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1 Introduction 

Research into language acquisition and the computational mechanisms behind it 

has been under way for some time now in cognitive science (e.g., (Adriaans & van 

Zaanen, 2004; Bod, 2009; DeMarcken, 1996; Dennis, 2005; Solan, Horn, Ruppin, & 

Edelman, 2005; Wolff, 1988); see Clark (2001) for additional references). Here, we 

describe the design and implementation of a computational model of language 

acquisition, inspired by some recent theoretical thinking in the field (Edelman, 2011; 

Goldstein, et al., 2010; Lotem & Halpern, 2008; Lotem & Halpern, 2012). Unlike our 

own earlier efforts (Solan, et al., 2005; Waterfall, Sandbank, Onnis, & Edelman, 

2010), this model, U-MILA,
1
 is explicitly intended to replicate certain features of 

natural language acquisition (as reflected in the diverse set of tasks on which it has 

been tested), while meeting certain performance requirements and adhering to some 

basic functional-architectural constraints. 

1.1 Requirements and constraints in modeling language acquisition 

Much useful work within this field focuses on specific developmental 

phenomena (such as temporary over-generalization in verb past tense formation; 

McClelland & Patterson, 2002) or characteristics of adult performance (such as 

                                                           
1
 U-MILA stands for Unsupervised Memory-based Incremental Language Acquisition. 
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“structure dependence” in forming polar interrogatives; Reali & Christiansen, 2005). 

A comprehensive approach to language acquisition requires, however, that the model 

be, first and foremost, generative in the standard linguistic sense of being capable of 

accepting and producing actual utterances (as opposed to merely predicting the 

syntactic category of the next word, a task on which “connectionist” models are often 

tested), including novel ones (Edelman & Waterfall, 2007). Importantly, a generative 

model can be evaluated with regard to its precision and recall – two customary 

measures of performance in natural language engineering, which can address the 

perennial questions of model relevance and scalability. 

An additional requirement is that the model approximate the probability 

distribution over utterances (Goldsmith, 2007), so as to have low perplexity 

(Goodman, 2001) on a novel corpus. This requirement combines two senses of 

generativity: the one from linguistics, mentioned above, and the one from machine 

learning, which has to do with modeling the joint probability distribution over all 

variables of interest in a manner that would allow to draw new samples from it (here, 

to generate new utterances with probability close to that implied by the corpus of 

experience).  

Another fundamental expectation of a comprehensive theory of language 

acquisition is that the mechanistic explanations that it provides be detailed enough to 

allow understanding of the reasons behind various performance traits of models 

derived from it. This requirement can be realized only if the model’s functional 

architecture and operation, including the learning process, are readily interpretable 

and transparent. (By functional architecture we mean mechanisms that are defined on 

the level of their computational function rather than implementational details (neural 
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or other). A typical example is the phonological loop, used in our model: what matters 

about it is that it acts like a queue, not how it operates on the inside.) 

A viable model of language acquisition must scale up to sizeable corpora of 

natural language. The traditional connectionist focus on miniature artificial-language 

test environments (e.g., in exploring recursion in a language defined over a handful of 

symbols; Christiansen & Chater, 1999; Christiansen & Chater, 2001) was useful at the 

time. However, to be able to argue convincingly that cognitive science is making 

progress in understanding the computational underpinnings of the human language 

faculty, modelers can no longer limit their consideration to “toy” corpora. 

Finally, a comprehensive model of the language faculty should simultaneously 

account for a range of phenomena concerning language that have been identified by 

linguists, and studied by psycholinguists, over the past decades. One example of such 

a phenomenon is the structure dependence of auxiliary verb fronting, mentioned 

above (Chomsky, 1980; Reali & Christiansen, 2005); another example is the so-called 

“syntactic island” family of effects (Ross, 1967; Sprouse, Wagers, & Phillips, 2012a; 

cf. section 3.8). 

1.2 The motivation behind the present model 

The functional architecture and the learning method of the model described here 

have been inspired by the above considerations. Similarly to ADIOS (Solan, et al., 

2005), U-MILA is structured as a weighted directed graph over elementary units, 

which can be words in a natural language, syllables in birdsong, or actions in a 

foraging task, with paths corresponding to sentences, song phrases, or exploration 

behaviors. This design feature facilitates its interpretation: admissible sequences can 

be simply read off the graph structure at each stage of the modeling process. The 
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graph architecture is, of course, reminiscent of neural systems, which also consist of 

units connected by weighted directed links that can be modified through learning. It is 

also connectionist, in the original sense of Feldman and Ballard (1982), rather than, 

say, Elman (1990) – a distinction to which we shall return in the discussion. Unlike 

ADIOS or the batch algorithms that are common in natural language engineering, U-

MILA learns incrementally (cf. Cramer, 2007; Kwiatkowski, Goldwater, Zettelmoyer, 

& Steedman, 2012), updating its parameters and structure as each new series of items 

passes through its sequential working memory (“phonological loop”, cf. Baddeley, 

Gathercole, & Papagno, 1998). 

Evolutionary considerations suggest that learning mechanisms in multiple 

species and for different tasks are derived from a common origin, are subject to 

similar constraints, and require flexibility in order to cope with a constantly changing 

environment (see Kolodny, Edelman & Lotem, in preparation). Accordingly, both the 

representational approach and the learning mechanism of U-MILA are general-

purpose, open-ended, and parameterized so as to allow tuning to different modalities 

and contexts. We consider U-MILA to be a model for learning grammars of 

experience and behavior – a broad category of tasks, which includes, besides language 

acquisition, also tasks such as learning of regularities for efficient foraging (Kolodny 

et al., in preparation) and of birdsong (Menyhart, Kolodny, Goldstein, DeVoogd, & 

Edelman, submitted). In each case, this model meets the three requirements stated 

earlier: generativity, sensitivity to the probabilistic structure of the domain, and 

representational transparency. 

These evolutionary considerations, alongside the model’s endorsement of 

computational and memory constraints and the incremental, unsupervised, and open-
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ended nature of its learning process, place it, we believe, at the head of the line with 

regard to biological realism among current language learning models. 

The rest of this paper is structured as follows. In section 2, we state in detail the 

considerations behind the model’s design, its functional components, and the learning 

algorithm, and explain how the grammar that it acquires is used to process and 

generate new sentences. Section 3 describes the 17 experiments (grouped into five 

studies) in which we subjected the model to a variety of tests, both general (precision 

and recall) and specific (ranging from word segmentation to structure-dependent 

syntactic generalization). Finally, section 4 offers a discussion of the lessons that can 

be drawn from the present project.  

2 The model and its implementation 

2.1 Design principles 

Although language learning is increasingly seen as dependent on social and 

other interactions with the environment (Goldstein et al., 2010; Pereira, Smith & Yu, 

2008; Smith & Gasser, 2005), in the present project we chose to explore a completely 

unsupervised approach, since the learner-environment interaction only rarely includes 

explicit feedback to the learner’s actions. The performance of U-MILA can therefore 

be seen as a baseline, and should improve with the introduction of social and other 

interactions, as well as with the integration of other modalities such as prosody, joint 

attention, etc., with linguistic content or “text” (Goldstein, et al., 2010).  

In dealing with sequential data, U-MILA adheres to certain general 

computational principles. One such principle is the reliance on the key operations of 

alignment and comparison for the identification of significant units in the input 
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sequence – for instance, words in a series of syllables (Edelman, 2008a, 2008b; 

Goldstein et al., 2010). Because the units in question are not available to the learner 

ahead of time as such, they can be discovered by comparing the input stream to time-

shifted versions of itself; a local alignment then signals the presence of a recurring 

unit, which can be retained provisionally, until its statistical significance can be 

ascertained. Given the incremental nature of the input and the likely cost of memory 

and computation, such comparison should only be carried out within a relatively 

narrow time window – a design feature which happens also to boost the reliability of 

unit inference, insofar as a unit that reappears within a short time is likely to be 

significant (Goldstein et al., 2010; Lotem & Halpern, 2008). We shall highlight 

additional computational principles incorporated into U-MILA as we proceed with its 

detailed description. 

2.2 The functioning of the model 

In each learning cycle, the current input item (e.g., a word, or morpheme) is 

added to a short term memory queue, or the phonological loop (Baddeley, 2003; 

Burgess & Hitch, 1999) – the time window through which the model “sees” the world 

(Goldstein et al., 2010). Next, this item is analyzed in the context of the existing 

graph-based representation of the model’s experience to date (initially a “clean slate”) 

and the graph is updated as needed. Operations that use this representation, such as 

the construction of a (possibly novel) output sequence or the estimation of the 

probability of a test sequence (a stand-in for acceptability), can be performed at any 

time during learning.  

The input is read from a text file, in which the tokens are either separated by 

whitespaces (as when the basic units are words) or not, in which case a whitespace is 
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inserted between every two adjacent tokens. The tokens may represent morphemes or 

words, but also syllables of birdsong, music notation, actions in physical space, or any 

other type of discrete sequential data.
2
  

Items in the short-term memory queue are subject to temporal decay; a token 

whose activation drops below a threshold is deleted. In all the experiments described 

in this paper the decay was exponential; the half-life parameter for each run, 

Dshort_term, is listed in SM5. The resulting effective length of the queue was typically 

50-300 tokens.  

The model’s directed graph-like representation of experience is inspired by the 

higraph formalism proposed by Harel (1988), which combines the idea of a multi-

graph with that of Venn diagrams, and which we refer to in this paper simply as “the 

graph” (Fig. 1). The graph’s nodes are of two types: base nodes, which stand for basic 

input tokens, and supernodes, which are concatenations of nodes – either base nodes 

or, recursively, other supernodes, thus accommodating the hierarchical structure of 

language (Phillips, 2003). Supernodes represent collocations: sequences of basic 

tokens that the learning mechanism deems significant enough to be made into units in 

their own right. A special type of supernode, referred to as a slot collocation, contains 

a slot that can be occupied by certain other nodes, as in the ____ boy, with big and 

nice as possible fillers (Fig. 1). In other words, a slot-collocation contains a 

constituent which is variable, and can accept a number of nodes in the graph as fillers. 

Slot collocations enable the model to represent recursion and to capture non-local 

dependencies, such as between the words “the” and “boy” in the above example. A 

                                                           
2
 Some applications of our approach to other modalities are described elsewhere (Menyhart et 

al., submitted; Kolodny et al., in preparation); the extension of the model to multimodal 

inputs is left for future work. 
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Boolean parameter, BFillerSetSizeSensitivity, controls whether the learner would be sensitive 

to the fillers’ set sizes: allowing the ____ boy to contain as fillers both big and highly 

talented, or requiring the latter to be a filler only in a multi-slot collocation such as the 

____ ____ boy. 

Supernodes are implemented as pointers referencing their constituents. The 

same supernode can have multiple alternate compositions. For example, in a graph 

that contains the base nodes I (1), want (2), and to (3), and the supernodes I want (4) 

and I want to (5), the supernode (5) would contain pointers that signify its 

composition both as (1)+(2)+(3) and as (4)+(3).  

The nodes of the graph may be connected by three types of weighted directed 

edges: (i) a temporal edge, representing the non-normalized probability
3
 of occurrence 

of one node after another, (ii) a slot-constituency edge, representing the non-

normalized probability of a certain node acting as a filler in a slot collocation, and (iii) 

a substitutability edge, representing the similarity among two nodes (see Fig. 1 and 

detailed explanation below).  

[Fig. 1 should be here] 

Each node, besides representing a token or a sequence of tokens, contains a 

number of internal fields: a weight, which is a function of its number of occurrences; 

a counter that denotes the number of cases in which this node could be switched with 

another within the short-term memory (discussed below, denoted slot-

interchangeability-within-window); a state of activation, which allows for priming 

effects (and can be used for “top-down” goal-oriented sequence production, which is 

                                                           
3
 Edge weights are only normalized so as to become proper probabilities if the need arises to 

estimate the probability of a candidate sequence; see sections 2.6 and 2.7. 
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outside the scope of this paper); and the criterion that sanctioned the node’s creation 

(discussed below).  

All the node and edge weights in the graph decay exponentially (normally with 

a very long half-life, controlled by Dgraph); the number of input tokens received so far 

acts as a clock that paces the decay. This feature makes it possible for errors, such as 

perceptual miscategorizations, to decay and eventually become negligible if they are 

not reinforced. 

2.3 The learning process 

As already noted, learning in U-MILA is incremental. For every incoming 

token, the following steps are carried out (see SM1 in the supplementary material for 

explanations within a more detailed pseudo-code listing of the process
4
): 

1. Add to graph: if not encountered previously, add the token to the graph as a base 

node.  

 

2. Update short-term memory and search for alignments (top-down segmentation):  

     — Insert the new token into the short term memory queue.  

     — Search for newly-completed alignments (recurring elements) within the queue. 

     — Add to the graph each new element, at a probability inversely proportional to 

the memory decay factor and to the distance between the element’s 

recurrences. 

 

3. Update temporal relations and construct collocations (bottom-up chunking): 

      — Create a list of all nodes in the graph that terminate the short-term memory 

sequence.  

      — Create a secondary list of sequences that fill the slot of slot-collocations in the 

primary list.  

      — Update or add temporal edges between each node in the current list (X) and the 

nodes in a previously found list that contains the nodes preceding X.  

      — Update slot-candidacy edges of all nodes that are within slot-collocations in the 

primary list.    

                                                           
4
 We remark that the model was implemented (in Java) as a proof of concept, without any 

attempt at algorithmic optimization. 
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— For each pair of nodes A,B between which a temporal link has been updated, 

create a new supernode, A+B, if sanctioned by Barlow’s (1990) principle of 

suspicious coincidence, subject to a prior. 

 

2.4 Addition of nodes to the graph 

As stated above, nodes are added to the graph in three cases: (1) when a new 

token is encountered, (2) when a recurring sequence, composed of more than one base 

token, is found within the short-term memory by alignment of the sequence to a 

shifted version of itself, and (3) when two existing nodes in the graph occur in the 

same order often enough so that their combination is deemed a significant unit in 

itself and the two are then “co-located” into a collocation and added to the graph as a 

supernode. The two latter cases are effectively two modes of chunking: top-down and 

bottom-up, respectively. Previous work supports the use of both modes in language 

learning (van Zaanen & van Noord, 2012; Wolff, 1988).  

U-MILA supports four run-time learning modes, corresponding to different 

ways of creating new nodes: a “flat Markov” mode, in which only base tokens are 

added (thus not allowing for hierarchical structures, hence “flat”); a “phonoloop 

collocation” mode, which adds base tokens and recurring sequences from the short-

term memory (top-down segmentation); a “bottom-up collocation” mode, which adds 

only new tokens and significant runs of adjacent units; and a “normal” mode which 

combines all of the above.  

When a new node is added to the graph, a search is conducted for existing 

nodes with related content; pointers are updated if the new node is found to be a 

super-node or a sub-node of any of them. 
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2.5 Calculating similarity among nodes 

Estimating similarity among nodes is important for the grammar’s open-ended 

generativity. For example, the model would produce the novel sentence John ran to 

school based on previous encounters with the two sentences John went to school and 

Dan ran to school only if it recognizes went and ran as sufficiently similar. There are 

multiple cues that hint at such similarity, whose weights should depend on the use to 

be made of the similarity estimate. The present implementation focuses exclusively on 

substitutability: the degree to which a unit may be acceptably replaced by another (cf. 

section 3.1). 

U-MILA calculates the similarity of two nodes by combining their edge profiles 

(vectors of weights on both temporal and slot-candidacy edges leading to other nodes) 

with their interchangeability in slot collocations (see detailed explanation below).
5
 

The rationale – both biological and computational – of this approach is that in a 

network of neurons a unit is best individuated by its connection profile to the other 

units: a unit, in other words, is known by the company that it keeps (cf. Hudson’s 

(2007) Word Grammar). Moreover, the decision about where to proceed from the 

current node is also based on its edge profile.  

A Boolean parameter controls the choice between symmetrical and 

asymmetrical similarity (to see that substitutability need not be symmetrical, consider 

that him can replace John successfully in many utterances, but not the other way 

around). All the runs reported in this paper allowed for asymmetric similarity, as 

                                                           
5
 The present implementation of the model allows assigning different relative weights to be 

assigned to these three data types, but in all runs reported in this paper the weights were 

equal. Optimizing these with regard to the specific nature of the data may lead to an 

improvement in the similarity measure, but was set aside for future exploration. 
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defined below (the symmetric calculation is simpler). The estimation of similarity can 

be improved by considering non-adjacent contextual data, which the present model 

does not retain.  

The similarity of A to B is calculated as the weighted average of the following 

three measures:  

1. Analogous temporal edges (ATE):  

   ( ) ( ) ( ) ( )

( ) ( )

x X x X

x X x X

Weight x A x B Weight A x B x

ATE
Weight x A Weight A x

 
 

 

     

 
 

 

 
 

where X denotes all vertices in the graph,  denotes a temporal edge, and   is the 

Heaviside step function. A non-existent temporal edge is treated as having a weight of 

zero. 

2. Common occurrence in slot (COS): 

COS =    ( ( , )) ( ( , )) / ( ( , ))
x X x X

Weight FE A x FE B x Weight FE A x
 

   

where X denotes all nodes that are slot collocations, ( , )FE A x  denotes a candidacy 

link of the node A as filler in the slot in x (FE stands for Filler Edge), and all non-

existent edges are treated as being of weight zero. 

3. Within-slot interchangeability within a short time window (WSI): 

 ( , ) / ( , )
x X

WSI SIWW A B SIWW A X


   

where X denotes all vertices in the graph, and ( , )SIWW A x  denotes the weight of the 

slot-interchangeability-within-window variable, which is a count of the number of 

times in which some (any) slot collocation was found twice within the phonological 

loop, once with A as a filler and once with B. 
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The implementation allows similarity to be recalculated with every update of a 

potentially relevant edge in the graph, or following some subset of the updates; time-

wise, it may be calculated periodically, or at the end of a learning phase, or only ad-

hoc before fulfilling a production request. Such “offline” updating of similarity 

representations may be thought of as analogous to memory consolidation. 

 

2.6 Production: generation of sentences 

The sentence generation process consists of traversing the graph, starting with 

the special BEGIN node and ending upon reaching the END.
6
 At each node, the next 

item to be appended to the sentence is chosen as follows: 

                                                           
6
 The motivational mechanisms that initiate and end the production process are beyond the 

scope of this paper but we assume that as in simple foraging tasks, the agent is first motivated 

to activate a familiar starting point from which it navigates through various potential paths 

offered by the network until it reaches a familiar goal. Obviously, this implies that a realistic 

production process also includes steps designed to fit the sentence to the specific goal and 

context, not only to make it grammatically and logically correct. Note that biological realism 

requires that nodes in the representation interact with one another only locally. U-MILAU-

MILA’s production process adheres to this principle. 
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1.  

1.1 With (very low) probability Prand, choose a node from the graph at random with 

probability proportional to its weight (this effectively smoothens the model’s 

estimate of the probability distribution over all possible sentences).  

else: 

1.2 Choose a node from among those that the outgoing temporal edges go to, 

drawing among them randomly with proportion to edgeW L  , where Wedge  is 

the weight of the directed edge and L is the length of the node’s base token 

sequence. (i.e., drawing with a higher probability nodes that contain longer 

sequences). 

 

2. With probability Pgeneralize, replace the node by another node, chosen with 

proportion to its similarity (substitutability) index to the node chosen in (1). 

 

3.  If the chosen node contains a slot, choose with (a very low) probability Prand a 

filler from among all the nodes in the graph with proportion to their weight; with 

probability 1−Prand choose a filler from among the slot-filler candidates in the slot, 

with proportion to weights of the slot-candidacy edges. If the chosen slot filler is 

itself a slot-collocation, step 3 is re-iterated, in order to find a filler for the internal 

slot-collocation, and so on until a filler which is not a slot-collocation is reached. 
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2.7 Assigning probability to input sentences 

The same statistical principles used for producing sentences can also be used for 

evaluating the probability that a given sentence could have been produced by the 

model – a capability that is essential for turning the learner into a language model (in 

the usual sense of computational linguistics; cf. Goodman, 2001), which allows the 

estimation of perplexity and assessment of grammaticality, as explained below. In 

addition to the smoothing implied by a nonzero value of Prand as described earlier, the 

model can also assign a small nonzero probability to a completely novel word (when 

this is set to 0, any sentence with a novel word would have zero probability). 

To estimate the probability of a sentence, the model must find all possible 

covers of it in terms of paths through the graph; the probability of the sentence is 

equal to the sum of production probabilities of these covers.
7
 To do so, U-MILA 

conducts a search, in each stage of which it attempts to cover the sentence using a 

certain number of nodes, ranging from 1 to the number of base tokens in the sentence. 

The recursive search routine finds all the possible single-node covers of the beginning 

of the sentence, then for each of these calls itself on the remainder of the sentence, 

until it finds a complete cover or determines that such a cover does not exist (note a 

parallel to left-corner parsing: Resnik, 1992). Once all full covers of a sentence are 

found, the probability of production of each of these is calculated, using a process 

analogous to the one described in the production section. The probability assigned to 

the sentences is the sum of production probabilities of all covers. 

                                                           
7
 For example, if a grammar contains the node “I” (1), “want” (2), “to” (3), “break” (4), “free” 

(5), “I want” (6), and “break free” (7), then possible covers of the sentence “I want to break 

free” are [(1)+(2)+(3)+(4)+(5)], [(6)+(3)+(4)+(5)], [(1)+(2)+(3)+(7)], and [(6)+(3)+(4)+(5)]. 

For a similar approach, see (Scha, Bod, & Sima'an, 1999), section 4). 
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In cases where the probability of a sequence that is not a full sentence must be 

estimated (as in some of the experiments described in the results section), the 

calculation starts with the actual initial node instead of the standard Begin node, and 

the overall probability is weighted by that node’s relative weight in the graph.    

3 Testing the model: results 

While the present computational approach applies to a variety of sequential-

structural learning situations, in this paper we focus on its performance in language-

related tasks. To the best of our knowledge, U-MILA is the first model that can deal 

with as wide a range of language tasks as reported here, while preserving a modicum 

of biological realism. 

The tests reported below include both (i) the replication of a dozen or so 

published results in sequence segmentation, artificial grammar learning, and structure 

dependence, and (ii) the estimation of the model’s ability to learn a generative 

grammar — a structured representation that selectively licenses natural-language 

utterances and is capable of generating new ones (Chomsky, 1957) — from a corpus 

of natural language. Because a model’s explanatory power with regard to language 

acquisition remains in doubt unless it can learn a generative representation (Edelman 

& Waterfall, 2007; Waterfall et al., 2010), we begin with an account of the model’s 

generative performance, then proceed to describe its replication of various specific 

phenomena of interest. The experiments we have conducted were grouped into five 

studies:  

 Study 1: Measures of generative ability of a grammar learned from a corpus of 

natural language: recall, perplexity, and precision (defined and stated in 

section 3.1). 
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 Study 2: Characteristics of the learned representation: equivalence 

(substitutability) of phrases and the similarity structure of the phrase space 

(section 3.2). 

 Study 3: Replication of a variety of results in sequence segmentation and 

chunking (section 3.3).  

 Study 4: Replication of results in artificial grammar learning (sections 3.4 — 

3.6).  

 Study 5: Replication of results regarding certain types of structure dependence 

(sections 3.7 — 3.8).  

All studies and results are discussed in additional detail in SM2.   

 

3.1 Study 1: generative performance  

A key purpose of learning a grammar is the ability to generate acceptable 

utterances that transcend the learner’s past experience. This ability is typically tested 

by evaluating the model’s precision, defined as the proportion of sentences generated 

by it that are found acceptable by human judges, and recall, defined as the proportion 

of sentences in a corpus withheld for testing that the model can generate (see Solan et 

al., 2005, for an earlier use of these measures and for a discussion of their roots in 

information retrieval). Given that sentence acceptability is better captured by a graded 

than by an all-or-none measure (Schütze, 1996), we employed graded measures in 

estimating both recall and precision. 

A commonly reported graded counterpart for recall is perplexity: the (negative 

logarithm of the) mean probability assigned by the model to sentences from the test 

corpus (see, e.g., Goodman, 2001, for a definition). Because in practice perplexity 
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depends on the size and the composition of the test set, its absolute value has less 

meaning than a comparison of per-word perplexity values achieved by different 

models; the model with the lower value captures better the language’s true empirical 

probability distribution over sentences (cf. Goldsmith, 2007). In the experiment 

described below, we compared the perplexity of U-MILA to that of a smoothed 

trigram model implemented with publicly available code (Stolcke, 2002).  

For precision, a graded measure can be obtained by asking subjects to report, on 

a scale of 1 to 7, how likely they think each model-generated sentence is to appear in 

the context in question (Waterfall et al., 2010). Because our model was trained on a 

corpus of child-directed speech, we phrased the instructions for subjects accordingly. 

The test set consisted of equal numbers of sentences generated by the two models and 

taken from the original corpus. 

Perplexity and the precision of a model must always be considered together. A 

model that assigns the same nonzero probability to all word sequences will have good 

perplexity, but very poor precision; a model that generates only those sentences that it 

has encountered in the training corpus will have perfect precision, but very poor recall 

and perplexity. The goal of language modeling is to achieve an optimal trade-off 

between these two aspects of performance — a computational task that is related to 

the bias-variance dilemma (Geman, Bienenstock, & Doursat, 1992). Striving to 

optimize U-MILA in this sense would have been computationally prohibitive; instead, 

we coarsely tuned its parameters on the basis of informal tests conducted during its 

development. We used those parameter settings throughout, except where noted 

otherwise (see SM5). 
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For estimating perplexity and precision, we trained an instance of the model on 

the first 15,000 utterances (81,370 word tokens) of the Suppes corpus of transcribed 

child-directed speech, which is part of the CHILDES collection (MacWhinney, 2000; 

Suppes, 1974). Adult-produced utterances only were used. The relatively small size of 

the training corpus was dictated by considerations of model design and 

implementation (as stated in section 2, our primary consideration in designing the 

model was functional realism rather than the speed of its simulation on a serial 

computer). For testing, we used the next 100 utterances that did not contain novel 

words. 

 

3.1.1 Perplexity over withheld utterances from the corpus 

We used a trained version of the model to calculate the production probability 

of each of the 100 utterances in the test set, and the perplexity over it, using a standard 

formula (Jelinek, 1990; Stolcke, 2010): 

log( ( ))

10
s

P s

nPerplexity




   

where P(s) is the probability of a sentence s, the sum is over all the sentences in the 

test set, and n is the number of words in the test set. 

The resulting perplexity was 40.07, for the similarity-based generalization and 

smoothing parameters used throughout the experiments (see SM5). This figure is not 

as good as the perplexity achieved over this test set, after the same training, by a 

trigram model (SRILM; see: Stolcke, 2002) using the Good-Turing and Kneser-Ney 

smoothing: respectively, 24.36 and 22.43. As already noted, there is, however, a 

tradeoff between low perplexity and high precision, and, indeed, the precision of the 
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tri-gram model fell short of that of U-MILA (see below). By modifying our model’s 

similarity-based generalization and smoothing parameters, perplexity could be 

reduced to as low as 34 (with Pgeneralize=0.2, Prand=0.01) and perhaps lower, at a cost to 

the precision performance. At the other extreme, precision results are expected to rise 

as the similarity-based generalization parameter is lowered; when it is set to zero, the 

perplexity rises to 60.04.  

Smoothing and generalization enable the model to assign a certain probability 

even to previously unseen sequences of units within utterances and thus prevent the 

perplexity from rising to infinity in such cases. It is interesting to note that when the 

generalization parameter is set to its default value (0.05), smoothing has only a 

negligible quantitative effect on the perplexity, and setting it to zero leads to 

perplexity of 40.76, as opposed to 40.07 when it is set to 0.01.  

3.1.2 Precision: acceptability of sentences produced by the learner 

To estimate the precision of the grammar learned by U-MILA and compare it to 

a trigram model, we conducted two experiments in which participants were asked to 

rate the acceptability of 50 sentences generated by each of the two models, which had 

been mixed with 50 sentences from the original corpus (150 sentences altogether, 

ordered randomly). Sentences were scored for their acceptability on a scale of 1 (not 

acceptable) to 7 (completely acceptable) (Waterfall et al., 2010). As the 50 sentences 

chosen from the original corpus ranged in length between three and eleven words, in 

the analysis we excluded shorter and longer sentences generated by U-MILA and by 

the trigram model (SRILM).  

In the first precision experiment, the smoothing parameters in the SRILM were 

set to achieve perplexity of ppl=40.07, the same value achieved by U-MILA with the 
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“standard” parameter settings used elsewhere in this paper. Six subjects participated 

in this experiment.  The results (see Fig. 2A) indicated an advantage of U-MILA over 

SRILM (t = 3.5, p < 0.0005, R procedure lme: D. Bates, 2005). Sentences from the 

original corpus received a mean score of 6.59; sentences generated by U-MILA, 5.87; 

sentences generated by SRILM, 5.41. Further mixed-model analysis (R procedure 

lmer: Bates, 2005) of results broken down by sentence length (see Fig. 2B) yielded a 

significant interaction between sentence source and length for both models (U-MILA: 

t=-3.2; SRILM, t=-3.8). A comparison of the interaction slopes, for which we used a 

10,000-iteration Markov Chain Monte Carlo (MCMC) run to estimate the confidence 

limits on the slope parameters (R procedures mcmc and HPDinterval), did not yield a 

significant difference.  

[Fig. 2A and 2B should be here] 

In the second precision experiment the smoothing parameters in SRILM were 

set to achieve its lowest perplexity and its precision was compared to that of U-MILA 

with the “standard” settings. See SM2, 1.1.2. 

 

3.2 Equivalence-class inference 

To illustrate U-MILA’s ability to learn similarities over words and phrases, we 

offer two characterizations of such relations, for the same version of the model, 

trained on a corpus of child-directed speech, as in section 3.1. First, in Table 1, we list 

the five nodes that are most similar to each of the 20 most common nodes in the 

graph, as well as to each of 11 other chosen nodes. Not surprisingly, the most 

common nodes are function words or slot collocations built around function words; 

their similarity neighborhoods generally make sense. Thus, in example 1, the 
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neighbors of the are all determiners, and the neighbors of you are pronouns. Likewise, 

verbs are listed as similar to verbs or verb phrases (sometimes partial) and nouns — to 

other nouns or noun phrases (examples 24 and 27). Occasionally, the similarity 

grouping creates openings for potential production errors, as in example 31, where the 

list of nodes similar to which contains words from both its main senses (interrogative 

and relative).  

 [Table 1 should be here] 

 The second glimpse into the similarity space learned by U-MILA is a plot 

produced from similarity data by multidimensional scaling (Shepard, 1980). To keep 

the plots legible, we sorted the words by frequency and focused on two percentile 

ranges: 95-100 and 75-80 (Fig. 3A and 3B, respectively). As before, the first plot, 

showing the more frequent items, contains mostly function words and auxiliary verbs, 

while the second contains open-class words. In both plots, proximity in the map 

generally corresponds to intuitive similarity.  

[Fig. 3A and 3B should be here] 

3.3 Comparison to the TRACX model (French, Addyman, & Mareschal, 2011) 

Our next set of studies has been inspired by a recent paper by French, Addyman 

& Mareschal (2011) that described a connectionist model of unsupervised sequence 

segmentation and chunk extraction, TRACX, and compared its performance on a 

battery of tests, most of them reproductions of published empirical experiments, to 

that of several competing models, including PARSER (Perruchet & Vinter, 1998) and 

a generic simple recurrent network (SRN; Elman, 1990). Each of the sections 3.3.1 

through 3.3.10 states a particular earlier result considered by French et al. (2011) and 

describes briefly its replication by U-MILA (for details, see SM2). 
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3.3.1 Words vs. nonwords, infants (Saffran, Aslin & Newport, (1996), 

experiment 1) 

Following Saffran et al. (1996), French et al. (2011) created a language of four 

tri-syllabic words and trained their model on a sequence of 180 words with no 

immediate word repetitions. The model was then tested for its ability to discriminate 

between words and non-words, and did so successfully.  

We used the stimuli of French et al. (2011, supporting online material) as the 

training set for U-MILA and tested it on the same 4 words and 4 non-words. All test 

words were assigned higher probability scores (section 2.7) than non-words, 

achieving perfect discrimination, with the difference approaching significance despite 

the small number of items (Wilcoxon signed rank test, one-sided; V = 10, p < 0.0625). 

Running the model in the flat-Markov mode (by disabling the acquisition of 

hierarchical representations) led to perfect discrimination. This is not surprising, as 

the distinction between words and non-words here is based by definition solely on 

forward transition probabilities, which is the (only) feature represented by such a 

Markov model. 

3.3.2 Words vs. nonwords, infants (Aslin, Saffran & Newport (1998), 

experiment 1) 

The words in the Saffran et al. (1996) experiment were heard three times as 

often as their counterpart non-words. To explore the effects of frequency, Aslin, 

Saffran & Newport (1998) constructed a training sequence composed of four tri-

syllabic words, two of which occurred at a high frequency and two half as often. 

Thus, the non-words spanning the boundary between the two high-frequency words 

had the same number of occurrences as the low-frequency words; the within-word 
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transition probabilities remained higher than those in the non-words. French et al. 

(2011) replicated the results of Aslin et al. (1998), with a 270-word training sequence. 

Both the TRACX and the SRN models successfully discriminated between the words 

and non-words in the analogous test. Using the same training and test sets, U-MILA 

performed perfectly, always assigning a higher probability to low-frequency words 

than to non-words (Wilcoxon signed rank test, one-sided; V = 10, p < 0.0625; the 

seemingly low significance value despite the perfect discrimination is due to the small 

size of the test set). As in the previous experiment, using our model in the flat-Markov 

mode achieved similar results. 

3.3.3 Words vs. nonwords, adults (Perruchet and Desaulty (2008), experiment 

2: forward transition probabilities) 

In the study by Perruchet and Desaulty (2008), adult subjects listened to a 

training sequence in which words and non-words had the same frequency, and 

differed in that transition probabilities were equal to 1 within words and lower within 

non-words. In the replication by French et al. (2011), both TRACX and SRN learned 

successfully to discriminate between words and non-words.  

Following training with the same dataset, U-MILA also successfully 

differentiated between words and non-words (Wilcoxon signed rank test, one-sided; V 

= 21, p < 0.016). Unlike in the previous experiments, running the model in its flat-

Markov mode did not lead to successful discrimination.
8
  

                                                           
8
 This is due to a frequency difference in the training set between first syllables of words 

compared to first syllables of non-words: the latter were more frequent. Because the 

probability estimation procedure (section 2.7) takes into account the absolute probability of 

occurrence of the first syllable in the sequence, the frequency difference in favor of non-

words balanced the higher internal transition probabilities in words, and the overall effect was 

that words and non-words were assigned similar probabilities. 
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3.3.4 Words vs. nonwords, adults (Perruchet and Desaulty (2008), experiment 

2: backward transition probabilities) 

The second experiment of Perruchet & Desaulty (2008) was the first to show 

that adults can segment a continuous auditory stream on the basis of backward 

transition probabilities. The TRACX model of French et al. (2011) replicated this 

finding; the SRN model did not.  

In our replication, using the same training and test sets, U-MILA successfully 

assigned significantly higher scores to words than to non-words (Wilcoxon signed 

rank test, one-sided; V = 21, p < 0.016). As expected, the run in a flat-Markov mode 

did not differentiate between words and non-words.  

3.3.5 Hierarchical chunking (Giroux and Rey, 2009) 

Giroux & Rey (2009) showed that once a lexical unit (“sub-chunk”) is 

assimilated into a larger one (“chunk”), it becomes harder to recognize. French et al. 

(2011) trained TRACX on a corpus composed of two-, three- and four-syllable words, 

including klmn. At first, the model recognized kl, lm, and mn as separate chunks, 

which it then gradually merged into larger units (klm and then klmn). As learning 

proceeded, the shorter chunks were forgotten. 

When trained on this corpus, U-MILA recognized all chunks and sub-chunks 

(kl, lm, mn, klm, lmn, klmn) as independent units. We note that for a language-oriented 

model, eliminating sub-chunks after they are incorporated into larger units would be 

counterproductive: for instance, it would cause the word dead to be forgotten after 

learning the word deadline.
9
 

                                                           
9
  In contrast, the version of the model that was applied to birdsong (Menyhart, et al., 

submitted) does implement this step, and thus eliminates from the grammar units that are 
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3.3.6 Word segmentation: effects of sentence length (Frank, Goldwater, 

Griffiths & Tenenbaum (2010), experiment 1) 

In their first experiment, Frank, Goldwater, Griffiths & Tenenbaum (2010) 

explored the effect of sentence length on the subjects’ ability to extract words from it. 

To do so, they used a set of 18 syllables to construct two 2-syllable words, two 3-

syllable words, and two 4-syllable words, with no shared syllables among the six 

words. Participants heard a sound stream consisting of 144 of these words, randomly 

ordered and divided into “sentences” by short pauses. They tested eight groups of 

participants, all of whom heard the same sequence, but for each group it was divided 

into a different number of sentences: 144, 72, 48, 36, 24, 18, 12, corresponding to 

sentences of lengths 1, 2, 3, 4, 6, 8, 12, 24.  

French et al. (2011) trained and tested TRACX on a similar dataset, and found 

that it discriminated between words and part-words better as the sentences got shorter, 

achieving a correlation of 0.92 with the human results; the correlation of the SRN 

model’s results with the human data was 0.60.  

We ran U-MILA in a variety of modes and parameter values, training and 

testing it as did French et al. (2011), and found the same qualitative trend: the model 

exhibits better discrimination between words and non-words as the sentences get 

shorter (Fig. 4). This result held for a range of parameters, with correlation with the 

human data ranging from 0.49 to 0.87.  

[Fig. 4 should be here] 

                                                                                                                                                                      
wholly contained in others if the weights of the two units (a proxy of their frequency of 

occurrence) differ by less than a certain threshold (e.g., 10%). In this manner, wholly 

contained units are eliminated, unless they occur in other contexts as well. This solution 

seems somewhat artificial and should probably be replaced by a probabilistically motivated 

weight updating scheme. 
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3.3.7 Word segmentation: effects of vocabulary size (Frank, Goldwater, 

Griffiths & Tenenbaum (2010), experiment 3) 

The next experiment of Frank et al. (2010) replicated by French et al. (2011) 

explored the effect of the size of the language’s vocabulary on learning word/non-

word discrimination. The training set in this experiment consisted of four-word 

sentences, in which the words were drawn from a cadre of differing size, from three to 

nine words. Word length varied from two to four syllables, and there was an equal 

number of two-, three- and four-syllable words in the training corpora for the various 

conditions. Frank et al. (2010) found that as the word cadre got smaller, the subjects’ 

performance improved. French et al. (2011) replicated this finding with the TRACX 

model, but not with SRN.  

We applied U-MILA to the same dataset used by Frank et al. (2011) in a range 

of modes and run parameters. Learning was successful in all cases, but the trend in 

which a larger word cadre leads to weaker discrimination was found only for some 

settings: specifically, in the flat-Markov mode, or when the prior against creating 

collocations was strong and the phonological loop decay was very large or the 

alignment module disabled. An analysis of covariance (R procedure lm) applied to a 

typical case (see Fig. 5A, 5B) yielded significant effects of word-hood (t = 3.0, p < 

0.0039) and vocabulary size (t = −5.46, p < 0.0000015) and a significant interaction (t 

= 2.1, p < 0.04). The absence of the effect of vocabulary size for some parameter 

settings can be explained by observing that our implementation (unlike humans) has 

no limitations on simultaneously tracking the statistics of as large a number of 

syllables as required by the task, and thus finds it as easy to keep tabs on 27 syllables 

as on 9.  
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[Fig. 5A and 5B should be here] 

3.3.8 Word segmentation, phonetic encoding (French, Addyman & Mareschal 

(2011), simulation 8) 

In this experiment, French et al. (2011) applied their model to a phonetically 

encoded corpus of natural child-directed speech (Bernstein-Ratner 1987; Brent & 

Cartwright, 1996), consisting of 9,800 sentences and 95,800 phonemes. French et al. 

(2011) presented TRACX with each sentence six times in succession, completing five 

passes through the corpus.  

We trained U-MILA with a single run on the same dataset and tested it as in the 

previous simulations by having it assign probabilities to each word/part-word in the 

test set. The model assigned significantly higher probability scores to words than to 

part-words (Fig. 6). An analysis of covariance (R procedure lm) yielded significant 

effects of word-hood (t = 2.1, p < 0.035) and number of syllables (t = −7.08, p < 

2.9X10
−12

) and no interaction. 

[Fig. 6 should be here] 

3.3.9 Word clustering by category (French, Addyman & Mareschal (2011), 

simulation 10) 

In their experiments 9 and 10, French et al. (2011) explored their model’s 

ability to cluster its internal representations so as to correspond to categories in the 

training data. We reproduced the second, more complex of these experiments, the 

stimuli in which came from two microlanguages, each composed of three-letter 

words. Each word in language A was constructed as follows: the first letter was 

randomly chosen from {a,b,c}, the second letter from {d,e,f}, and the third letter from 
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{g,h,i}. Similarly, each word in language B consisted of a letter from {d,e,f}, a letter 

from {a,b,c}, and a letter from {g,h,i}.  

A 10,000-word training sequence (approximately 5,000 from each language) 

contained no markers indicating word or language boundaries. The words in the 

corpus were drawn from a subset of two-thirds of the possible words in each 

language. The words were ordered as follows: for each new word, a random draw 

from among all possible words in one language took place, with a probability of 0.025 

of switching to the other language (thus creating within the corpus runs of words from 

the same language).  

Although U-MILA does not commit to “crisp” categorical distinctions among 

units (see section 3.2), the similarity relations that it builds up can be used to cluster 

words into categories. After training, U-MILA correctly recognized all three-letter 

words, in both languages, as such, making the similarity scores among them 

immediately available. Similarity scores between words of which one or both did not 

appear in the training corpus were defined as an equally weighted sum of the 

similarity scores between their components; thus, the similarity between abc and def 

was defined as (sim(a,d)+sim(b,e)+sim(c,f))/3.
10

 A clustering algorithm (Matlab 

procedure linkage with default values of the parameters) was applied to the resulting 

similarity matrix among all words in both languages. A dendrogram plot of the cluster 

structure (Fig. 7) indicated that the model correctly classified all the words, including 

novel words that did not appear in the training corpus.  

[Fig. 7 should be here] 

                                                           
10

 This is equivalent to using Levenshtein distance over strings (e.g., Ristad & Yianilos, 

1998). 
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3.3.10 Word segmentation: effects of frequency and transitional probability 

(French, Addyman & Mareschal (2011), simulation 11) 

To explore learning based on backward transition probabilities, French et al. 

(2011) constructed a dataset similar to those previously discussed, composed of a 

random sequence of two-syllable words, all of which had the same frequency of 

occurrence and were included in the test. The training sequence was constructed so 

that words and non-words had the same forward transition probabilities; the within-

word backward transition probabilities were higher than for non-words (1 as opposed 

to 0.25). The TRACX model was trained on this corpus and learned words 

significantly better than non-words. French et al. (2011) also reported a behavioral 

experiment with 8 month-old infants, using a similarly structured dataset, in which the 

subjects successfully differentiated between words and non-words.   

We trained U-MILA on the same corpus and had it assign probabilities to each 

of the words and non-words in it. The model differentiated between the two groups 

successfully, assigning words a mean probability of 0.0094, compared to 0.0035 for 

non-words. An analysis of variance (R procedure lm) indicated that this difference is 

significant (t = 2.213, p < 0.04; Fig. 8).  

[Fig. 8 should be here] 

3.4 Non-adjacent dependencies (Gomez (2002), experiment 1) 

Gomez (2002) reported that both adults and infants can learn nonadjacent 

dependencies in an artificial language, solely from statistical cues, and that they do so 

most successfully in a setting in which the adjacent dependencies are the least 

reliable. We trained one instance of the U-MILA model on each of the datasets used 

by Gomez (2002; see Table 2). Each learner was evaluated by the probability scores it 
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assigned to each of 12 sentences, six of which were taken from the language it had 

been exposed to, and six from the other language.  

[Table 2 should be here] 

The results are summarized in Fig. 9. Nonadjacent dependency structure was 

successfully learned by all learners in all conditions. An analysis of covariance (R 

procedure lm) yielded significant effects of grammaticality (i.e., whether or not the 

sentences followed the rules of the training set’s language) and pool size (t = −22.7, p 

< 2 × 10
−16

; t = −14.4, p < 2 × 10
−16

) and a significant interaction (t=3.0, p < 

0.0045).
11

 There was, however, no abrupt change in performance between pool sizes 

12 and 24, contrary to the effect reported by Gomez (2002). This finding supports 

Gomez’s proposed explanation of that effect, according to which the difference 

between her subjects’ performance for pool sizes 12 and 24 is an outcome of human 

learners’ switching between different learning mechanisms in response to a change in 

the nature of statistical cues in the data — a switch that is not implemented in our 

model, which by default always applies both adjacent and non-adjacent learning 

mechanisms (see section 2.4). In further support of this explanation, the model failed 

to differentiate between grammatical and ungrammatical sentences in all four set sizes 

when running in “bottom-up collocation” mode, in which it learns using only adjacent 

transition probabilities. 

[Fig. 9 should be here] 

                                                           
11

 This interaction amounted to a small (in absolute terms) difference in the slopes of the 

grammaticality effect, rather than in a change of the sign of the effect. As such, it does not 

reflect on the rest of the discussion of this experiment.  
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3.5 Syntactic categories (Gomez and Lakusta (2004), experiment 1) 

Gomez and Lakusta (2004) showed that infants are capable of unsupervised 

learning of syntactic categories and rules in an artificial language (see Table 3). We 

trained a U-MILA instance on a training set patterned after that of Gomez and 

Lakusta (2004), with spaces inserted between each two consecutive syllables and a 

random ordering of the sentences. The learner then assigned a probability score to 

each of the test sentences in Gomez and Lakusta (2004). The model’s parameter that 

controls its sensitivity to slot filler length, BFillerSetSizeSensitivity (see section 2.2), was set 

so the learner would be sensitive to the filler set size, measured in syllables. 

[Table 3 should be here] 

 

Sentences from the training language (L1) were assigned higher scores than 

sentences from L2. An analysis of variance (R procedure aov) indicated that this 

difference was significant (F = 49.1, p < 8.9 × 10
−09

; see Fig. 10). The model’s 

success is due to the alignment mechanism, which creates collocations of the form alt 

___ ___ ong,  and ong ___ alt, that can be thought of as describing rules regarding 

non-adjacent dependencies. In the test phase, it thus assigns higher scores to 

sequences that conform to these patterns, even if the slot contains unfamiliar syllables.     

[Fig. 10 should be here] 

3.6 Variation sets (Onnis, Waterfall, & Edelman (2008), experiment 1) 

Onnis, Waterfall & Edelman (2008) examined the effects of variation sets
12

 on 

artificial grammar learning in adults. As in that study, we trained multiple instances of 

                                                           
12

 A variation set is a series of utterances that follow one another closely and share one or 

more lexical elements (Küntay & Slobin, 1996; Waterfall, 2006). 
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U-MILA (100 learners), simulating individual subjects, on 105 sentences (short 

sequences of uni- and disyllabic “words” such as kosi fama pju, presented with word 

boundaries obliterated by introducing spaces between each two syllables: ko si fa ma 

pju). For half of the simulated subjects, 20% of the training sentences formed 

variation sets in which consecutive sentences shared at least one word (Varset 

condition); for the other half, the order of the sentences was permuted so that no 

variation sets were present (Scrambled condition). After training, learners scored 

disyllabic words and non-words in a simulated lexical decision task.  

As with the human subjects, learning occurred in both conditions, with the 

model demonstrating better word/non-word discrimination (e.g., fa ma vs. si fa) in the 

Varset condition, compared to the Scrambled condition (see Fig. 11). A mixed model 

analysis of the data, with subjects and items as random effects (R procedure lmer), 

yielded significant main effects of word-hood (t = 13.7, p < 0.0001; all p values 

estimated by Markov Chain Monte Carlo sampling with 10,000 runs, procedure pvals, 

R package languageR) and condition (t = -69.8, p < 0.0001). Crucially, the word-hood 

× condition interaction was significant (t = 57.8, p < 0.0001).  

As expected, the presence of this interaction depended on the value of the 

phonological loop decay parameter: with slower decay (0.035 compared to 0.075, 

corresponding to a wider time window in which overlaps are sought), variation sets 

made no difference on learning the distinction between words and non-words. The 

length of the phonological loop also influenced the results: the effect of variation sets 

depended on sentences that form a variation set being simultaneously present within 

the loop (in addition to not decaying too quickly). 

[Fig. 11 should be here] 
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3.7 Structure dependence: Auxiliary fronting (Reali & Christiansen, 2005) 

Reali & Christiansen (2005) set out to demonstrate that choosing which instance 

of the auxiliary verb to front in forming a polar interrogative — as, in the example 

below, transforming The man who is hungry is ordering dinner into form (b) rather 

than form (a) — is amenable to statistical learning. In their experiment 1, they trained 

a bigram/trigram model, using Chen-Goodman smoothing, on a corpus of 10,705 

sentences from the Bernstein-Ratner (1984) corpus. They then tested its ability to 

differentiate between correct and incorrect auxiliary fronting options in 100 pairs of 

sentences such as: 

a. Is the man who hungry is ordering dinner? 

b. Is the man who is hungry ordering dinner? 

Their training corpus is composed of sentences uttered by nine mothers 

addressing their children, recorded over a period of 4 to 5 months, while the children 

were of ages 1:1 to 1:9. The corpus does not contain explicit examples of auxiliary 

fronting in polar interrogatives. In a forced-choice test, the n-gram model of Reali & 

Christiansen (2005) chose the correct form 96 of the 100 times, with the mean 

probability of correct sentences being about twice as high as of incorrect sentences.  

We trained U-MILA on all the sentences made available to us by Reali & 

Christiansen (10,080 sentences for training and 95 pairs of sentences for testing). 

When forced to choose the more probable sentence in each pair, U-MILA correctly 

classified all but six sentence pairs, and the mean probability of correct sentences was 

higher than that of incorrect sentences by nearly two orders of magnitude (see Fig. 12; 

note that the ordinate scale is logarithmic). An analysis of variance (R procedure aov) 

confirmed that this difference was highly significant (F = 26.35, p < 7.08 × 10
−07

). 
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[Fig. 12 should be here] 

3.8 Structure dependence: Island constraints and long-range dependencies 

(Pearl & Sprouse, 2012) 

In the second experiment addressing issues of structure dependence, we 

examined the ability of U-MILA to learn grammatical islands — structures that, if 

straddled by a long-distance dependency following a transformation, greatly reduce 

the acceptability of the resulting sentence (Sprouse, et al., 2012a; see footnote for an 

example). Recently, Sprouse, Fukuda, Ono & Kluender (2011) conducted a 

quantitative study of the interaction between grammatical island constraints and short- 

and long-term dependencies in determining sentence acceptability. They used a 

factorial design, with four types of sentences: (i) short-term dependency + no island, 

(ii) long-term dependency + no island, (iii) short-term dependency + island, (iv) long-

term dependency + island.
13

 The pattern of acceptability judgments exhibited the 

signature of the island effect: an interaction between island occurrence and 

dependency distance. In other words, the acceptability of a sentence containing both a 

long term dependency and an island was lower than what would have been expected if 

these two effects were independent. This finding opened an interesting debate 

regarding its implications for reductionist theories of language (Hofmeister, 

                                                           
13

 An example of such a factorial design: 

a. Who __ heard that Lily forgot the necklace? (short-distance dependency, non-island 

structure) 

b. What did the detective hear that Lily forgot __ ? (long-distance dependency, non-

island structure) 

c. Who __ heard the statement that Lily forgot the necklace? (short-distance 

dependency, island structure) 

d. What did the detective hear the statement that Lily forgot __ ? (long-distance 

dependency, island structure) 

For a definition and overview of the island phenomena, see Sprouse et al. 2011. 
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Casasanto, & Sag, 2012a, 2012b; Sprouse, et al., 2012a; Sprouse, Wagers, & Phillips, 

2012b).    

In an attempt to account for this finding by a statistical learning model, Pearl & 

Sprouse (2012) trained a parser to recognize shallow phrasal constituents in sentences 

represented as trees of part of speech (POS) tags, while collecting the statistics of 

“container node” trigrams covering these parses, with container nodes defined as 

nodes in a phrase structure tree that dominate the location of the gap left by 

extraction. With proper smoothing, such a model can simulate acceptability 

judgments by assigning probabilities to sentences. The model was trained on 165,000 

parses of sentences containing island dependencies, drawn from a distribution 

mirroring that of various island structures in natural language. When tested on a set of 

sentences that crossed multiple island types with short and long dependencies, the 

model qualitatively reproduced the empirical finding described above. 

We attempted to replicate this result, hypothesizing that the collocations that U-

MILA learns, which are in a sense analogous to trees of POS n-grams, may lead to the 

emergence of an interaction between islands and dependency length (something of a 

long shot, to be sure). For this purpose, we tested the instance of U-MILA that had 

been trained on the first 15,000 sentences of the Suppes (1974) corpus (see section 

3.1) on the same set of sentences as described above (four types of islands types, five 

factorial blocks in each, four sentences in each block). All sentences were patterned 

after the test set described in Pearl & Sprouse (2012); words that did not occur in the 

training corpus were replaced with words of the same part of speech that did. U-

MILA assigned probabilities to each of the test sentences, which we then analyzed 

and plotted as in Pearl & Sprouse (2012). No significant interaction between island 

presence and dependency length was found for any of the four island types, and there 
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was no consistent trend regarding the direction of a potential interaction. Further 

probing showed that the results were strongly affected by replacement of certain units 

in the sentences with grammatically analogous counterparts (e.g., replacing Nancy 

with she). We believe that this source of noise in estimating sentence probability, 

combined with the relatively small training set (much smaller than that used by Pearl 

& Sprouse, 2012), may explain the failure of our model to replicate the island effect. 

4 General discussion  

In this section we discuss the representational power and learnability of U-

MILA’s graph architecture, suggest some ideas for improving its performance, and 

outline two key directions for future development.   

4.1 Representational power and learnability 

4.1.1 On graph-like formalisms in language and other sequential tasks 

A potential strength of a graph-like representation is its immediate 

compatibility with basic associative learning principles, which makes it especially 

useful for modeling the incremental evolution of complex cognition from simple 

beginnings (e.g., Lotem & Halpern 2012). In fact, we are now using the U-MILA 

platform to pursue such evolutionary research (Kolodny et al., submitted). In 

language, earlier theoretical approaches that posited a graph-structured grammar, such 

as the Neurocognitive Grammar of Lamb (1998)
14

 and the Word Grammar of Hudson 

                                                           
14

 Lamb mentions in passing a point that in our opinion is central, namely, that 

language is a proper subset of a broader category of sequential behaviors: “Those who 

think it is marvelous that we can produce a new sentence that we have never heard or 

said before — do they also think it is marvelous that we can go through a cafeteria 

line and select a meal that we have never eaten before?” (Lamb, 1998, p. 205; cf. 

Lashley, 1951). 
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(2007), did not specify how the graph should be learned from experience. The first 

such approach that did learn and that scaled up to large corpora of natural language 

was the ADIOS algorithm (Solan, et al., 2005). Learning in U-MILA is more realistic 

than in ADIOS, because it does not require access to (let alone multiple passes over) 

the entire training corpus, and because it consists of incremental, experience-driven 

modifications of “synaptic” weights between graph nodes, rather than all-or-none 

rewiring of subgraphs as in ADIOS. For this reason, the U-MILA graph can 

immediately and at all times serve as a probabilistic generative language model rather 

than requiring a separate training phase as in ADIOS.  

While its reliance on a graph makes U-MILA trivially “connectionist,” it is 

different from the connectionism of approaches based on the popular SRN idea 

(Elman, 1990; Christiansen & Chater, 1999) in several key respects. Unlike the SRN 

architecture, the graph learned by U-MILA is incrementally built and hierarchically 

structured; it also consists of several kinds of nodes and links, which fulfill specific 

functional needs, rather than being the same all over the network. U-MILA is also 

distinguished by its ability to both accept and generate actual natural language (as 

opposed to a microlanguage targeting a specific phenomenon being modeled).  

4.1.2 Relationships to formal syntax 

When attempting to relate U-MILA (or any other heuristically specified model) 

to formal language theory, both the expressive power and the learnability on each side 

of the comparison need to be addressed. In particular, a rigorous comparison between 

two formalisms, such as U-MILA and, for instance, the probabilistic context-free 

grammar (PCFG), and their associated learning algorithms, must involve a formal 

reduction of one to the other (Hopcroft & Ullman, 1979). Attempting such a reduction 
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would, however, take us too far away from the main thrust of the present project, 

which is why we offer instead some informal analogies and observations, in the hope 

that these would serve as a useful starting point for a more rigorous exploration in the 

future.  

The U-MILA model transcends the power of a finite state automaton by making 

use of slot collocations (see section 2.2). Specifically, when a slot in a collocation is 

encountered during graph traversal, activation shifts to its filler, subsequently 

returning to the slot collocation’s latter part. Because fillers may be slot-collocations 

themselves (including self-referentially), U-MILA can learn and represent an infinite 

center-embedded recursion, as illustrated in Fig. 13, thus producing a PCFG 

language.
15

 Note that in the current implementation, successful learning of such 

grammars depends on the model’s parameter values and also on the structure of the 

training set (see details in SM3 and SM4).  

[Fig. 13 should be here] 

4.2 Performance highlights and lessons for the model 

We now briefly recap and discuss the model’s performance in the tasks to 

which is was applied, grouped into the same five-study order in which it was 

presented in section 3.  

4.2.1 Generative ability (Study 1) 

The generative abilities of the model – perplexity (recall) and precision – were 

tested after training it on an unannotated corpus of 15,000 natural child-directed 

                                                           
15

  We thank the anonymous referees for pointing out the importance of explicitly demonstrating the 

model’s ability to learn such grammars. 
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utterances (Suppes, 1974), available as part of CHILDES (MacWhinney, 2000). 

Although U-MILA’s perplexity score fell short of that of a standard tri-gram model 

(Stolcke, 2002) trained on the same corpus, its precision was significantly higher. 

This was true both when the smoothing parameters of the tri-gram model were set 

such that both models achieve the same perplexity (section 3.1) and when the tri-gram 

model was allowed to achieve its lowest perplexity and its precision compared to that 

of U-MILA with the “standard” settings (section S2, 1.1). 

4.2.2 Characteristics of learned representations (Study 2) 

While it avoids separating words and larger nodes into crisp categories (see 

section 3.2), U-MILA supports intuitively satisfying clustering (Table 1; Fig. 2). 

Insofar as the model does not distinguish between syntax and semantics, the clusters it 

produces should be seen as ad hoc categories, based on a particular choice of 

similarity parameter settings, rather than syntactic categories (parts of speech) or 

semantic (e.g., thematic) ones; a different choice of similarity parameters, stemming, 

for instance, from different presets for “conceptual” nodes (as in the translation model 

of Edelman & Solan, 2009), would lead to a different, task-specific pattern of 

similarities. Retention of wider contextual information about each node is expected to 

significantly improve the performance of future versions of U-MILA in this field (see 

section 1.2 in SM2). 

4.2.3 Sequence segmentation and chunking (Study 3) 

We believe that U-MILA’s success in replicating the entire range of empirical 

findings in segmentation and chunking tasks is due to its reliance on both mechanisms 

of collocation construction available to it: the “bottom-up” mechanism based on 

statistical significance of sequential co-occurrence and the “top-down” mechanism 
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based on recurrence within a short time window. The latter, we observe, is 

particularly useful for finding sparsely occurring patterns, while the former reflects 

traditional associative learning and is more effective for more common patterns. In 

practice, we found that disabling the bottom-up mechanism prevents the model from 

replicating some of the results of French et al. (2011; see section 3.3); at the same 

time, the difference in learning between scrambled and variation-set conditions in the 

Onnis et al. experiment (2008; section 3.6) cannot be reproduced without the “top-

down” mechanism. We note that the two mechanisms may have different costs in 

terms of cognitive resources, and the balance between them could be governed by a 

combination of internal factors and the characteristics of the learning task at hand.
16

 

U-MILA’s default use of both mechanisms may render it too powerful compared to a 

human learner, preventing it from accounting for some empirical findings such as that 

of Gomez (2002; see also below).
17

   

Our model’s successful replication of the variation set effect (Onnis, et al., 

2008) depended on another parameter whose adjustment – in real-time or over the 

evolutionary process – is important. This parameter, the length of the short term 

memory queue, or phonological loop, should fit the typical distribution of unit 

recurrence in the data stream to which the learner is exposed (Goldstein et al., 2010; 

                                                           
16

 The ability of biological learning systems to adjust learning parameters in real time, based 

on an ongoing estimate of performance, or over a longer time frame, based on contextual data 

(cognitive state, recent history, etc.) may explain the need that we encountered for the 

occasional minor adjustments of parameter values between tasks (see SM5). Notably, 

however, this need arose only rarely and the changes were minor; the only exception is 

discussed below. 

17
 U-MILA is also too powerful, compared to a human learner, in that it makes no mistaken 

alignments. The effects of such mistakes, as well as the possible optimal tuning of the 

model’s various parameters such as the length of the phonological loop and the rate of 

memory decay of the graph (section 2.2), were not explored in this paper for reasons of scope. 

Cognitive Science 2013 in press



42 

 

Lotem & Halpern, 2008; Lotem & Halpern, 2012). In natural child directed speech, 

for example, the effective time window in which recurrences are sought should 

correspond to the typical length of a bout of interaction whose subject remains 

constant, as in What is it? It is a doll. Do you like it? — two to four utterances or so. 

A longer window might lead to spurious alignments, while a shorter one would not 

allow the extraction of the recurring element (in this case, it). The range of settings of 

this parameter can conceivably be selected by evolution (cf. Christiansen & Chater, 

2008; and see Lotem & Halpern, 2012), while the precise setting for a given learner 

could also be a function of its recent experiential history and context. 

4.2.4 Artificial language learning (Study 4) 

The two mechanisms that allowed U-MILA to replicate the segmentation and 

chunking results as mentioned above seem to correspond to the two types of learning 

strategies posited by Gomez (2002) in her discussion of learning of artificial language 

rules by human subjects. Balancing these two mechanisms dynamically (as suggested 

above) is what may underlie the subjects’ apparent switching between learning based 

on adjacent transition probabilities to learning based on long-distance dependencies, 

as proposed by Gomez. At present, U-MILA relies equally on both the bottom-up and 

the top-down mechanisms, which allows it to learn successfully in all the conditions 

of the Gomez (2002) experiment, as opposed to humans, who seem to use the former 

mechanism as a default and switch to the other only when it is obvious that the first 

one is not working. This switching need not be all-or-none: it may be implemented as 

a gradual change in prior probabilities of collocation creation (in particular Pcol) while 

adjusting the decay parameter of the phonological loop.  
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Our model’s reproduction of the results of Gomez & Lakusta (2004) is made 

possible by just such a switch: U-MILA succeeds in this task when it is set to be 

sensitive to slot-fillers’ set size (see section 2.2; this is the only instance in which a 

major change in the model’s parameter values away from the “standard” setting was 

necessary). Whether the learner should be sensitive to this value or not may depend 

on the statistics of the data set in question (for instance, it may make sense for one 

natural language but not for another). A data- and performance-driven mechanism that 

would adjust this parameter seems realistic and can be implemented in a 

straightforward and biologically feasible way.   

4.2.5 Learning structure dependence (Study 5) 

Although U-MILA replicated the result of Reali & Christiansen (2005) in 

learning auxiliary fronting in polar interrogatives, the conceptual significance of that 

finding has been disputed (Kam, Stoyneshka, Tornyova, Fodor, & Sakas, 2007). We 

agree that learning-based approaches will be effective in countering the “Poverty Of 

the Stimulus” argument for the innateness of language (Chomsky, 1980; Legate & 

Yang, 2002; Pullum & Scholz, 2002) only if they succeed in replicating a wide range 

of structure-related syntactic phenomena (see, e.g., (see, e.g., Phillips, 2003, 2010). A 

set of syntactic island (Ross, 1967) phenomena, which manifest psycholinguistically 

as an interaction between two graded acceptability effects (that of dependency length 

and that of the presence of an intervening island), could not be replicated by U-MILA 

in the present study. We ascribe U-MILA’s  failure to exhibit this interaction to the 

relatively short training that it underwent (see section 3.8). We are encouraged, 

however, by the success in this task of a model of Pearl & Sprouse (2012), which is 

based on the statistics of a massive amount of phrase structure tree data. Insofar as 
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this representation is functionally similar to U-MILA’s collocations, our model too 

should fare better when trained on a larger corpus. 

4.3 Future directions 

4.3.1 Incremental improvements to the present model 

There are at least two ways in which better use can be made of U-MILA’s short-

term memory queue, or the phonological loop. The first, and most straightforward, 

could undertake segmentation “on the fly” of transient sequences of items passing 

through the queue, using existing units for guidance. For example, while reading the 

sequence a l l y o u n e e d i s l o v e and given previous familiarity with the units you 

and is, the model would be able to infer that need is likely also a meaningful unit. 

This feature could be especially useful in modalities where the probability of noise is 

relatively low, as in phonetics, where most phonemes within an utterance are non-

random; it might be less so in visual tasks such as a fish scanning the sea bottom for 

food.  

The second way in which the short term memory queue can be made a better 

use of has to do with exploiting more fully the idea that events that recur within a 

short time window are likely to be significant and worth paying special attention to. 

U-MILA now assigns a special weight to the recurrence of a unit or a sequence; it 

could also mark the recurrence of a certain temporal relation or to the interchange of 

one unit with another in a certain context. Thus, encountering the big ball and a blue 

ball within a short time period suggests that the similarity index between big and blue 

should be increased more than if these two events were widely separated in time. The 

present implementation does this only with regard to interchange events that take 
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place among nodes as they take on the role of fillers within a slot-collocation (as 

governed by the calculation of WSI; see section 2.5).  

4.3.2 The next key step: learning in parallel from multiple modalities  

While U-MILA is architecturally and functionally realistic in many important 

respects, its ability to model learning in natural biological systems and situations is 

limited by its exclusive reliance on a single modality. Thus, when applied to language, 

it can process a stream of symbolically encoded phonemes (or, of course, a stream of 

text characters), but not, say, parallel streams of phonemes, prosody, and visual cues 

— a rich, multimodal, synchronized flow of information that is available to human 

learners of language (Goldstein, et al., 2010; Smith & Gasser, 2005).  

Integrating multiple cues to boost performance in tasks such as categorization or 

word learning is, of course, a deservedly popular idea in cognitive science (e.g. Frank, 

Goodman, & Tenenbaum, 2009; Yu & Ballard, 2007; Yu & Smith, 2007). Our focus 

on learning a grammar of dynamic experience (which in the project reported here was 

limited to language) does, however, introduce a number of conceptual complications, 

compared to “static” tasks such as categorization. Some of these challenges, such as 

the need to represent parallel sequences of items or events, we have already begun to 

address (see the discussion of the possible use of higraphs for this purpose in 

Edelman, 2011). A full treatment of those ideas is, however, beyond the scope of the 

present paper.  

4.3.3 Interactive and socially assisted learning 

The human language learner’s experience is not only decidedly multimodal, but 

also thoroughly interactive and social (see Goldstein et al., 2010, for a review). Babies 
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learning language do so not from a disembodied stream of symbols: they 

simultaneously process multiple sensory modalities, all the while interacting with the 

world, including, crucially, with other language users. The key role of the interactive 

and social cues in language acquisition (which are also important in birdsong 

learning, for instance) is now increasingly well-documented and understood. Our 

model at present incorporates such cues only in a limited and indirect fashion. In 

particular, variation set cues, which U-MILA makes use of, are presumably there in 

the input stream because of the prevalence of variation sets in child-directed language 

(Waterfall, 2006). Other aspects of the model that may be adjusted by social 

interaction are the parameters of weight and memory decay. These are likely to be 

tuned according to emotional or physiological states that may indicate how important 

the incoming data is, and therefore how much weight it should receive and for how 

long it should be remembered (Lotem & Halpern 2012). We expect the next version 

of the model, which will be capable of dealing in parallel with multiple streams of 

information, to do a much better job of replicating human performance in language 

acquisition. 

5 Conclusion  

In cognitive modeling (as in computer science in general), it is widely 

understood that the abilities of a computational model depend on its choice of 

architecture. The focus on architecture may, however, hinder comparisons of 

performance across models that happen to differ in fundamental ways. The question 

of modeling architecture would be sidelined if a decisive, computationally explicit 

resolution of the problem of language acquisition (say) became available, no matter in 

what architecture. In the absence of such a resolution, the way ahead, we believe, is to 
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adopt a systematic set of design choices – inspired by the best general understanding, 

on the one hand, of the computational problems arising in language and other 

sequentially structured behaviors, and, on the other hand, of the characteristics of 

brain-like solutions to these problems – and to see how far this approach would get us. 

This is what the present project has aimed to do. 

In this paper, we laid out a set of design choices for a model of learning 

grammars of experience, described an implemented system conforming to those 

choices, and reported a series of experiments in which this system was subjected to a 

variety of tests. Our model’s performance largely vindicates our self-imposed 

constraints, suggesting both that these constraints should be more widely considered 

by the cognitive science community and that further research building on the present 

efforts is worthwhile. The ultimate goal of this research program should be, we 

believe, the development of a general-purpose model of learning a generative 

grammar of multimodal experience, which, for the special case of language, would 

scale up to life-size corpora and realistic situations and would replicate the full range 

of developmental and steady-state linguistic phenomena in an evolutionarily 

interpretable and neurally plausible architecture. 
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Table 1: The five most similar nodes to each of 31 nodes from the repertoire. 

Table 2: The stimuli used by Gomez (2002), experiment 1. 

Table 3: The word categories used by Gomez & Lakusta (2004), experiment 1. 

Figure 1: The graph constructed by U-MILA after training on the three-sentence corpus 

shown in the inset in the upper left corner. Note that similarity edges, denoted by double-

headed arrows, are not necessarily symmetric in the model (i.e., the similarity of s to is may 

be different from that of is to s). For clarity, the weights of nodes and edges are not shown.  

Figure 2: The mean precision scores assigned by human judges to sentences from the 

original corpus and to those produced by U-MILA and SRILM (a standard tri-gram model, see 

text) following training on the first 15,000 utterances in a corpus of child-directed speech 

(Suppes, 1974). (A) results for sentences of all lengths pooled together. (B) results pooled 

into bins according to sentence length in words. Error bars denote 95% confidence limits. 

Both models in this experiment were tuned to achieve  perplexity of ppl=40.07. 

Figure 3: Similarities among learned words, plotted by applying multidimensional scaling to 

the tables of similarity scores. (A) the most frequent words in the corpus; percentile range 

95 to 100. (B) percentile range 75 to 80. Proximity among words in these plots generally 

corresponds to intuitive similarity among them.   

Figure 4: Discrimination between words and part-words by human participants (Frank et al. 

2010, exp. 1) and by U-MILA, after training on constant-size corpora that differed in 

sentence length. Both humans and the model perform better when trained on shorter 

sentences. Similar results are achieved for a range of model parameters; discrimination 

scores presented here are for a simulation in flat Markov run mode, using the proportion-

better score described by French et al. (2011). 

captions
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Figure 5: Discrimination between words and part-words by U-MILA  after training on a 

corpus of constant length, composed of words from a cadre of differing size (cadres of 

3,4,5,6, and 9 words). As in humans (Frank et al. 2010, exp. 3), the model achieves better 

discrimination after being trained on small word cadres. This result holds only for a certain 

range of parameters (see text). (A) The mean probability scores assigned to words and to 

part-words for each condition. (B) The difference between the mean probability scores for 

words and part-words for each condition. 

Figure 6: The mean log-probability scores assigned to bi- and tri-syllabic words and non-

words by U-MILA after training on a phonetically encoded corpus of natural child-directed 

speech (see text). The test set was composed of 496 words and 496 non-words (sequences 

that straddled word boundaries) that occurred in the training set. 

Figure 7: Clustering of tri-syllabic words, according to the similarity values assigned by U-

MILA, illustrating implicit categorization. The items, containing both words that appeared in 

the training set and novel words, belong to two artificial micro-languages, of which the 

training set was composed. The clustering reveals two clades that discriminate between the 

two languages with no errors. 

Figure 8: Mean log-probability scores assigned to words and non-words following a training 

set in which words differed from non-words only in their backward transition probabilities. 

Figure 9: Mean log-probability scores assigned to grammatical and ungrammatical sentences 

from an artificial language with long-range dependencies between words, with a single 

intervening word between them, for different sizes of the word pool from which the 

intervening words were taken during the training (2, 6, 12, 24). Grammatical sentences are 

significantly preferred by U-MILA in all conditions, contrary to the finding by Gomez (2002), 
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in which the preference was significant only for the largest word pool size. This is in accord 

with Gomez's explanation of the finding (see text). 

Figure 10: Mean log-probability scores assigned to grammatical and ungrammatical 

sentences from an artificial language with long-range dependencies between words. 

Grammatical and ungrammatical sentences differ in the number of syllables (1 or 2) 

separating the two dependent elements. Similar to infants in experiment 1 of Gomez & 

Lakusta (2004), U-MILA successfully differentiates between sentences with different lengths 

of dependency, even when these contain novel intervening syllables. 

Figure 11: The mean log-probability scores assigned to words and to non-words after 

training in one of two conditions, which differed only in the order of sentence presentation. 

In the Variation set condition, a lexical overlap was present in 20% of adjacent sentences; in 

the Scrambled condition, there were no such overlaps. Similar to human participants in 

Onnis et al. (2008), U-MILA discriminates significantly better between words and part-words 

in the Variation set condition (right). 

Figure 12: The mean scores assigned to grammatical and non-grammatical instances of 

auxiliary verb fronting, following training on a corpus of natural child-directed speech that 

did not contain explicit examples of auxiliary fronting in polar interrogatives (logarithmic 

scale; following Reali & Christiansen 2005). In a forced-choice preference test, 89 of 95 pairs 

of grammatical and ungrammatical instances of auxiliary verb fronting were classified 

correctly.      

Figure 13: A grammar learned by U-MILA and the rewrite rules that correspond to it. The 

graph is a simplified version of the full representation constructed by the model.  
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Figure S1: The mean precision scores assigned by human judges to sentences from the 

original corpus and to those produced by U-MILA and SRILM (a standard tri-gram model, see 

text) following training on the first 15,000 utterances in a corpus of child-directed speech 

(Suppes, 1974). (A) results for sentences of all lengths pooled together. (B) results pooled 

into bins according to sentence length in words. Error bars denote 95% confidence limits. 

The respective perplexity scores of the two models are pplU-MILA=40.07, pplSRILM=22.43. 

Figure S2: A grammar learned by U-MILA and the rewrite rules that correspond to it. The 

graph is a simplified version of the full representation constructed by the model.  
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BEGIN END 

a  ___  a 

b  ___  b 

Temporal edge 

Slot-filler edge 
 

a 

b a a a 

Examples of output sequences: 
 
BEGIN b a b a b a a a b a b a b END  
BEGIN b a b END  
BEGIN a b a a a b a END  
BEGIN b a b a b a b b b a b a b a b END  
BEGIN a b a b a b b b a b a b a END  
BEGIN b a b a b a b a b END  
BEGIN a b a b b b a b a END  
BEGIN a b a b a b a END  
BEGIN b b b END  
BEGIN a b a b a b a b a b a b a b a END  
BEGIN b a b b b a b END 
BEGIN a b a b a b a b a b a b a END 
 
The learned grammar is equivalent to the 
following set of rewrite rules: 
 
BEGIN (a b)n {a, b, a a a} (b a)n END 
BEGIN (a b)n a {a, b, b b b} a (b a)n END 
BEGIN (b a)n {a, b, b b b} (a b)n END 
BEGIN (b a)n b {a, b, a a a} b (a b)n END 
 

n Є {0,1,2,…} 

b b b 

Figure 13
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  node 5 most similar nodes
1
 

           the 20 most frequent nodes in repertoire                                         

1 The a ; this ; your ; that ; the ___ ? 

2 You we ; they ; Nina ; he ; I 

3 S is ; was ; does ; s on ; s not 

4 what who ; where ; it ; there ; here 

5 the ___ ? the ; your ; your ___ ? ; the ___ ; it 

6 A the ; this ; that ; your ; a ___ ?  

7 To on ; in ; to ___ to ; into ; to play with 

8 Is s ; was ; does ; did ; what is 

9 That it ; this ; there ; here ; he 

10 It that ; he ; there ; this ; she 

11 you ___ ? you ; you ___ the ; we ; you ___ to ; the 

12 what ___ ?  what ; it ; the ; Nina ; where 

13 On in ; did ; to ; for ; under 

14 s ___ s ; s ___ the ; s ___ ? ; ? ; s ___ s 

15 you ___ to you ; to ; we ; you want to ; going to 

16 Are did ; were ; do ; color are ; what are 

17 Do did ; are ; have ; see ; eat 

18 I you ; we ; they ; fix ; she 

19 He she ; it ; Nina ; that ; there 

20 In on ; to ; inside ; at ; on top of 

          additional examples from the repertoire                                         

21 where what ; who ; there ; here ; it 

22 is it is that ; are they ; were they ; is he ; was it 

23 Go have ; went ; do ; get ; going 

24 know want ; remember ; see ; want to ; see it 

25 By in ; on ; at ; where ; up 

26 bunny  rabbit ; boy ; elephant ; dolly ; doll 

27 the horse Nina ; it ; the boy ; the fish ; he 

28 white purple ; red ; big ; doll ; present 

29 pretty soft ; cute ; good ; called ; wet 

30 Me you ; her ; Linda ; Mommy ; it 

31 which this ; the ; that ; what ___ that ; where  

 

                                                           
1
 We present the 20 most frequent nodes, because their statistics are the most extensive, and so their 

categories are likely to be meaningful, and 11 examples of slightly less frequent nodes, which provide 

some insight into the model’s categorization (see main text). The symbol s that appears as a node or as 

part of a node pertains to the sequence ’s, which is transcribed in the corpus as a stand-alone s, as in 

that s a bunny.      

Table_1
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Test strings 
 
 Language 1 
pel wadim rud 
vot wadim jic 
dak wadim tood 
pel kicey rud 
vot kicey jic 
dak kicey tood 

Language 2 
pel wadim jic 
vot wadim tood 
dak wadim rud 
pel kicey jic 
vot kicey tood 
dak kicey rud 

Language 1 
 
S → {  aXd 
           bXe 
           cXf } 

Language 2 
 
S → {  aXe 
           bXf 
           cXd } 

X → x1, x2, … , xn 
  ;   n = 2, 6, 12 or 24  

Table_2
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An annotated pseudocode of U-MILA’s learning process  

1. Add to graph: if not encountered previously, add the token to the graph as a base node. 

2.  Update short-term memory and search for alignments (top-down segmentation):  

2.1 Insert the new token into the short term memory queue; 

2.2 Conduct a greedy search and create a list of newly-completed alignments within the 

queue.  

This procedure uncovers both identically repeating sequences and partially-

repeating sequences. Partially repeating sequences are those in which the 

beginning and end are identical but internal parts vary. The former are added to 

the list as they are and the latter are added as slot collocations. The internally 

varying sequences are added to a secondary list. Maximum allowed length of 

internal non-identical section is a model parameter.  

2.3 Add each element in the list to the graph with probability proportional to c de  .
1,2

 

Sequences from the secondary list are added if their container sequences are added 

or if their container sequences are previously known; the slot-interchangeability-

within-window fields of the paired sequences are updated accordingly.
 

                                                           
1
 c is 0.15·Dshort_term, where  Dshort_term  is the short-term memory decay parameter and d is the 

distance between the two overlaps in units of characters or of tokens. 

2
 This procedure realizes the idea of searching for a recurrence within a short time window, which 

is implemented here, with an eye towards biological realism, as a probabilistic event. The 

recurrence of a sequence has a higher probability of being discovered and the sequence being 

added to the graph if the two occurrences are near each other. It is customary to view the 

‘effective distance’ in this setting as the distance over which the probability of discovery drops 

below a certain value , and thus to abstract it to an ‘effective window’ (cf. Goldstein et al., 

2010).  

supplementary 1
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2.4 Ensure greedy updating: if a newly-added sequence contains a sequence added 

following the previous token-reading, remove the shorter sequence. Thus, for 

example, a recurrence within the short-term memory of the phrase “dogs and cats” 

will not lead to inclusion in the graph of “dogs and” as a collocation in itself but 

only of the complete phrase “dogs and cats”. 

3. Update temporal relations and construct collocations (bottom-up):
3
  

3.1 Create a list of all nodes in the graph that terminate the short-memory sequence 

(i.e., those that have been completed by the recent token’s addition; e.g., adding the 

token “to” to the queue “John is going” completes the possible nodes “is going 

to”, “is ____ to”, “going to”, and “to”). Create a corresponding secondary list of 

sequences which fill the slot of slot-collocations in the primary list (e.g., “going” 

fills “is ____ to” in the example). 

3.2 Update or add temporal edges between each node in the current list (X) and the 

nodes in a previously found list that contains the nodes ending just before node X’s 

location of beginning (e.g., “going to” in the previous example begins where “is” 

and “John is” end)
4,5

 . 

                                                           
3
  Steps 3.1 to 3.3 are a way of updating all temporal relations among known units in the graph 

that are affected by the encounter with the current token, such as the relation between “the” and 

“boy” when “boy” is encountered in the input and the previous word in the input was “the”. 

Although these steps are highly technical, they are ultimately rooted in associative lookup and 

in weight updates in neural networks, operations that in turn have biological counterparts. 

4
 Note that, for biological plausibility, changes to the graph structure by addition of edges or by 

update of edge weights, are spatially local. These changes do not trigger secondary effects such as 

weight normalization. 

5
 Note that this update rule treats all nodes equally, increasing all edge weights by an identical 

increment. Over the course of learning, this causes nodes that encode shorter sequences to 
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3.3 Update slot-candidacy edges of all nodes that are within slot collocations in the 

primary list. 

3.4 For each pair of nodes A,B between which a temporal link has been updated, 

create a new supernode, A+B, if sanctioned by Barlow’s (1990) principle of 

suspicious coincidence in conjunction with a prior (Pc): 

( )
1

( ) ( ) 1
G G

P A B Pc

P A P B Pc
 

 
 


 

    
, 

Here, ‘=>’ denotes the relation ‘is followed by,’ and so ( )P A B  denotes the 

estimate of the probability that node A is followed by node B. Pc denotes the prior 

against collocations, which is a parameter of the model. The higher Pc is, the 

higher the value of suspicious coincidence index must be to result in concatenating 

two nodes into a supernode. 

A pair of nodes A,B may be combined to a supernode A+B only if both had 

occurred in the input at least MinOccs times, where MinOccs is a model parameter. 

This ensures that some minimal statistics regarding the nodes’ properties are 

collected before constructing higher hierarchies. 

 

 

                                                                                                                                                                             
accumulate high weights, compared to those of nodes that represent longer ones. This effect is 

exacerbated by the fact that it may take a long time for multi-word sequences to be recognized as 

units and to begin their weight accumulation process. Fine-tuning the weight update parameters 

may redress this imbalance in future implementations of the model. 
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Supplementary material 2: results 

1.1 Study 1: generative performance  

A key purpose of acquiring a grammar-like representation of language is the 

ability to generate acceptable utterances that transcend the learner’s past experience, 

that is, the corpus of language to which it has been exposed. This ability is typically 

tested by evaluating the model’s precision, defined as the proportion of sentences 

generated by it that are found acceptable by human judges, and recall, defined as the 

proportion of sentences in a corpus withheld for testing that the model can generate 

(see Solan et al., 2005, for an earlier use of these measures and for a discussion of 

their roots in the field of information retrieval). Given that sentence acceptability is 

better captured by a graded than by an all-or-none measure (Schütze, 1996), we 

employed graded measures in our estimates both of recall and of precision. 

A commonly reported graded counterpart for all-or-none recall is perplexity: the 

(negative logarithm of the) mean probability assigned by the model to sentences from 

the test corpus (see, e.g., Goodman, 2001, for a definition). Because in practice 

perplexity depends on the size and the composition of the test set, its absolute value 

has less meaning than a comparison of per-word perplexity values achieved by 

different models; the model with the lower value captures better the language’s true 

empirical probability distribution over sentences (cf. Goldsmith, 2007). In the 

experiment described below, we compared the perplexity of our model to that of a 

smoothed trigram model implemented with publicly available code (Stolcke, 2002).  

For precision, a graded measure can be obtained by asking subjects to report, on 

a scale of 1 to 7, how likely they think each test sentence (from a corpus generated by 

the model) is to appear in the context in question (Waterfall et al., 2010). Because our 

model was trained on a corpus of child-directed speech, we phrased the instructions 

supplementary 2
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for subjects accordingly (see below), and included in the test set equal numbers of 

sentences generated by the two models and sentences taken from the original corpus. 

Perplexity and the precision of a model must always be considered together. A 

model that assigns the same nonzero probability to all word sequences will have good 

perplexity, but very poor precision; a model that generates only those sentences that it 

has encountered in the training corpus will have perfect precision, but very poor recall 

and perplexity. The goal of language modeling is to achieve an optimal trade-off 

between these two aspects of performance — a computational task that is related to 

the bias-variance dilemma (Geman, Bienenstock & Doursat, 1992). Striving to 

optimize U-MILA in this sense would have been computationally prohibitive; instead, 

we coarsely tuned its parameters on the basis of informal tests conducted during its 

development. We used those parameter settings throughout, except where noted 

otherwise (see suppl. material).   

For estimating perplexity and precision, we trained an instance of the model on 

the first 15,000 utterances (81,370 word tokens) of the Suppes corpus of transcribed 

child-directed speech, which is part of the CHILDES collection (MacWhinney, 2000; 

Suppes, 1974). Adult-produced utterances only were used. The relatively small size of 

the training corpus was dictated by considerations of model design and 

implementation (as stated in section 2, our primary consideration in designing the 

model was functional realism rather than the speed of its simulation on a serial 

computer). For testing, we used the next 100 utterances that did not contain novel 

words. 
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1.1.1 Perplexity over withheld utterances from the corpus 

We used a trained version of the model to calculate the production probability 

of each of the 100 utterances in the test set, and the perplexity over it, using a standard 

formula (Jelinek, 1990; Stolcke, 2010) 

log( ( ))

10
s

P s

nPerplexity




   

where P(s) is the probability of a sentence s, the sum is over all the sentences in 

the test set, and n is the number of words in the whole test set. 

The resulting perplexity was 40.07, for the similarity-based generalization and 

smoothing parameters used throughout the experiments (see SM1). This figure is not 

as good as the perplexity achieved over this test set, after the same training, by a 

trigram model (SRILM; see: Stolcke, 2002) using the Good-Turing and Kneser-Ney 

smoothing: respectively, 24.36 and 22.43. As already noted, there is, however, a 

tradeoff between low perplexity and high precision, and, indeed, the precision of the 

tri-gram model fell far short of that of U-MILA (see below). By modifying our 

model’s similarity-based generalization and smoothing parameters, perplexity could 

be reduced to as low as 34 (with Pgeneralize=0.2, Prand=0.01) and perhaps lower, at a 

cost to the precision performance. At the other extreme, precision results are expected 

to rise as the similarity-based generalization parameter is lowered; when it is set to 

zero, the perplexity rises to 60.04.  

Smoothing and generalization enable the model to assign a certain probability 

even to previously unseen sequences of units within utterances and thus prevent the 

perplexity from rising to infinity in such cases. It is interesting to note that when the 

generalization parameter is set to its default value (0.05), smoothing has only a 
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negligible quantitative effect on the perplexity, and setting it to zero leads to 

perplexity of 40.76, as opposed to 40.07 when it is set to 0.01.  

1.1.2 Precision: acceptability of sentences produced by the learner 

To estimate the precision of the grammar learned by U-MILA and compare it to 

a trigram model, we asked adult English speakers to rate the acceptability of 50 

sentences generated by each of the two models, which had been mixed with 50 

sentences from the original corpus (150 sentences altogether, ordered randomly). 

Sentences were scored for their acceptability on a scale of 1 (not acceptable) to 7 

(completely acceptable) (Waterfall, Sandbank, Onnis, & Edelman, 2010). As the 50 

sentences chosen from the original corpus ranged in length between three and eleven 

words, in the analysis we excluded shorter and longer sentences generated by U-

MILA and by the trigram model (SRILM). As noted above, the perplexity should not 

be disregarded when evaluating precision, because of the tradeoff between them. This 

analysis was thus carried out twice, once with the smoothing parameters in the trigram 

model set to optimize its perplexity score (ppl=22.43) and once with the parameters 

set to achieve ppl=40.07, the perplexity achieved by U-MILA with the parameter 

values used in all runs. 

Six subjects participated in the first precision experiment. The results (see Fig. 

2A in the main text) indicated an advantage of U-MILA over SRILM (t = 3.5, p < 

0.0005, R procedure lme: D. Bates, 2005). Sentences from the original corpus 

received a mean score of 6.59; sentences generated by U-MILA, 5.87; sentences 

generated by SRILM, 5.41. Further mixed-model analysis (R procedure lmer: D. 

Bates, 2005) of results broken down by sentence length (see Fig. 2B in the main text) 

yielded a significant interaction between sentence source and length for both models 

(U-MILA: t=-3.2; SRILM, t=-3.8). A comparison of the interaction slopes, for which 
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we used a 10,000-iteration Markov Chain Monte Carlo (MCMC) run to estimate the 

confidence limits on the slope parameters (R procedures mcmc and HPDinterval), did 

not yield a significant difference. 

[see Fig. 2A and Fig. 2B in the main text] 

In the second precision experiment, six subjects (none of whom participated in 

the first experiment) evaluated the test sentences. The results obtained this time, when 

SRILM was set to optimize its perplexity, underscore the tradeoff between perplexity 

and precision: they  indicate an even stronger advantage of U-MILA over SRILM (see 

Fig. S1A; t=14.4, with p effectively equal to 0; R procedure lme: D. Bates, 2005). 

Sentences from the original corpus received a mean score of 6.7; sentences generated 

by U-MILA, 6.22; sentences generated by SRILM, 4.2. Including all the generated 

sentences led to a similar outcome (original: 6.7; U-MILA: 5.91; SRILM: 3.78). 

When broken down and plotted by sentence length, the results (see Fig. S1B) 

indicated a faster degradation in score for SRILM- than for U-MILA-generated 

sentences. A mixed-model analysis  (R procedure lmer: D. Bates, 2005) confirmed a 

significant interaction between model type and sentence length for both models (U-

MILA: t=-2.57; SRILM, t=-4.03). A comparison of the interaction slopes of the two 

models, for which we used a 10,000-iteration Markov Chain Monte Carlo (MCMC) 

run to estimate the confidence limits on the slope parameters (R procedures mcmc and 

HPDinterval), did not yield a significant difference. Interestingly, however, the same 

type of analysis indicated that the score vs. sentence length slope for the original 

corpus sentences did not differ from that of U-MILA, while the slope for SRILM-

generated sentences was significantly larger than for the original ones. 

[Fig. S1A and S1B should be here] 
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U-MILA’s advantage in precision can be understood in light of its exemplar-

based approach: sequences of words picked up on the strength of actual corpus 

appearance, particularly within a variation set, are guaranteed to belong together, and 

thus once a collocation is entered, the sentence generation process, like a well-

entrenched behavioral habit, will proceed to its end, reducing the probability of 

sentence fragmentation to which n-gram models are susceptible.  

It should be noted that the actual amount of linguistic input that human learners 

are exposed to during the first years of their life (Bates & Goodman, 1999) is greater 

by two or three orders of magnitude than the corpus on which U-MILA was trained. 

Training on such a corpus, which was impossible with the present implementation 

(aimed at transparency and not optimized for speed and memory usage), should 

significantly improve U-MILA’s perplexity both directly and indirectly, by allowing 

for better statistics regarding the edge profile of each node, on which the 

substitutability calculation is based. 

 

1.2 Equivalence-class inference 

The U-MILA model does not attempt to cluster words into “crisp,” task-

independent equivalence classes in which every word is either a member or not a 

member in any given syntactic or semantic cluster (for classical arguments advocating 

graded, task-dependent categories, see Barsalou, 1987; Lakoff, 1987; Rosch, 1978). 

The information accrued in the graph does, however, support ad hoc similarity-based 

grouping of units, when needed.  

To illustrate the model’s ability to learn useful similarity relations from a corpus 

of natural language, we offer two characterizations of such relations, using the same 

version of the model, trained on a corpus of child-directed speech, as in section 3.1. 
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First, in Table 1, we list the five nodes that are most similar to each of the 20 most 

common nodes in the graph, as well as to each of 11 other chosen nodes. Not 

surprisingly, the most common nodes are all function words or slot collocations built 

around function words; their similarity neighbors generally make sense. Thus, in 

example 1, the neighbors of the determiner the are all determiners, and the neighbors 

of the pronoun you are pronouns. Likewise, verbs are listed as similar to verbs or verb 

phrases (sometimes partial) and nouns — to other nouns or noun phrases (examples 

24 and 27). In some cases, the similarity grouping creates openings for potential 

production errors, as in example 31, where the list of nodes similar to which contains 

words from both its main senses (interrogative and relative). Such errors could be 

avoided if more contextual data were retained by the learner. 

 [see Table 1 in the main text] 

 Our second illustration of the manner in which U-MILA captures similarity 

among words takes the form of two plots generated from similarity tables by 

multidimensional scaling (Shepard, 1980). We used the Matlab procedure mdscale to 

reduce the dimensionality of the word similarity space to 2, while preserving as much 

as possible the interpoint distances. To keep the resulting plots legible, we sorted the 

words by frequency and generated layouts for two percentile ranges: 95-100 and 75-

80 (Fig. 3A and 3B, respectively). As in the previous analysis, the first of these plots, 

which corresponds to more frequent items, consists mostly of function words and 

auxiliary verbs, while the second contains open-class words. In both plots, the 

proximity among word locations in the map generally corresponds to their intuitive 

similarity.  

[see Fig. 3A and 3B in the main text] 
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For its estimates of similarity, U-MILA presently relies only on “first-order” 

context data, that is, it retains, in the form of temporal edges, information regarding 

which nodes occurred immediately before and after which. Many phenomena in 

sequence processing, including, of course, language, require, however, contextual 

information that is both wider-ranging and conceptually broader. In particular, such 

information can take the form of association between nodes that is not necessarily 

sentence-sequential, such as that between beach and sand. Such associations are not 

supported by the present implementation, although the model can be easily extended 

to incorporate them, by adding extra fields for various types of similarity bookkeeping 

to each node, ultimately implementing the idea that the similarity of words should be 

defined in terms of the similarities of their sentential contexts and vice versa (Karov 

& Edelman, 1996). 

1.3 Comparison to the TRACX model (French, Addyman, & Mareschal, 2011) 

Our next set of studies has been inspired by a recent paper by French, Addyman 

& Mareschal (2011) that describes a connectionist model of unsupervised sequence 

segmentation and chunk extraction, TRACX, and compares its performance on a 

battery of tests, most of them reproductions of published empirical experiments, to 

that of several competing models, including PARSER (Perruchet & Vinter, 1998) and 

a generic simple recurrent network (SRN; Elman, 1990). Although sequence 

segmentation is only one of the many aspects of language acquisition that our 

approach (but not TRACX or similar models) can address, we found the collection of 

tests described by French et al. (2011) extremely useful in positioning U-MILA in a 

burgeoning research field where comparison with existing models is important. 
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1.3.1 Saffran, Aslin & Newport (1996), experiment 1 

In a groundbreaking study, Saffran, Aslin & Newport (1996) showed that 8-

month old infants can learn to segment a continuous stream of syllables into “words” 

using only the transition probabilities between adjacent syllables as cues. A set of 12 

syllables was used to construct six tri-syllabic words. In the training phase, subjects 

were exposed to a sequence of 90 words, composed from this six-word cadre, 

randomly selected and ordered so as to avoid immediate repeats; there were no pauses 

anywhere between syllables. Subjects were then tested for ability to discriminate 

between words (syllable sequences with high transitional probability) and non-words 

(sequences consisting of the last syllable of one word and the first two syllables of the 

next one), using a preferential looking paradigm.  

Following Saffran et al. (1996), French et al. (2011) created a language of four 

tri-syllabic words and trained their model learner on a sequence of 180 words with no 

immediate word repetitions. The model was then tested for its ability to discriminate 

between words and non-words, and did so successfully.  

We used the stimuli of French et al. (2011, supporting online material) as the 

training set for U-MILA and tested it on the same 4 words and 4 non-words used by 

French et al. All test words were assigned higher probability scores (see section 2.7) 

than non-words, achieving perfect discrimination between the two groups, with the 

difference approaching significance despite the small number of items (Wilcoxon 

signed rank test, one-sided; V = 10, p < 0.0625). Running the model in the flat-

Markov mode (by disabling the acquisition of hierarchical representations) led to 

perfect discrimination between words and non-words. This is not surprising, as the 

distinction between words and non-words here is based by definition solely on 
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forward transition probabilities, which is the (only) feature represented by such a 

Markov model. 

1.3.2 Aslin, Saffran & Newport (1998)  , experiment 1 

The words in the Saffran et al. (1996) experiment were heard three times as 

often as their counterpart non-words. To remove this potential frequency confound, 

Aslin, Saffran & Newport (1998) constructed a training sequence composed of four 

tri-syllabic words, two of which occurred at a high frequency and two half as often. 

Thus, the non-words spanning the boundary between the two high-frequency words 

had the same number of occurrences as the low-frequency words; the within-word 

transition probabilities remained higher than those in the non-words. In a testing 

paradigm similar to that used by Saffran et al. (1996), infants discriminated 

successfully between the low-frequency words and the non-words that spanned high-

frequency word boundaries. 

French et al. (2011) constructed a dataset analogous to that of Aslin et al. 

(1998), composed of a 270-word training sequence. Both the TRACX and the SRN 

models successfully discriminated between the words and non-words in the analogous 

test. Using the same training and test sets, U-MILA performed perfectly, always 

assigning a higher probability score to low-frequency words than to non-words 

(Wilcoxon signed rank test, one-sided; V = 10, p < 0.0625; the seemingly low 

significance value despite the perfect discrimination is determined by the small 

number of items in the test set). As in the previous experiment, using our model in the 

flat-Markov mode achieved similar results. 
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1.3.3 Perruchet and Desaulty (2008), experiment 2: forward transition 

probabilities 

In the study by Perruchet and Desaulty (2008), adult subjects listened to a 

training sequence of 1035 words, each occurring 115 times in a random order. The 

nine bi-syllabic words were constructed from syllables drawn from a 12-syllable set. 

Words and non-words appeared in the training set with the same frequency, and 

differed in that within-word transition probabilities were equal to 1, while transition 

probabilities within non-words was lower. Following training, the subjects had to 

indicate for each test item whether or not it was a word that appeared during training. 

The subjects performed at a level significantly better than chance. French et al. (2011) 

constructed an analogous dataset and testing scheme and showed that both the 

TRACX and the SRN models learned successfully to discriminate between words and 

non-words.  

Following training with the same dataset, U-MILA also successfully 

differentiated between words and non-words (Wilcoxon signed rank test, one-sided; V 

= 21, p < 0.016), assigning words a mean probability more than four times greater 

than the probability assigned to non-words. Unlike in the previous experiments, 

running the model in its flat-Markov mode did not lead to successful discrimination.
1
  

To tease apart the effects of the two mechanisms by which U-MILA detects 

“words” in this task, we trained and tested two “lesioned” versions of the model. In 

the first instance, we disabled the alignment procedure (using run-mode “phonoloop 

                                                           
1
 This is due to a frequency difference in the training set between first syllables of words 

compared to first syllables of non-words: the latter were more frequent. Because the 

probability estimation procedure (section 2.7) takes into account the absolute probability of 

occurrence of the first syllable in the sequence, the frequency difference in favor of non-

words balanced the higher internal transition probabilities in words, and the overall effect was 

that words and non-words were assigned similar probabilities. 
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collocation”; see section 2.4); second, we disabled statistical collocation detection 

(run-mode “bottom-up collocation”). Surprisingly, both modified versions of the 

model performed well. This was expected with alignment disabled and collocation 

detection in place, because the collocation procedure is based on the relative 

probability of joint occurrence, of which high forward transition probabilities are a 

special case. Good performance was, however, unexpected in the second instance, in 

which chunking occurred solely by alignment. An inspection of the training set 

resolved this conundrum: it turns out that the distribution of adjacent repeats (cases in 

which a two-syllable sequence occurs in succession) was different for words and for 

non-words. For example, all the test words occurred repeatedly at least three times, 

while three of the non-words did not occur repeatedly at all. If this was also true of 

Perruchet & Desaulty’s (2008) original training set, it may have played a part in their 

findings.
2
 

1.3.4 Perruchet and Desaulty (2008), experiment 2: backward transition 

probabilities 

The second experiment reported by Perruchet & Desaulty (2008) was the first to 

show that adults can segment chunks out of continuous auditory input on the basis of 

backward transition probabilities. In the training sequence, for each syllable pair 

defined as a word (e.g., X A), the second syllable’s occurrences were always preceded 

by those of the first (X occurs before every occurrence of A), but not vice versa: the 

first syllable (X) could be followed by any of a number of syllables (A, B, and C). The 

overall frequency of test words and test non-words was identical. Forward transition 

                                                           
2
 Note that U-MILA seeks alignments not only when these are adjacent; we report here 

adjacency of repeated occurrences in order to illustrate that the distribution of words in the 

dataset was very different from that of non-words. 
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probabilities within words were lower than those straddling word boundaries (0.2 as 

opposed to 0.33), while backward transition probabilities were significantly higher 

within words as opposed to within non-words (i.e., across word boundaries; 1 as 

opposed to 0.2). In the forced choice test, adult participants chose words significantly 

more than they chose non-words, as did the TRACX model of French et al. (2011). 

The SRN model failed in this task.  

In our replication of this experiment, which used the same training and test sets, 

U-MILA successfully assigned significantly higher scores to words than to non-

words: the mean probability assigned to words was almost six times greater than that 

assigned to non-words (Wilcoxon signed rank test, one-sided; V = 21, p < 0.016). As 

expected, the run in a flat-Markov mode did not differentiate between words and non-

words. An exploration similar to the one described in the previous experiment 

revealed that the model, when run in phonoloop collocation mode, assigns higher 

mean probabilities to words than to non-words, contrary to what could have been 

expected. Here, too, this stems from a different distribution of adjacent occurrences of 

words as opposed to that of non-words. 

1.3.5 Giroux and Rey (2009) 

The chunking experiment of Giroux & Rey (2009) is the only one taken up by 

French et al. (2011) that we did not replicate in full. As explained below, this is due to 

the functional need to address issues in derivational morphology that are beyond the 

scope of models that focus merely on sequence chunking, yet are of central concern to 

a comprehensive model of language such as U-MILA. 

Giroux & Rey (2009) showed that once a lexical unit (“sub-chunk”) is 

assimilated into a larger one (“chunk”), it becomes progressively harder to recognize. 
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French et al. (2011) constructed a training corpus composed of two-, three- and four-

syllable words, including the word klmn, and repeatedly exposed the TRACX model 

to this corpus. At first, the model recognized kl, lm, and mn as separate chunks, which 

it then gradually merged into larger units (klm and then klmn). As learning proceeded, 

the shorter chunks were forgotten by the model. 

When trained on this training corpus, U-MILA recognized all chunks and sub-

chunks (kl, lm, mn, klm, lmn, klmn) as independent units. The reason that our 

language-oriented version of the model does not eliminate sub-chunks even after they 

are incorporated into larger units is that this step would be counterproductive in many 

cases; for instance, it would cause the word dead to be forgotten after learning the 

word deadline.
3
 

1.3.6 Frank, Goldwater, Griffiths & Tenenbaum (2010), experiment 1 

In their first experiment, Frank, Goldwater, Griffiths & Tenenbaum (2010) 

explored the effect of sentence length on the subjects’ ability to extract words from it. 

To do so, they used a set of 18 syllables to construct two 2-syllable words, two 3-

syllable words, and two 4-syllable words, with no shared syllables among the six 

words. Participants heard a sound stream consisting of 144 of these words, randomly 

ordered and divided into “sentences” by short pauses. They tested eight groups of 

participants, all of whom heard the same sequence, but for each group it was divided 

                                                           
3
  In contrast, the version of the model that was applied to birdsong (Menyhart, Kolodny, 

Goldstein, DeVoogd, & Edelman, submitted) does implement this step, and thus eliminates 

from the grammar units that are wholly contained in others if the weights of the two units (a 

proxy of their frequency of occurrence) differ by less than a certain threshold (e.g., 10%). In 

this manner, wholly contained units are eliminated, unless they occur in other contexts as 

well. This solution seems somewhat artificial and should probably be replaced by a 

probabilistically motivated weight updating scheme. 
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into a different number of sentences: 144, 72, 48, 36, 24, 18, 12, corresponding to 

sentences of lengths 1, 2, 3, 4, 6, 8, 12, 24.  

French et al. (2011) composed a similar dataset, with the words ab, cd, efg, hij, 

klmn, opqr, and trained and tested TRACX in each of the conditions, presenting each 

sentence during the training six times. Similarly to the subjects of Frank et al. (2010), 

TRACX discriminated between words and part-words (i.e. non-words composed of 

the last and the first parts of adjacent words) better as the sentence length got shorter, 

achieving a correlation of 0.92 with the human results; the correlation of the SRN 

model’s results with the human data was 0.60.  

We ran U-MILA in a variety of modes and parameter values, training and 

testing it as did French et al. (2011), and found the same qualitative trend: the model 

exhibits better discrimination between words and non-words as the sentences get 

shorter (see Fig. 4). This result holds for a range of parameters, with correlation with 

the human data ranging from 0.49 to 0.87. We attribute little importance to the 

specific correlation value, as this measure is quite variable and is sensitive to multiple 

assumptions and design choices that are rather arbitrary.
4
 For instance, using as the 

measure of discrimination success the difference between the mean probability 

assigned to words and that assigned to non-words leads to a correlation of 0.81, while 

analyzing these same results using the proportion-better score (French et al., 2011) 

leads to a correlation of 0.49. Notably, even running the model in its flat-Markov 

mode yields the same trend in discrimination ability among the different experimental 

conditions, with a correlation coefficient of 0.82 for the proportion-better score. In 

                                                           
4
  Our model assigns higher scores to words than to part-words in all cases, and so we cannot 

use a percentage of correct classifications as our measure of discrimination ability. Different 

measures of discrimination reflect different possible mechanisms of stochastic decision-

making regarding such discrimination; we remain agnostic as to which is the most realistic.  
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any case, improved discrimination for shorter sentences may be explained by the fact 

that the splitting of the dataset into more sentences is not done at random locations, 

but at the borders between words. Thus, the overall number of occurrences of each 

word in the dataset does not change from one condition to another, while the number 

of part-word occurrences changes significantly, becoming smaller as the sentence gets 

shorter. 

[see Fig. 4 in the main text] 

1.3.7 Frank, Goldwater, Griffiths & Tenenbaum (2010), experiment 3 

The next experiment of Frank et al. (2010) replicated by French et al. (2011) 

explored the effect of the size of the language’s vocabulary on the difficulty of 

differentiating between words and non-words in it. The training set in this experiment 

consisted of four-word sentences, in which the words were drawn from a cadre of 

differing size, from three to nine words, depending on condition. Words varied in 

length from two to four syllables, and there was an equal number of two-, three- and 

four-syllable words in the training corpora for the various conditions. Frank et al. 

(2010) found that as the word cadre got smaller, the subjects’ ability to discriminate 

between words and non-words following the training improved. French et al. (2011) 

replicated this finding with the TRACX model, but not with SRN.  

We applied U-MILA to the same dataset used by Frank et al. (2011) in a range 

of modes and run parameters. Learning was successful in all cases, but the trend in 

which a larger word cadre leads to weaker discrimination was found to occur only 

under a specific range of parameters. Specifically, it was obtained when the model 

was run in the flat-Markov mode, or when the prior against creating collocations was 

strong and the phonological loop coefficient of decay was very large or the alignment 
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module disabled. The score used in all cases was the difference between the mean 

probability assigned to words and that assigned to non-words. An analysis of 

covariance (R procedure lm) applied to a typical finding (see Fig. 5A, 5B) yielded 

significant effects of word-hood (t = 3.0, p < 0.0039) and vocabulary size (t = −5.46, 

p < 0.0000015) and a significant interaction (t = 2.1, p < 0.04). The absence of the 

effect of vocabulary size for some parameter settings can be explained by observing 

that our implementation (unlike humans) has no limitations on simultaneously 

tracking the statistics of as large a number of syllables as required by the task, and 

thus finds it as easy to keep tabs on 27 syllables as on 9.  

[see Fig. 5A and 5B in the main text] 

1.3.8 French, Addyman & Mareschal (2011), simulation 8 

In this experiment, French et al. (2011) applied their model to a phonetically 

encoded corpus of natural child-directed speech (Bernstein-Ratner 1987; Brent & 

Cartwright, 1996). This corpus of 9,800 sentences contains 1321 distinct words and a 

total of 33,400 words and 95,800 phonemes. Sentences in the corpus have no pauses 

between words, the objective of the model being to extract the words from the 

continuous stream of phonemes. During the learning phase, French et al. (2011) 

presented their model with each sentence six times in succession, completing five 

passes through the corpus. The test phase was patterned after the tests in the 

previously described simulations: equal numbers (496) of bi- and tri-syllabic words 

and part-words from the corpus were individually presented to the model, and the 

average error over the model’s output layer units was used as a measure of the 

model’s error. Their TRACX model showed significantly better learning of words 

than of non-words.  
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We trained the U-MILA model with a single run on the same dataset and tested 

it as in the previous simulations by having it assign probabilities to each word/part-

word in the test set. The model assigned significantly higher probability scores to 

words than to part-words, for both bi- and tri-syllabic words/part-words (see Fig. 6). 

An analysis of covariance (R procedure lm) yielded significant effects of word-hood (t 

= 2.1, p < 0.035) and number of syllables (t = −7.08, p < 2.9X10
−12

) and no 

interaction.  

Of the 496 words in the test set, 362 were recognized by U-MILA as units, and 

received a status of a supernode in the graph. Of these, 271 were uncovered by both 

collocation mechanisms (top-down segmentation, which recognizes recurring 

sequences through alignment, and bottom-up segmentation based on repeated co-

occurrence of the syllables), 24 were uncovered by the alignment mechanism only, 

and 67 were found by the bottom-up mechanism only. Thus it seems that on this short 

natural language corpus, the mechanisms complete each other to some extent, with a 

significant overlap among them. 

 

 [see Fig. 6 in the main text] 

1.3.9 French, Addyman & Mareschal (2011), simulation 10 

In their experiments 9 and 10, French et al. (2011) explored their model’s 

ability to cluster its internal representations so as to correspond to categories in the 

training data. We reproduced the second, more complex of these experiments. The 

stimuli in the original experiment came from two microlanguages, each composed of 

three-letter words. Each word in language A was constructed as follows: the first 

letter was randomly chosen from {a,b,c}, the second letter from {d,e,f}, and the third 

Cognitive Science 2013 in press



letter from {g,h,i}. Similarly, each word in language B consisted of a letter from 

{d,e,f}, a letter from {a,b,c}, and a letter from {g,h,i}.  

A 10,000-word training sequence (approximately 5,000 from each language) 

contained no markers indicating word or language boundaries. The words in the 

corpus were drawn from a subset of two-thirds of the possible words in each 

language. The words were ordered as follows: for each new word, a random draw 

from among all possible words in one language took place, with a probability of 0.025 

of switching to the other language (thus creating within the corpus runs of words from 

the same language). French et al. (2011) trained the TRACX model on this corpus, 

then tested it on all possible words in both languages. To examine the model’s ability 

to categorize words by language and to generalize category labels to new words that 

had not appeared in the training set, the activities in the hidden layer of the TRACX 

model evoked by each test word were clustered. The resulting clustering contained 

very few mistakes, both on familiar and on previously unseen words. 

Although our model does not commit to “crisp” categorical distinctions among 

units (see section 3.2), the similarity relations that it builds up can be used to cluster 

words into categories. After training, U-MILA correctly recognized all three-letter 

words, in both languages, as such, making the similarity scores among them 

immediately available
5
. Similarity scores between words of which one or both did not 

appear in the training corpus were defined as an equally weighted sum of the 

similarity scores between their components; thus, the similarity between abc and def 

was defined as (sim(a,d)+sim(b,e)+sim(c,f))/3.
6
 A clustering algorithm (Matlab 

                                                           
5
 All 48 words were uncovered by both collocation mechanisms (top-down and bottom-up, 

see section 2). 

6
 This is equivalent to using Levenshtein distance over strings (e.g., Ristad & Yianilos, 1998). 
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procedure linkage with default values of the parameters) was applied to the resulting 

similarity matrix among all words in both languages. A dendrogram plot of the cluster 

structure (Fig. 7) indicated that the model correctly classified all the words, including 

novel words that did not appear in the training corpus. 

It is important to point out that similarity between nodes in U-MILA is 

estimated based on the edge profiles of the entire nodes, and not on the similarity of 

their internal structure, if any. Only when required to categorize units that had not 

been encountered previously, and thus were not granted a node status in the graph, 

does it resort to categorization based on the edge profile of the unit’s constituents. U-

MILA’s success in categorizing both previously encountered and novel words shows 

that it can incorporate both approaches and to do so in a transparent manner that 

allows clear understanding of the underlying causes in each case (see also Lotem & 

Halpern's discussion of generalization and concept formation; Lotem & Halpern, 

2008). 

[see Fig. 7 in the main text] 

1.3.10 French, Addyman & Mareschal (2011), simulation 11 

To explore learning based on backward transition probabilities, French et al. 

(2011) constructed a dataset similar to those previously discussed, composed of a 

random sequence of two-syllable words, all of which had the same frequency of 

occurrence and were included in the test. The training sequence was constructed so 

that words and non-words had the same forward transition probabilities, but the 

within-word backward transition probabilities were higher than for non-words (1 as 

opposed to 0.25). The TRACX model was trained on this corpus and learned words 

significantly better than non-words. French et al. (2011) also reported a behavioral 

Cognitive Science 2013 in press



experiment with 8 month-old infants, using a similarly structured dataset, in which the 

subjects successfully differentiated between words and non-words.   

We trained U-MILA on the same corpus and had it assign probabilities to each 

of the words and non-words in it. The model differentiated between the two groups 

successfully, assigning words a mean probability of 0.0094, compared to 0.0035 for 

non-words. An analysis of variance (R procedure lm) indicated that this difference is 

significant (t = 2.213, p < 0.04, see Fig. 8). All words were recognized as units by 

both of U-MILA’s collocation mechanisms. 

[see Fig. 8 in the main text] 

1.4 Gomez (2002), experiment 1 

Gomez (2002) reported that both adults and infants can learn nonadjacent 

dependencies in an artificial language, solely from statistical cues, and that they do so 

most successfully in a setting in which the adjacent dependencies are the least 

reliable. The participants in her study were exposed to 3-word  sequences (e.g., pel 

wadim rud) from one of two languages, which differed in the dependencies between 

the first and third words (e.g., if pel is the first word in the sentence, then in L1 rud 

must be the third, while in L2 jic must be the third), but were identical in their 

dependencies between adjacent words. They were then tested for acceptance of 3-

word sentences from both languages. The size of the pool from which the middle 

words were chosen was varied systematically (2, 6, 12 or 24 words) in order to 

determine how the variability in the statistics of adjacent dependencies affects 

learning of nonadjacent dependencies.  

While participants showed preference to sentences from the language they had 

learned in all cases, the difference was significant only in the case of the largest pool 
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(24 words). Gomez suggested that this result may be due to the participants’ default 

tendency to search for adjacent dependencies (which are useless in this discrimination 

task), and to shift the focus to nonadjacent dependencies only when the adjacent 

dependencies seem unreliable.  

We trained one instance of the U-MILA model on each of the datasets used by 

Gomez (2002; see Table 2). Each learner was evaluated by the probability scores it 

assigned to each of 12 sentences, six of which were taken from the language it had 

been exposed to, and six from the other language.  

[see Table 2 in the main text] 

The results are summarized in Fig. 9. Nonadjacent dependency structure was 

successfully learned by all learners in all conditions. An analysis of covariance (R 

procedure lm) yielded significant effects of grammaticality (i.e., whether the 

sentences were in accord with the rules of the training set's language) and pool size (t 

= −22.7, p < 2X10
−16

; t = −14.4, p < 2X10
−16

) and a significant interaction (t=3.0, p < 

0.0045).
7
 There was, however, no abrupt change in performance between pool sizes 

12 and 24, contrary to the effect reported by Gomez (2002). This finding supports 

Gomez’s proposed explanation of that effect, according to which the difference 

between her subjects’ performance for pool sizes 12 and 24 is an outcome of human 

learners’ switching between different learning mechanisms in response to a change in 

the nature of statistical cues in the data — a switch that is not implemented in our 

model, which by default always applies both adjacent and non-adjacent learning 

mechanisms (see section 2.4).  

                                                           
7
 This interaction amounted to a small (in absolute terms) difference in the slopes of the 

grammaticality effect, rather than in a change of the sign of the effect. As such, it does not 

reflect on the rest of the discussion of this experiment.  
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In further support of this explanation, the model fails to differentiate between 

grammatical and ungrammatical sentences in all four set sizes when running in 

"bottom-up collocation" mode, in which it learns using only adjacent transition 

probabilities. 

[see Fig. 9 in the main text] 

1.5 Gomez and Lakusta (2004), experiment 1 

Gomez and Lakusta (2004) showed that infants are capable of unsupervised 

learning of syntactic categories and rules in an artificial language. Infants were 

exposed to a 3-minute auditory sequence of 72 sentences in one of two artificial 

languages and were then tested using a preferential looking paradigm (Saffran, et al., 

1996) to determine whether they developed sensitivity to the regularities in the 

language they had been trained in. Sentences in language L1 were composed of two 

phrases, each of the form aX or bY, where a, b, X, and Y were word categories; a, b, 

and Y words were monosyllabic, and X words disyllabic (Table 3). Language L2 

sentences were composed of aY and bX phrases.  

The test sentences contained words from categories a and b that had appeared in 

the training sequence, but all the X and Y words were novel. Infants attended 

significantly longer to sentences from the language they had been trained on than to 

sentences from the other language. 

[see Table 3 in the main text] 

 We trained a U-MILA instance on an L1 training set, patterned after that of 

Gomez and Lakusta (2004), with spaces inserted between each two consecutive 

syllables and a random ordering of the sentences. The learner then assigned a 

probability score to each of the test sentences in Gomez and Lakusta (2004). The 
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model’s parameter that controls its sensitivity to slot filler length, BFillerSetSizeSensitivity 

(see section 2.2), was set so the learner would be sensitive to the filler set size, 

measured in syllables. 

Sentences from L1 were assigned higher scores than sentences from L2. An 

analysis of variance (R procedure aov) indicated that this difference was significant (F 

= 49.1, p < 8.9X10
−09

; see Fig. 10). The model’s success is due to the alignment 

mechanism, which creates collocations of the form alt ___ ___ ong,  and ong ___ alt, 

that can be thought of as describing rules regarding non-adjacent dependencies. In the 

test phase, it thus assigns higher scores to sequences that conform to these patterns, 

even if the slot contains unfamiliar syllables.     

[see Fig. 10 in the main text] 

1.6 Onnis, Waterfall, & Edelman (2008), experiment 1 

The first experiment in the study of Onnis, Waterfall & Edelman (2008) 

examined the effects of variation sets
8
 on artificial grammar learning in adult human 

subjects. As in that study, we trained multiple instances of U-MILA (100 learners), 

simulating individual subjects, on 105 sentences (short sequences of uni- and 

disyllabic “words” such as kosi fama pju, presented with word boundaries obliterated 

by introducing spaces between each two syllables: ko si fa ma pju). For half of the 

simulated subjects, 20% of the training sentences formed variation sets in which 

consecutive sentences shared at least one word (Varset condition); for the other half, 

the order of the sentences was permuted so that no variation sets were present 

(Scrambled condition). After training, learners scored disyllabic words and non-words 

in a simulated lexical decision task.  

                                                           
8
 A variation set is a series of utterances that follow one another closely and share one or more 

lexical elements (Küntay & Slobin, 1996; Waterfall, 2006). 
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As with the human subjects, learning occurred in both conditions, with the 

model demonstrating better word/non-word discrimination (e.g., fa ma vs. si fa) in the 

Varset condition, compared to the Scrambled condition (see Fig. 11). A mixed model 

analysis of the data, with subjects and items as random effects (R procedure lmer), 

yielded significant main effects of word-hood (t = 13.7, p < 0.0001; all p values 

estimated by Markov Chain Monte Carlo sampling with 10,000 runs, procedure pvals, 

R package languageR) and condition (t = −69.8, p < 0.0001). Crucially, the word-

hood × condition interaction was significant (t = 57.8, p < 0.0001).  

A further exploration revealed that, as expected, the presence of this interaction 

depended on the value of the phonological loop decay parameter: with slower decay 

(0.035 compared to 0.075, corresponding to a wider time window in which overlaps 

are sought), variation sets made no difference on learning the distinction between 

words and non-words. The length of the phonological loop also influenced the results: 

the effect of variation sets depended on sentences that form a variation set being 

simultaneously present within the loop (in addition to not decaying too quickly). 

[see Fig. 11 in the main text] 

1.7 Reali & Christiansen, (2005) 

The experiment of Reali & Christiansen (2005) replicated here is the first of two 

test cases in which we examine the ability of U-MILA to deal with “structure 

dependence” — a general characteristic of the human language faculty that, according 

to some theorists, cannot be due exclusively to statistical learning from unlabeled 

examples, requiring instead that the structure in question be built into the learner as an 

“innate” constraint (Chomsky, 1980). Reali & Christiansen (2005) set out to 

demonstrate that one of the poster cases of the Poverty of the Stimulus Argument for 

innateness in linguistics (Chomsky, 1980) — choosing which instance of the auxiliary 
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verb to front in forming a polar interrogative, as, in the example below, transforming 

The man who is hungry is ordering dinner into form (b) rather than form (a) — is 

amenable to statistical learning. In their experiment 1, they trained a bigram/trigram 

model, using Chen-Goodman smoothing, on a corpus of 10,705 sentences from the 

Bernstein-Ratner (1984) corpus. They then tested its ability to differentiate between 

correct and incorrect auxiliary fronting options in 100 pairs of sentences such as: 

a. Is the man who hungry is ordering dinner? 

b. Is the man who is hungry ordering dinner? 

Their training corpus is composed of sentences uttered by nine mothers 

addressing their children, recorded over a period of 4 to 5 months, while the children 

were of ages 1:1 to 1:9. The corpus does not contain explicit examples of auxiliary 

fronting in polar interrogatives. In a forced-choice test, the n-gram model of Reali & 

Christiansen (2005) chose the correct form 96 of the 100 times, with the mean 

probability of correct sentences being about twice as high as of incorrect sentences.  

We trained the U-MILA model on all the sentences made available to us by 

Reali & Christiansen (10,080 sentences for training and 95 pairs of sentences for 

testing). When forced to choose the more probable sentence in each pair, U-MILA 

correctly classified all but six sentence pairs, and the mean probability of correct 

sentences was higher than that of incorrect sentences by nearly two orders of 

magnitude (see Fig. 12; note that the ordinate scale is logarithmic). An analysis of 

variance (R procedure aov) confirmed that this difference was highly significant (F = 

26.35, p < 7.08X10
−07

). 

[see Fig. 12 in the main text] 
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1.8 Pearl & Sprouse (2012): Island constraints and long-term dependencies 

In the second experiment addressing issues of structure dependence, we 

examined the ability of U-MILA to learn grammatical islands — structures that, if 

straddled by a long-distance dependency following a transformation, greatly reduce 

the acceptability of the resulting sentence (Sprouse, Wagers, & Phillips, 2012a; see 

footnote for an example). Recently, Sprouse, Fukuda, Ono & Kluender (2011) 

conducted a quantitative study of the interaction between grammatical island 

constraints and short- and long-term dependencies in determining sentence 

acceptability. They used a factorial design, with four types of sentences: (i) short-term 

dependency + no island, (ii) long-term dependency + no island, (iii) short-term 

dependency + island, (iv) long-term dependency + island.
9
 The pattern of 

acceptability judgments exhibited the signature of the island effect: an interaction 

between the two variables, island occurrence and dependency distance. In other 

words, the acceptability of a sentence containing both a long term dependency and an 

island was lower than what would have been expected if these two effects were 

independent. This finding opened an interesting debate regarding its implications on 

reductionist theories and others (Hofmeister, Casasanto, & Sag, 2012a, 2012b; 

Sprouse, et al., 2012a; Sprouse, Wagers, & Phillips, 2012b).    

                                                           
9
 An example of such a factorial design: 

a. Who __ heard that Lily forgot the necklace? (short-distance dependency, non-island 

structure) 

b. What did the detective hear that Lily forgot __ ? (long-distance dependency, non-

island structure) 

c. Who __ heard the statement that Lily forgot the necklace? (short-distance 

dependency, island structure) 

d. What did the detective hear the statement that Lily forgot __ ? (long-distance 

dependency, island structure) 

For a definition and overview of the island phenomena, see Sprouse et al. 2011. 
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In an attempt to account for this finding by a statistical learning model, Pearl & 

Sprouse (2012) trained a parser to recognize shallow phrasal constituents in sentences 

represented as sequences of part of speech (POS) tags, while collecting the statistics 

of POS trigrams covering these parses. With proper smoothing, such a model can 

simulate acceptability judgments by assigning probabilities to sentences. The model 

was trained on 165,000 parses of sentences containing island dependencies, drawn 

from a distribution mirroring that of different island structures in natural language. 

When tested on a set of sentences that crossed multiple island types with short and 

long dependencies, the model qualitatively reproduced the empirical finding described 

above. 

We attempted to replicate this result by our model, hypothesizing that the 

collocations that it learns, which in some sense are analogous to POS n-grams, may 

lead to the emergence of an interaction between islands and dependency length. For 

this purpose, we tested the instance of U-MILA that had been trained on the first 

15,000 sentences of the Suppes (1974) corpus (see section 3.1) on the same type of 

test set as described above (four types of islands types, five factorial blocks in each, 

four sentences in each block). All sentences were patterned after the test set described 

in Pearl & Sprouse (2012); words that did not occur in the training corpus were 

replaced with words of the same part of speech that did. The trained instance of U-

MILA assigned probabilities to each of the test sentences, which we then analyzed 

and plotted as in Pearl & Sprouse (2012). No significant interaction between island 

presence and dependency length was found for any of the four island types, and there 

was no consistent trend regarding the direction of a potential interaction. Further 

probing showed that the results were strongly affected by replacement of certain units 

in the sentences with grammatically analogous counterparts (e.g., replacing Nancy 
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with she). We believe that this source of noise in estimating sentence probability, 

combined with the relatively small training set (much smaller than that used by Pearl 

& Sprouse, 2012), may explain the failure of our model to replicate the island effect. 
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Supplementary material 3: Relationships between U-MILA and formal 

syntax 

Attempting a reduction of U-MILA to another formalism would take us too far 

away from the main thrust of the present project, and so we offer instead some 

informal analogies and observations.  

On the face of it, the U-MILA graph looks like a finite state automaton (FSA). 

In the light of the classical arguments that invoke the Chomsky hierarchy (Hopcroft & 

Ullman, 1979), this would seem like a severe limitation. In practice, however, it is 

not: if realistic limits on center embedding are assumed (Christiansen & Chater, 

1999), the class of sentences that needs to be represented can be readily represented 

within a finite-state framework (Roche & Schabes, 1997). That said, it should be 

noted that the power of a FSA can be easily extended by adding a push/pop operation 

that temporarily shifts activation from one part of the graph to another and eventually 

returns it to the originating node — an operation not unlike a shift of perceptual 

attention, for which neuromorphic architectures have been proposed (Itti, Koch, & 

Niebur, 1998). The result is a Recursive Transition Network or RTN (Woods, 1970) 

— a CFG-equivalent automaton that supported the first practical natural-language 

question answering system (Woods, Kaplan, & Nash-Webber, 1972). Allowing 

feature checking and side effects on transitions turns RTN into Augmented Transition 

Network, or ATN (Wanner & Maratsos, 1978), which has the formal power of a 

Turing Machine and can therefore accept recursively enumerable languages, a family 

of which context-free languages are a proper subset. 

As noted in the main text, U-MILA can, by virtue of its ability to learn slot-

collocations, learn and represent infinite central embedded recursions. Fig. 13 and 

supplementary 3
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Fig. S1 illustrate two graphs which represent such grammars and some outputs 

produced by these graphs. For the sake of clarity, the graphs shown in both cases are 

simplified versions of the graphs learned by the model. See SM4 for an extensive 

corpus of sequences produced by these graphs.  

[Fig. S2 should be here] 

The current implementation of the model was not aimed specifically at learning 

such grammars. In order for it to learn a PCFG and produce only sequences that 

cannot be accounted for by a finite state automaton, specific parameter values were 

used: no smoothing was applied to the graph, and in producing sequences (by 

following possible trajectories along the graph, see section 2), longer sequences were 

given strict preference. Also, the learning of grammars that would clearly illustrate the 

model’s ability to learn a PCFG depended crucially on the structure of the training set. 

For this purpose, we engineered the training set in a way that would avoid the 

construction of collocations and links that might obscure the recursive central 

embedding in the learned grammar. Notably, this gives rise to a large difference 

between the training corpus and the target corpus that the learner eventually produces. 

As is always the case with formal representational schemes, the real challenge 

lies, of course, not in endowing one’s model with sufficient power to accept/generate 

languages from some desirable family (which is all too easy), but rather in shaping its 

power in just the right way so as to accept/generate the right structures and reject all 

others. As Chomsky (2004, p. 92) commented, “It is obvious, in some sense, that 

processing systems are going to be represented by finite state transducers. That has 

got to be the case, and it is possible that they are represented by finite state 
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transducers with a pushdown tape. [...] But that leaves quite open the question of what 

is the internal organization of the system of knowledge.”  

We note that the present version of U-MILA is not aimed at learning context 

free grammars. Its learning process gives rise to extensive redundancy in accounting 

for input sequences and in generation of sequences. Thus, training U-MILA on a 

typical corpus produced by a recursive rewrite rule usually leads to the learning of a 

grammar that accepts and generates recursions but whose set of outputs can also be 

accounted for by a finite state grammar. As a result, demonstrating U-MILA’s ability 

to learn PCFGs required the construction of specific training sets as noted above. 

Further exploration is required to follow up on the promise that U-MILA may hold for 

the learning of context free regularities in natural language and other behavioral 

modalities. 
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BEGIN END 

a  ___  b 

b  ___  a 

Temporal edge 

Slot-filler edge 
 

a 

b a c b 

Examples of output sequences: 
 
BEGIN a b a b a b b a b a b END 
BEGIN b a b a a b a END 
BEGIN b a b a b c a b a b a END 
BEGIN b a b a b a b a a b a b a b a END 
BEGIN a b a b a a b a b END 
BEGIN b a b a b b a b a END 
BEGIN a b a c b a b END 
BEGIN b a a b a END 
BEGIN b a b a b a b b a b a b a END 
BEGIN a b c a b END 
BEGIN a b a b a b a b c a b a b a b a b END 
BEGIN a b a a b END 
 
The learned grammar is equivalent to the 
following set of rewrite rules: 
 
BEGIN (a b)n {a, b, a c b} (a b)n END 
BEGIN (a b)n a {a, b, b c a} b (a b)n END 
BEGIN (b a)n {a, b, b c a} (b a)n END 
BEGIN (b a)n b {a, b, a c b} a (b a)n END 
 

n Є {0,1,2,…} 

b c a 

Figure S2
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Supplementary Material 4 : output sequences from two PCFG grammars learned by U-MILA 
 

After training U-MILA on a short corpus, we used it to produce multiple output sequences. These appear 

below in the order of their production, with repeating sequences omitted. To facilitate the interpretation 

of the output in terms of the graph nodes, each set of output sentences is shown twice, with brackets in 

the second occurrence marking the structural parse of each sequence, so as to expose its recursive 

structure.  

 
 

The grammar presented in Fig. 13 

-------------------------------- 

The grammar is equivalent to the set of rewrite rules: 

 

BEGIN (a b)
n

 {a, b, a a a} (b a)
n

 END 

BEGIN (a b)
n

 a {a, b, b b b} a (b a)
n

 END 

BEGIN (b a)
n

 {a, b, b b b} (a b)
n

 END 

BEGIN (b a)
n

 b {a, b, a a a} b (a b)
n

 END 

 

   n = {0,1,2,…} 

 

Output (without brackets): 

 

BEGIN b a b a b a a a b a b a b END 

BEGIN b a b END 

BEGIN a b a a a b a END 

BEGIN b a b a b a b b b a b a b a b END 

BEGIN a b a b a b b b a b a b a END 

BEGIN b a b a b a b a b END 

BEGIN a b a b b b a b a END 

BEGIN a b a b a b a END 

BEGIN b b b END 

BEGIN a b a b a b a b a b a b a b a END 

BEGIN b a b b b a b END 

BEGIN b a b a b END 

BEGIN b a b a b a b a b a b a b END 

BEGIN a b a b a b a b a b a b a END 

BEGIN b a b a b a b a b a b a b a b END 

BEGIN a b a a a b a END 

BEGIN a b a b a b a b b b a b a b a b a END 

BEGIN a b a b a b b b a b a b a END 

BEGIN a b a b a b a b a b a b a b a b a END 

BEGIN a b a b a a a b a b a END 

BEGIN b a b a b b b a b a b END 

BEGIN b a b a b a b b b a b a b a b END 

BEGIN a b a b a b a a a b a b a b a END 

BEGIN b a a a b END 

BEGIN b a b a b a b END 

BEGIN a b a END 

BEGIN b a b a b a a a b a b a b END 

supplementary 4
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BEGIN b a b a a a b a b END 

BEGIN a b a b a b a b a b a END 

BEGIN a b a b b b a b a END 

BEGIN a b a b a b a b b b a b a b a b a END 

BEGIN b a b a b a b a a a b a b a b a b END 

BEGIN a b b b a END 

BEGIN a b a b a a a b a b a END 

BEGIN b a b a b a b a a a b a b a b a b END 

BEGIN b a b b b a b END 

BEGIN a a a END 

BEGIN a b a b a b a b a END 

BEGIN b a b a b a b a b a b END 

BEGIN b a b a b b b a b a b END 

BEGIN a b b b a END 

BEGIN a b a b a END 

BEGIN b a a a b END 

BEGIN b a b a a a b a b END 

 

Output (with brackets marking node structure): 

 

BEGIN b [a [b [a [b [a [a] a] b] a] b] a] b END 

BEGIN b [a] b END 

BEGIN a [b [a [a] a] b] a END 

BEGIN b [a [b [a [b [a [b [b] b] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [b [b] b] a] b] a] b] a END 

BEGIN b [a [b [a [b] a] b] a] b END 

BEGIN a [b [a [b [b] b] a] b] a END 

BEGIN a [b [a [b] a] b] a END 

BEGIN b [b] b END 

BEGIN a [b [a [b [a [b [a [b] a] b] a] b] a] b] a END 

BEGIN b [a [b b b] a] b END 

BEGIN b [a [b] a] b END 

BEGIN b [a [b [a [b [a [b] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [b [a] b] a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b [a] b] a] b] a] b] a] b END 

BEGIN a [b [a a a] b] a END 

BEGIN a [b [a [b [a [b [a [b b b] a] b] a] b] a] b] a END 

BEGIN a [b [a [b [a [b b b] a] b] a] b] a END 

BEGIN a [b [a [b [a [b [a [b [a] b] a] b] a] b] a] b] a END 

BEGIN a [b [a [b [a a a] b] a] b] a END 

BEGIN b [a [b [a [b b b] a] b] a] b END 

BEGIN b [a [b [a [b [a [b b b] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [b [a a a] b] a] b] a] b] a END 

BEGIN b [a a a] b END 

BEGIN b [a [b [a] b] a] b END 

BEGIN a [b] a END 

BEGIN b [a [b [a [b [a a a] b] a] b] a] b END 

BEGIN b [a [b [a a a] b] a] b END 

BEGIN a [b [a [b [a [b] a] b] a] b] a END 

BEGIN a [b [a [b b b] a] b] a END 

BEGIN a [b [a [b [a [b [a [b [b] b] a] b] a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b [a a a] b] a] b] a] b] a] b END 

BEGIN a [b b b] a END 

BEGIN a [b [a [b [a [a] a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b [a [a] a] b] a] b] a] b] a] b END 

BEGIN b [a [b [b] b] a] b END 

BEGIN a [a] a END 

BEGIN a [b [a [b [a] b] a] b] a END 

BEGIN b [a [b [a [b [a] b] a] b] a] b END 

BEGIN b [a [b [a [b [b] b] a] b] a] b END 

BEGIN a [b [b] b] a END 
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BEGIN a [b [a] b] a END 

BEGIN b [a [a] a] b END 

BEGIN b [a [b [a [a] a] b] a] b END 

 

 

The grammar presented in Figure S1 

---------------------------------- 

The grammar is equivalent to the set of rewrite rules: 

 

BEGIN (a b)
n

 {a, b, a c b} (a b)
n

 END 

BEGIN (a b)
n

 a {a, b, b c a} b (a b)
n

 END 

BEGIN (b a)
n

 {a, b, b c a} (b a)
n

 END 

BEGIN (b a)
n

 b {a, b, a c b} a (b a)
n

 END 

 

  n = {0,1,2,…} 

 

Output (without brackets): 

 

BEGIN a b a b a b b a b a b END 

BEGIN b a b a a b a END 

BEGIN b a b b a END 

BEGIN b a b a b c a b a b a END 

BEGIN b a b a b a b a a b a b a b a END 

BEGIN b a b a b a b a b a b b a b a b a b a b a END 

BEGIN a b a b a a b a b END 

BEGIN b a b a b b a b a END 

BEGIN a b a c b a b END 

BEGIN b a b a b a b a b c a b a b a b a b a END 

BEGIN b a a b a END 

BEGIN b a b a b a b b a b a b a END 

BEGIN a b c a b END 

BEGIN a b a b a b a b c a b a b a b a b END 

BEGIN a b a a b END 

BEGIN a b a b c a b a b END 

BEGIN b a b a c b a b a END 

BEGIN a b a a b a b END 

BEGIN a b a b a b a b c a b a b a b a b END 

BEGIN a b a b a b a b a c b a b a b a b a b END 

BEGIN b a b a b a b a c b a b a b a b a END 

BEGIN b a b a a b a b a END 

BEGIN b a b a b a b a b a a b a b a b a b a END 

BEGIN a b a c b a b END 

BEGIN a b a b a b a c b a b a b a b END 

BEGIN a b c a b END 

BEGIN b a a b END 

BEGIN a b a b a b a c b a b a b a b END 

BEGIN a b a b a b a a b a b a b END 

BEGIN a b a b a b c a b a b a b END 

BEGIN a b b END 

BEGIN b a c b a END 

BEGIN a b a b a c b a b a b END 

BEGIN b a b a c b a b a END 

BEGIN b a b a b c a b a b a END 

BEGIN a b a b a b a b b a b a b a b END 

BEGIN b a c b a END 

BEGIN b a b a b a a b a b a END 

BEGIN a b a b a b c a b a b a b END 

BEGIN b a b a b a c b a b a b a END 

BEGIN a b a b c a b a b END 
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BEGIN a c b END 

BEGIN a b a b a c b a b a b END 

BEGIN b c a END 

BEGIN b a a END 

BEGIN a b a b b a b END 

BEGIN b a b c a b a END 

BEGIN a a b END 

BEGIN b a b a b a c b a b a b a END 

BEGIN b a b c a b a END 

BEGIN a b a b a b a a b a b a b a b END 

BEGIN a b a b a a b a b a b END 

BEGIN b a b a b a a b a b a b a END 

BEGIN b a b a b a b c a b a b a b a END 

 

Output (with brackets marking node structure): 

  

BEGIN a [b [a [b [a [b] b] a] b] a] b END 

BEGIN b [a [b [a] a] b] a END 

BEGIN b [a [b] b] a END 

BEGIN b [a [b [a [b c a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b [a] a] b] a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b [a [b [a [b] b] a] b] a] b] a] b] a] b] a END 

BEGIN a [b [a [b [a] a] b] a] b END 

BEGIN b [a [b [a [b] b] a] b] a END 

BEGIN a [b [a c b] a] b END 

BEGIN b [a [b [a [b [a [b [a [b c a] b] a] b] a] b] a] b] a END 

BEGIN b [a [a] b] a END 

BEGIN b [a [b [a [b [a [b] b] a] b] a] b] a END 

BEGIN a [b [c] a] b END 

BEGIN a [b [a [b [a [b [a [b c a] b] a] b] a] b] a] b END 

BEGIN a [b [a] a] b END 

BEGIN a [b [a [b c a] b] a] b END 

BEGIN b [a [b [a c b] a] b] a END 

BEGIN a [b [a [a] b] a] b END 

BEGIN a [b [a [b [a [b [a [b [c] a] b] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [b [a [b [a c b] a] b] a] b] a] b] a] b END 

BEGIN b [a [b [a [b [a [b [a c b] a] b] a] b] a] b] a END 

BEGIN b [a [b [a [a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b [a [b [a] a] b] a] b] a] b] a] b] a END 

BEGIN a [b [a [c] b] a] b END 

BEGIN a [b [a [b [a [b [a c b] a] b] a] b] a] b END 

BEGIN a [b c a] b END 

BEGIN b [a] a b END 

BEGIN a [b [a [b [a [b [a [c] b] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [b [a] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [b [c] a] b] a] b] a] b END 

BEGIN a [b] b END 

BEGIN b [a [c] b] a END 

BEGIN a [b [a [b [a [c] b] a] b] a] b END 

BEGIN b [a [b [a [c] b] a] b] a END 

BEGIN b [a [b [a [b [c] a] b] a] b] a END 

BEGIN a [b [a [b [a [b [a [b] b] a] b] a] b] a] b END 

BEGIN b [a c b] a END 

BEGIN b [a [b [a [b [a] a] b] a] b] a END 

BEGIN a [b [a [b [a [b c a] b] a] b] a] b END 

BEGIN b [a [b [a [b [a [c] b] a] b] a] b] a END 

BEGIN a [b [a [b [c] a] b] a] b END 

BEGIN a [c] b END 

BEGIN a [b [a [b [a c b] a] b] a] b END 

BEGIN b [c] a END 

BEGIN b [a] a END 
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BEGIN a [b [a [b] b] a] b END 

BEGIN b [a [b [c] a] b] a END 

BEGIN a [a] b END 

BEGIN b [a [b [a [b [a c b] a] b] a] b] a END 

BEGIN b [a [b c a] b] a END 

BEGIN a [b [a [b [a [b [a [a] b] a] b] a] b] a] b END 

BEGIN a [b [a [b [a [a] b] a] b] a] b END 

BEGIN b [a [b [a [b [a [a] b] a] b] a] b] a END 

BEGIN b [a [b [a [b [a [b c a] b] a] b] a] b] a END 
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Supplementary material 5: simulation parameters 

Prand MinOccs Pc Pgeneralize BFillerSe

tSizeSensit

ivity 

Slot 
Collocations 
allowed? 

Dshort_term Analysis 
Mode 

 

0.001 2 0.5 0.05 false Yes 0.01 normal 3.1–3.2 Generativity 
& Categorization 

0.001 2 0.5 0.05 false Yes 0.01 normal / 
flat markov 

3.3.1 Saffran et al. 
(1996) 

0.001 2 0.5 0.05 false Yes 0.01 normal / 
flat markov 

3.3.2 Aslin et al. 
(1998) 

0.001 2 0.25 0.05 false No 0.01 all 3.3.3 Perruchet 
Desaulty Forward 
TPs 

0.001 2 0.25 0.05 false No 0.01 all 3.3.4 Perruchet & 
Desaulty Backward 
TPs 

0.001 2 0.5 0.05 false No 0.01 normal 3.3.6 Frank et al., 
Exp  1 

0.001 4 0.1 0.05 false No 0.01 bottom-up 
colocation 

3.3.7 Frank et al., 
Exp. 3 

0.001 2 0.25 0.05 false No 0.01 normal 3.3.8 French et al., 
Sim 8 

0.001 4 0.25 0.05 false No 0.01 normal 3.3.9 French et al., 
Sim. 10 

0.001 2 0.25 0.05 false No 0.01 normal 3.3.10 French et al., 
Sim. 11 

0.001 2 0.25 0.05 false Yes 0.01 normal 3.4 Gomez (2002) 
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0.001 2 0.25 0.05 True Yes 0.01 normal 3.5 Gomez-Lakusta 
(2004) 

0.001 30 0.25 0.05 false No 0.035, 0.055, 
0.075 

normal 3.6 Onnis et al. 
(2008) 

0.001 2 0.5 0.05 false Yes 0.01 normal 3.7 Reali & 
Christiansen 2005 
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