolled by 19 experimentally 
determined geometrical parameters, was built using a 3D graphics toolkit (SGI Inventor). 
Individual differences in face shape were represented by randomly varying the parameters, 
within limits imposed by the value of S. A range of values of S around several percent 
allowed @e system considerable flexibility in representing faces with different shapes. 
Figure 3 depicts fob  of the 50 faces that were obtained by varying the 19 parameters. 
Each of the 50 face models was rendered under five different viewing positions and three 
illumination directions and the resulting images were represented by activities of 500 RFs 
(Weiss &d Edelman 1995). 

We found that the values of l]AX(fi)-AXG)]l and .L(AX(J), A X G ) )  calculated using 
the synthetic faces were nearly identical for the different face models (i.e. for different 
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Figure 6. The dependence of ihe length of the vector of w-activity change (top) and the cosine 
of the angle between the vectors of w-activity changes (bottom) on the similarity parameter S. 
The minimal change in the projection of the normal on ilhmhation direction equals 0.46. 
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Figure 7. The dependence of the length of the vector of w-activity changes (top) and the 
cosine of the angle between the vectors of w-activities (bottom) on the minimal change in the 
projection of the normal on the illumination direction. The similarity parameter of the faces is 
equal to 0.05. 

choices of 5 ,  A) and in all cases were well within the analytically derived bounds (see 
figures 5-7). Note that, in the case of a shift in the viewing position, the theoretically 
predicted bounds depend not only on S but also on the minimal change in the projection of 
the normal onto the illumination direction. We found that for our model this value depends 
only on the particular type of -viewing-condition change and not on the identity of the 
face. When the viewpoint shifted from -17" to f17" with respect to the frontal view, the 
minimalt change in the projection of the normal onto the illumination direction was found 
to be equal to 0.46; the resulting dependence of IIAX(A) - AX(b)[I and L (AX(fi), AX(0)) 
on S is shown in figure 6. Another way to examine this dependence is by looking at the 

t The minimum was over all 166 surface patches composing each fdce model and was the same for all faces 
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effect of shifting the viewpoint by different amounts, for a fixed value of 6 = 0.05 (see 
figure 7). 

2.4. Class-spec$% transformations for  real faces 

We next assessed the behaviour of IIAX(fi) - AX(A)II and L(AX(f'), AX(h)) on real 
face images, taken from the Weizmann Face Base (Moses et al 1993)t. The results 
for the length and the angle differences appear, respectively, in figures 8 and 9, which 
illustrate the correlated changes induced in the w-space representations of different faces 
by changes in the viewing conditions. These results (especially the tight correlation 
exhibited by L(AX(fi), AXch)) for the different face pairs fi, fit;.) support the hypothesis 
that view transformations induce similar changes in w-space representation, regardless of 
face identity. 
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3. Class-based versus transformation-based clustering in RF space 

The results of the previous section provide the foundations for a class-specific approach to 
face processing, by demonstrating that sameclass objects (faces) induce similar patterns in 
the RF representation space across changes in viewing conditions. This finding can only be 
put to use in face identification if it is possible to distinguish, in the RF space, between points 
representing images of the same face and points representing all other faces. In principle, 
the clustering in the RF space can take one of two possible forms (see figure 10). The first 
possibility is that points representing the same face are clustered together. Altematively, 
points representing the same viewing conditions can be clustered together. In both cases, 
the correlations apparent from figures 8 and 9 would stem from the common displacement 
of all clusters following a certain transformation (either of view or of face identity). 

The spatial-frequency analysis of facedifference images reported by Weiss and Edelman 
(1995) suggests that the nature of clustering of faces in w-space should depend on the size of 
the Ws used in the representation. We tested this conjecture by convolving face images with 
differences of Gaussian WS, corresponding in size to the different spatial-frequency channels 
described by Wilson and Bergen (1979). Eight values of w size between 0.8 cycles per 
degree (cpd) and 16 cpd were used with images of different faces, under different viewing 
conditions. For each w size, we conducted 60 trials, with faces chosen randomly from 
the Weizmann database. The degree of clustering was defined as the ratio R of mean 
within-cluster and between-clusters distances (under this measure, R << 1 indicates good 
clustering). 

Two experiments were carried out. In the first experiment, only the illumination was 
varied (figure 11, top). Clustering by face identity improved with increasing RF size, while 
clustering by viewing condition became better when the w size decreased. 

In the second experiment, viewing position varied (over 68" of visual angle) in addition 
to illumination (figure 11, bottom). Here, clustering by face identity did not improve with 

t This database contains 20 images of each of 18 different male faces, without distinctive features (e.g. no 
glasses, beard, moustache. eic). All images were Qken by the Same camera under tightly "rol led  illumination 
and viewpoint. The frontal view of all faces was normalized by fixing the location of the face symmetry axis, the 
extemal come6 of, the eyes and the bottom of the nose, before taking the pictures. A computer-controlled robot 
positioned the camera at -34*, -1T;O". 1 7  and 34' with respect to the frontal view, in the horizontal plane. 
The distance of the face from the camera was fixed at about 110 cm Four distinct illumination conditions were 
created by turning on and off three fixed tight sources. The subjects were asked to assume a neuual expression 
and remain still. To reduce the influence of the background, the faces were clipped by an elliptical mask that 
occluded most of the hair and the neck area. Each image consisted of 512 x 512 pixels, eight bits per pixel. 

. .  
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Figure 8. Length changes of the w-space vectors corresponding to four different face models 
(top) and four real faces (bottom), over 15 different viewing mnditions. Note that the changes 
for different faces are correlated with each other. 

increasing RF size as much as in the previous case, although it did eventually become 
better than clustering by viewing position. In particular, the results for the 16 cpd 
filter may indicate that a combination of low- and high-frequency filters may be used to 
obtain better clustering performancet. This table also provides a comparison of different 
filters and pixel-level representations. Interestingly, the 500-dimensional space spanned 
by the 16 cpd ws carries nearly the same information about viewing position as the 
original 512 x 352 = 180224 pixel image, demonstrating the redundancy of the pixel- 
level representation. 

t One way to improve clustering here is by having the system leam an optimal linear combination of low- and 
high-frequency fillers from examples. 
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Figure 9. Direction (angle) changes of the RF.spnce veaors corresponding 10 four different face 
modcls (a) md four real faces (b). Over 15 different viewing condidons. Note Ihc small abrolure 
YJUC of angle changes acmss viewing conditions. both for synthcuc and for humm faces. 

The advantage of large (low-frequency) over small Ws in representing face identity may 
be explained intuitively as follows. Consider first changes in illumination. In OUT test set, 
the light source moved from one side of the face to the other, causing a relatively large-scale 
fluctuation in the gradient of image intensity; this was better averaged out by larger WS. 
Second, when the viewing position changed (causing the face image effectively to slip out 
from under the RFs positioned over it), the larger RFs had a better chance than the smaller 
ones of continuing to cover more or less the same portion of a face. 
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p o s s i b i l i t y  1: clusferihg by viempoihf- 

p o s s i b i l i t y  2: c l u s t e r i h g  by i d e h t i t y  

Figure 10. The correlated RF-space changes precipitated by viewpoint imd illumination 
transformations for different faces (namely, the tight bounds on llAX'ft) - AXLfl)ll and 
L ( A X ( h ) ,  AX(/;)) for different i. j :  see section 2) are compatible with two possible manners 
of clustering of face representations in the RF space One of these - clustering by face identity - 
would render the representation more useful for recognition than the other. The actual m n e r  of 
clustering in spaces spanned by RPS of different sizes is explored in Section 3 (see also figure 11). 

4. A complete model for face recognition 

The principle of class-based generalization, stated in the introduction, requires tighter 
clustering by identity than that available even with the low-spatial-frequency RFs. It 
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Figure 11. Top: The degree of clustering (R, see section 3) by face identity and by 
illumination, fordifferentwsim. Bottom: Clusteringbyfaceidentitymd by viewingconditions 
(illumination and viewpoint), for different RF sizes. 

turns out, however, that one can effectively combine the viewpoint information carried 
by the highfrequency (16 epd) Rps with the face-identity information in the low-frequency 
(0.8 cpd) Ws. In the system described in this section, viewpoint and identity information 
is extracted from the image and then combined, by appropriately trained function- 
approximation modules (we used for this purpose radial-basis-function (RBF) classifiers 
(Moody and Darken 1989, Poggio and Girosi 1990)). The model consists of the following 
stages (see figure 13): 

(i) Deteciion of viewing conditions. This stage is implemented by an RBF classifier, which 
accepts image representations in the high-frequency RF space, ' X ,  and estimates the 
viewing conditions V( HX). 
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Figure 12. A conceptual scheme far class-based generalization from a single view. described 
in section 4 (compare with figure 2). Familiarity with a number of faces (U. v, Y,. . .) under two 
different viewing conditions (clusters designated by To, TI) helps recognize face X. previously 
seen only at To. fmm a new view TI. In the high-frequency RF space. the clustering by view 
enables the extraction of view information. which is then used to normalize the =presentation 
of the input image in the low-frequency RF spacc. In that space. there may be no clear-cut 
clustering either by view or by identity. but the normalizing transformations for similar objects 
(i.e. faces U, v, Y.. . , , x) are similar. which d e s  the normalization of the novel view of I( 
possible. 

(ii) Normalization to the prototype. According to the detected viewing conditions V(HX),  
a class-specific transformeon transforms low-frequency w-space representation LX 
into a prototypical form LX predicted for the input image. 

This is implemented by an RBP classifier which, in th? low- 
frequency RF space, compares the hypothesized prototypical representation LX with 
those of known faces and identifies the input face. 

(iii) Face identification. 

In this model, the amount of ‘prior experience’ with face transformations corresponds 
to the size of the set of individual face images, paired with the images of the same 
faces obtained under different, but known, viewing conditions. In our experiments, each 
face was represented by 15 images, taken under all combinations of five viewpoints 
and three illuminations. These conditions parallel closely the range of viewpoints and 
illuminations used in the psychophysical study of Moses et al (1993); only one value of 
illumination (corresponding to a superposition of two other illumination directions) was 
omitted. 

4.1. Recovery of viewing conditions 

We have trained an RBF classifier (Moody and Darken 1989) to approximate the mapping 
from the high-frequency (16 cpd) RF-Space representation HX of a face image to the space 
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Figure 13. Block diagram of the complete recognition model (see scction 4). Note that. 
following the initial transduction by the l o w  md high-frequency RT modules. faces xe 
represented throughout the system as vectors of aclivities of RFS and not as the images which 
are included in this figure for illustration purposes. 
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Figure 14. The improvement in the model's 
generalization performance with experience. Top left: 
experience = I ,  upright faces. Top rizhr: experience 
= 18. upright faces. Bollom left experience = 18, 
upright faces. testing with inverted faces (cf Moses 
et a1 1993). The performance is similar 10 that of 
human subjects (see figure 15) in several respects 
(uprightlinverted comparison. bener generalization over 
illumination versus viewpoint). 

of viewing conditions of the face. The viewing condition was encoded as a vector V E U!", 
using unary representation (there were U = 15 possible viewing conditions). The n training 
images in the RF space ( H X g ) ,  i = 1, . . . , n),  paired with the corresponding viewing 
conditions (s), were used to estimate the parameters ci and B in the RBF approximation 
formula ( I/ H X  -o;x"' 2 

v ( ~ x )  = C q e x p  - . I 1 )  (1) 
i = l  

which mapped an RF-space representation of an input image, "2, to the viewing-condition 
vector V( HX) (the RBF centres were set to the training images HX$)), The output of the 
module was defined to be the index of that element of V which was the closest to 1. 

We explored the dependence of the performance of the resulting module on the number 
of training images available for each viewing condition. Performance was estimated from 
ten trials, each involving 150 images, taken under viewing conditions different from those 
used in training (see figure 16, top). It may be seen that the module is capable of quite 
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Figure 15. Human performance for upright (lefl) and invelred (right) face images (replotted 
fmm Moses et ul (1993)). 

accurate recovery of the viewing condition, after being trained on views of as few as 14 
different faces. 

4.2. Normalization io the prototypical view and identification 

Once the viewing conditions V are determined by the view-recovery RBF classifier from 
the high-frequency RF-space representation, the proper class-specific transformation is 
applied in the low-frequency RF space, yielding the predicted prototype. The class-specific 
transformation here is calculated as the average of the transformations 

A L X ( f 0  = L X ( f i )  L-@ v -  
taking each of the n different known faces from view V to the canonical view denoted by 
the subscript 0 

(2) L p o ,  = L X "  - - 1 1 " AL$f,), 
0 

n i=, 

The hypothesized prototype in its normalized form, LaA'), is passed on to the matching 
module which, by interpolation among stored examples, identifies it with one of the 

Table 1. Generalization rate far test images. fallowing exposure to a single training image (see 
also figures 16 (battom) and 14). Note that chance-level performance in these three-alternative 
forced-choice experiments is 33% correct. 

Viewpoint. Experience = I Viewpoint. Experience = 18 

Illum. -34" -17' 0' 17' 34" -34" -17' 0" 17' 34" 

0 38 43 62 100 55 48 57 73 100 58 
I 45 45 63 99 52 45 58 80 IW 52 
2 40 43 58 92 SO 42 SO 67 93 65 
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4 6 8 10 12 14 
notexamples 

Figure 16. Top: perfomance in the determination of viewing condition and its dependence on 
the extent of experience in seeing faces under v-g viewing conditions (see section 4.1). The 
abscissa is the number of images of each viewing condition used in mining the RBF classifier. 
Bottom: the dependence of the geneialization performance of lhe model (mean over all IS 
viewing conditions) on experience. The abscissa shows the number of individuals whose imges 
were used during the mining stage. 

familiar faces (for details regarding thii procedure, see, e.g. Edelman et al (1992)). The 
identification performance is summarized in figure 16, bottom; sek also table 1. Following 
each recognition trial, the particular transformation mapping the input view to its prototypical 
form is added to the system’s database of class-specific transformations. In addition, the 
identity database (used by the matching module) can also be updated. In this manner, the 
model is capable of improving its performance with experience. 
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5. Comparing model and human performance 

We compared the performance of the model with that of human subjects by replicating the 
uprightlinverted face generalization experiments described by Moses er al (1993). In the 
simulated experiment, the model was trained to recognize single images of three different 
faces taken under a fixed combination of viewpoint and illumination. The generalization 
performance of the model was then tested by computing the identification rate for images of 
the same faces under a wide range of viewpoints and illumination conditions. The difficulty 
of this task is noteworthy: the system was provided with just one view of each face and had 
to recognize 15 other images of the same face, taken from viewpoints differing by rotation 
of up to 68" around the vertical axis and under widely varying illuminations. 

The extent of the prior experience of the model was varied between 1 (seeing a single 
individual at the 15 available combinations of orientation and illumination) and 18 (seeing 
nearly all the individuals in the database, under the 15 different viewing conditions). The 
model's mean generalization performance (correct recognition rate for novel views) grew 
from 59% at experience level 1 to 66% at experience level 18 (see figure 16, bottom). 
Importantly, the increase in the level of experience on upright faces from 1 to 18 did not 
improve the model's generalization performance on inverted face images, replicating the 
main psychophysical finding of Moses et a1 (1993) (see figure 14). 

The experience-dependent increase in the mean generalization performance of the model 
from 59% to 66%. with the latter figure obtained with exposure to a mere 18 individuals, 
indicates that further improvement is possible if the system is exposed to the wide range 
of face images normally seen by a human adult (hundreds of different faces, under a 
variety of viewing conditions). To parallel the essentially perfect (% 97% correct, see 
Moses et a1 (1993)) generalization performance of human subjects for upright faces, certain 
computational sophistication may be required. One possible approach here is to rely on the 
symmetry property of faces: for bilaterally symmetric objects, a simple transformation of 
a generic zD view of the object yields another legal view (Poggio and Vetter 1992). For 
faces, this transformation corresponds to the mirroring of one view of a face with respect 
to the sagittal plane to obtain another view. The newly available view can then be used to 
improve the training of the viewpoint-recovery module. When the knowledge of bilateral 
symmetry of faces was taken into account in our system in this manner, the generalization 
performance with experience = 18 was boosted from 66% to 76%. Further improvement 
in performance should be possible if the final classification is not carried out directly in 
the RF space but, rather, in a low-dimensional space spanned by an ensemble of individual- 
face recognition modules (cf Edelman (1995)). The benefits of class-specific dimensionality 
reduction implemented by such a two-stage system include an improvement of about 20% 
in the recognition performance (Edelman et a1 1992); this approach should have a similar 
effect on the performance of the present model. 

M Lundo and S Edelman 

6. Summary and discussion 

We have presented a model of the human ability to generalize face recognition from a 
single image. The model is based on a computational analysis of the notion of class- 
specific transformations and is supported by computer simulations, in which it exhibited 
a considerable ability to generalize from single images. The model also replicated the 
central findings of a recent psychophysical study which examined generalization in upright 
and inverted faces in human subjects. From the practical standpoint, the model constitutes 
a significant advance over the approach of Edelman er al (1992). which also used RBF 

A 
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classifiers to learn face recognition from examples, but was incapable of generalization 
from a single image of a face. From the standpoint of theoretical neurobiology, the model 
suggests a promising approach to the understanding of the computational basis of class-based 
generalization in human vision. 

The relevance of OUT model to the understanding of human vision stems not only 
from its performance in the uprightlinverted face recognition experiments, but also from 
its predictions regarding the effect of face distinctiveness on generalization. The less 
similar a face is to an average human face (in a geometrical sense), the more different 
are the relationships among the w-space representations of its views, compared with 
those of an average face. In such a case, one would tend to predict worse recognition 
results. However, the thud step of the recognition in our model - comparing the'predicted 
prototypical representation with those of known prototypes - is actually easier for a 
distinctive face, because the more unusual the face is, the larger the RF-space distance 
between its representation and those of the other faces. Consequently, it should be more 
difficult to generalize over novel views of distinctive faces, but also more difficult to 
misrecognize them under more familiar viewing conditions. These predictions are consistent 
with the results of recent experiments carried by Newell et al (1995), who found better 
performance for distinctive faces in the mismatch trials, but not in the match trials, in a 
face matching experiment. 

The interpretation offered by our model for the results obtained with distinctive faces 
can be extended to account for the peculiarities of recognition of faces across race (Brigham 
1986). It is well known that people used to seeing predominantly Caucasian faces find it 
more difficult to distinguish among Oriental faces than people living in the Orient, and 
vice versa. We conjecture that this happens because of the limited applicability of class- 
specific transformations to a radically different population of face shapes. With practice, the 
relevant portion of the representation space may become populated by the proper prototypes 
and the discrimination performance may improve (as indeed happens in cross-racial face 
recognition). 

In conclusion, we point out that the class-specific-transformation approach adopted in 
the present work can be extended to classes of objects other than faces and is currently under 
investigation in a wider context of 3D shape representation (Duvdevani-Bar and Edelman 
1995). 

Acknowledgments 

We thank Moshe Bar and Florin Cutzu for constructive advice and for help with Inventor 
graphics and Ronen Basri, Yael Moses and Tomaso Poggio for useful discussions and for 
comments on an earlier version of this work. The database of controlled images of human 
faces used in this work is courtesy of Yael Moses. and is available by anonymous ftp at 
URL ftp://eris.wisdom.weizmann.ac.il/pub/FaceBase/. 

Appendix A. Lemma 

Lemma. The minimum of the expression 
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where Vi ,  ai(1 - 6 )  < bi < ai (1 + S), 0 < 6 < ai and ai # 0, is equal to 

M Land0 and S E a "  

min(S)bn = J1-sz. 
Proof. For every setting of n - 1 terms in the above expression, the minimum of S will 
be achieved at one of the boundary points, with b,, = a,(l + 8)  or with b, = u,(l - 6). 
Without loss of generality, suppose that n - 1 terms in expression (Al) are already fixed. 

U?, S3 = xyit b;. We can then write the sum in 
expression ( A l )  for the entire n terms as follows: 

Denote: S1 = aibi, SZ = 

Si +a&, S =  JGqJ" 

as -sl(bn -u,(s~/s,)) 

To find the value of b, that minimizes this expression, we take its derivative with respect 
to b,,: 

-= 
ab, (S3 + b,2)3/2(S2 + a,2)1/2' 

The derivative is positive forb, from -00 to an(S3/S1) and negative forb, from an(S3/S1) 
to 00. Depending on the particular values of SI and S3, the minimum of S will be achieved 
at one of the boundary points, when b, = an(l + 6) or when b, = a,(l - 8). 

Let nl be the number of points where the minimization of S requires that bi = ai(l+S), 
and n2, the number of points where it is required that bi = ai(1- S), n1 + n2 = n. Then: 

1+Sm 
S =  

J1+ 62 + 2s. 
Take the derivative to find the minimum of S: 

as S2(m + 6 )  
am 
-=  

(1 + s2 + 2Sm)3/2' 

The minimum of S will be achieved when m = -6 and will be equal to 

Appendix B. Similarity of RF activity &anges 

We now examine the hypothesis that changes of viewing conditions evoke similar changes 
of RF activity, regardless of the face identity. Suppose that we have images of two persons, 
PI and P2. Consider two different viewing conditions (L, V )  and (Z', V'), where L and L' 
are different illumination directions and V and V' are different viewing positions. Under 
each combination of viewing conditions, an image can be represented in the RF space as a 
vector of length n, equal to the number of Ws: X;,,,,, X f i  ,.", ), X&,. Xf;  ,,",). 

Let us compare the changes of RF activity precipitated by a change in the viewing 
conditions: AXp' = Xp' (L,v) - X~~, ,v , , ,  and AXpz = X&) - Xz We decompose 
the transformation (L ,  V )  + (L', V') into (L ,  V )  + (L', V )  and (L', V )  -+ (L', V') and 

0 
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study the changes of activity in each of these two cases (illumination direction change 
and viewing position change) separately. We assume that the specular component of the 
reflection function is small and take into account only the diffuse component. To represent 
relative similarity of shape of different faces, we introduce a parameter 6 and assume that 
each coordinate of the normal at each particular point of the face can-vary from person to 
person at most by S.  

Appendix B.I. Case I :  ( L ,  V )  + (L', V )  

We assume that all RFS have the same profile and that they are small enough so that intensity 
at each point of the image under each particular RF is constant. In this case, the result of the 
convolution will be a multiplication of that intensity value by a constant k ,  which depends 
on the RF profile and will be omitted from further calculations. Let I ( i ) ( L , ~ )  be the intensity 
of the image patch corresponding to the ith RF, under the viewing conditions ( L ,  V). Then 
the RF activities and their difference are: 

X ( L . V )  = [ I ( l ) (L ." ) .  1(2)(L.V,> . . ., I ( f l ) ( L . V ) ]  

x(L,.v) = [I(1)(L,,v), I ( ~ ) ( L , . V ) .  . . . , I ( ~ ) ( L , , v ) ]  
AX = [(Z(l)(L.v) - I ( l ) ( ~ , , v ) ) ~  .~. . ( I ( n ) ( L , V )  - I(n)(a.v))]. 

In the above expressions, the intensity values for persons P1 and P2 are 

I ( ~ ) ( L , v )  = ( L .  A';) I ( i ) ( ~ , , v )  = (L'. Nil) 
I ( ~ ) ( L , v )  = ( L  . A';) Z(i)(~, .v) (L" N;).  

The changes in RF activities for the two persons are: 

AXpi = [((L - L') .A':), ( ( L  - L') ..Vi), . . . , ( ( L  - L') . A',!)] 
AXpz = [ ( (L  - L') .A':), ( (L  - L') . N;) , . . . , ( ( L  - L') .~N, ' ) ] .  

We now compare the lengths and directions of these RF activity vectors, assuming that 
corresponding RFS for different persons will be positioned over regions at which the normals 
can differ at most by S in each component: 

n 

llAXpiIl* = ((L - L') . N,!)' 

((L - L') . A';)' < 
i=l 
n N 

I lAx~zl l~ = ( ( L  - L') . (N: + S N , ! ) ) ~  
i=l i=l 

yielding 

(W 
( ( L  - L') ' A';) ( ( L  - L') ' A';') 

COS L(AXp1, AX,) = 
IlAxri Ill1 AXPZII 

Let ai = ( ( L  - L') . N;)  and bi = ( ( L  - L') . N;'). Then 

a i ( l+6)<b i  < a i ( l + S )  



514 

and, according to the lemma of appendix A, the minimum value of the expression 
Cy=l a&;/ Jw is m. Therefore: 

M Land0 and S Edelman 

~~ 

cos L (AXPI, AX,) > m. 
Appendix B.2. Case 2: (L‘, V )  -+ (L’, V’) 

As before, 

X(L,.V) = [r(i)(Lr,v). . . . , I ( ~ ) c L , , v ) ]  
X(L,.V,) = [r(l)(Lr.v,), r(2)(L,.vr) . . . . r (n) (~ , .“ ,J  

r(i)(Lr,v) = (L’. N ; )  r(i)(L,.vl) = (L’ . N; I‘ ) 

Z( i ) (L , ,v l  = (L’. N:) 

where the intensity values for images of persons P1 and P2 are: 

r(i)(L,,v,) = (L’ . NYj. 
As the viewing position changes, the RFS move over the image. The changes of h e  

normal to the surface over different regions of the object will then cause change in W 
response: 

AXpi = [(L’ . (N:  -=A’?)), (L’ . (Ni  - Nf)), . . . , (L‘. (N’N - NA’))] 
AX, = [ ( L ’ - ( N ~ - ~ N T ) ) , ( L ’ . ( N ~ - N ~ ) ) ,  ...,( L’.(Ni -N:) ) ]  

This gives 

Let AN; = N,? - N i  and AN; = NF - NY.  We proceed to estimate h e  upper bound 
for the IIAXP;llz in terins of IIAXPIII~. 

Now, if (L‘ . N ) )  -= (L’ . N y )  then 

max l(L’. AN;) - (L’ . AN,!)l = max(L’. AN,)  - min(L’. AN;) 

max I(L’. A N ; )  - (L’ . AN;)]  = min(L’. A N ; )  - max(L’. AN;).  

max(L’. A N ; )  = max [IL’ll I[ AN; 11 cos L(L, AN;) 

and if (L’ . Nil) > (L’ . Nj‘)  then 

Note that 

and 

max [IANiII = J ( 6 N l i J 2 +  ( S N l i J 2 +  (6Nl;J2 = 6. 
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Therefore: 

max(L’. ANj) < 6 

and, similarly, one can show that 

max(L’. AN;) < 6. 

The lower bounds are, respectively: 

min(L’. ANj) > -6 

and 

min(C’. AN;) > -8. 

Equation (B2) then yields: 

where l(L’. ( N j  - Ny))l  is the modulus of the variation in the projection of some normal 
onto the illumination direction (this depends on the location of the RF on the image and on 
the changes in the viewing position). 

The geomeby of a face is very complex: for any variation in viewing position, normals 
at the different points of the image can change in very dissimilar ways. However, we can 
bound this value from below. It cannot be equal to 0 at ail the points, for then there would 
be no change in the RF activities. Denote the minimum non-zero value that this expression 
can attain by (L‘ . (eN)) .  Then 

2 s 2  ‘ (1 -I- (L‘ . (EN))  ) IIAXPIII~. 

Similarly, we can obtain the lower bound for IIAXpzll’ in terms of IIAXp~Il* and, as a 
result, estimate the bound on the angle between the two vectors, AXpl and AX,: 
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Then, as in the case of changes in illumination direction, we can use the lemma. The lower 
bound on the cosine of the angle between AXp,, and AX,, will be: 

M Land0 and S E d e l m  
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