
in 
pr

es
s

The problem of multimodal
concurrent serial order in behavior∗

Oren Kolodny
Department of Zoology

Tel Aviv University

Shimon Edelman†

Department of Psychology
Cornell University

July 16, 2015

Abstract

The “problem of serial order in behavior,” as formulated and discussed by Lashley (1951), is arguably
more pervasive and more profound both than originally stated and than currently appreciated. We spell
out two complementary aspects of what we term the generalized problem of behavior: (i) multimodality,
stemming from the disparate nature of the sensorimotor variables and processes that underlie behavior,
and (ii) concurrency, which reflects the parallel unfolding in time of these processes and of their asyn-
chronous interactions. We illustrate these on a number of examples, with a special focus on language,
briefly survey the computational approaches to multimodal concurrency, offer some hypotheses regard-
ing the manner in which brains address it, and discuss some of the broader implications of these as yet
unresolved issues for cognitive science.

1 Background and motivation

What does it take for an animal species to survive and flourish in the world? Intuitively, embodied and
situated behaving agents that are capable of sensing and acting — a broad category, which includes all
animals from yeast to cephalopods, insects, and vertebrates, and even some plant species — must balance
the dynamic flow of events arising from their own endogenous motivational and cognitive processes, cues
derived from sensory data, and decisions that shape and control the agent’s ongoing covert comportment
and overt behavior.

In psychology and in neuroscience, behavior is too often implicitly assumed to be reducible to a suc-
cession of stimulus/response bouts, a notion that has a counterpart in machine learning and artificial intel-
ligence, where the preoccupation is with the input-output mappings arising from specific problems, as in
“object recognition” or “question answering.” In a recent review, Edelman (2015b) documented the perva-
siveness of the stimulus/response doctrine, noting that its resilience is particularly surprising, given that it
had been considered problematic already over a century ago, when John Dewey first offered a critique of
∗The title is modified from Lashley (1951).
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“the reflex arc concept in psychology”: “What we have is a circuit, not an arc or broken segment of a circle.
[. . . ] The motor response determines the stimulus, just as truly as sensory stimulus determines movement.
[. . . ] There is simply a continuously ordered sequence of acts [. . . ]” (Dewey, 1896, p.365).

The view of behavior as dynamically unfolding and serially ordered was championed by Karl Lashley,
in a paper delivered at the celebrated Hixon Symposium and published in 1951: “The input is never into
a quiescent or static system, but always into a system which is already actively excited and organized”
(Lashley, 1951, p.112). In his paper, titled “The Problem of Serial Order in Behavior,” Lashley argued that
this characterization of behavior is very general:

Certainly language presents in a most striking form the integrative functions that are character-
istic of the cerebral cortex and that reach their highest development in human thought processes.
Temporal integration is not found exclusively in language; the coordination of leg movements
in insects, the song of birds, the control of trotting and pacing in a gaited horse, the rat running
the maze, the architect designing a house, and the carpenter sawing a board present a problem
of sequences of action which cannot be explained in terms of successions of external stimuli.

Lashley’s insights into the serial nature of behavior have since been thoroughly corroborated (for a review,
see, e.g., Rosenbaum, Cohen, Jax, Weiss, and van der Wel, 2007) and incorporated into mainstream cognitive
science (Henson and Burgess, 1997; Burgess and Hitch, 2005).

In this paper, we argue that even this, by now classical, view of behavior is, however, limited in that it
leaves out two key aspects of the problem of control that all animals must solve:

• The structural or synchronic aspect: how to deal with multiple input and/or output variables, specified
at a given instant of time. Even the simplest sensorimotor systems must deal with multiple streams
of information (e.g., those that arrive from multiple sensors or are sent to multiple actuators), which,
moreover, may differ radically in their statistical and other properties (e.g., as in the case of auditory
and visual cues). We call this the problem of multimodality.

• The temporal or diachronic aspect: how to deal with multiple streams of information as they unfold
over time. The problem of multimodality is exacerbated by the dynamical nature of the processes,
both endogenous and exogenous, that affect/comprise behavior. Not only do those processes unfold
in parallel: they generally do so at different rates and independently, or asynchronously, with regard
to each other. We call this the problem of concurrency.

Together, multimodality and concurrency form what may be called the generalized problem of behavior.1

Multimodality receives much attention in the cognitive sciences, where it drives research into cross-
modal sensory or sensorimotor integration (e.g., Kersten and Yuille, 2003; Doubell, Skaliora, Baron, and
King, 2003; Angelaki, Gu, and DeAngelis, 2009; Fetsch, DeAngelis, and Angelaki, 2013; Chabrol, Arenz,

1It may be useful to note that the two aspects of the problem of behavior, structural and temporal, correspond to the two aspects
of the so-called credit assignment problem, first formulated by Minsky (1961, p.432). The credit assignment problem came to be
regarded as a core concept in artificial intelligence, and, more recently, in reinforcement learning (Sutton and Barto, 1998; Chater,
2009).
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Wiechert, Margrie, and DiGregorio, 2015). Interestingly, Lashley too viewed integration as a central func-
tion of the brain. Here, we state and motivate a complementary view, according to which integrating across
dimensions and modalities is in many cases not possible without losing potentially important information.
This suggests that multimodality cannot be approached exclusively through radical dimensionality reduction
or integration: for some tasks, the control problem is irreducibly multivariate.

Concurrency, in contrast to multimodality, is more familiar to the designers of parallel asynchronous
systems in computer science and robotics than to behavioral scientists, who are only now becoming aware
of the issues it involves. In a recent review of the emerging field of computational ethology, Anderson and
Perona (2014) note that it “will require simultaneous representations at multiple timescales,” and conclude
that “Given these complexities, it is not surprising that a general, computationally sound approach to de-
scribing behavior using conventional descriptors has not yet emerged, since it is unlikely to be manageable
‘by hand’.” One of our goals here is to suggest a requisite computational approach, which, moreover, may
be amenable to neural implementation.

The rest of this paper is organized as follows. In section 2, we illustrate the problems of multimodality
and concurrency on a case study: that of language. These two problems are then discussed in depth in
sections 3 and 4. The ensuing conceptual issues are addressed in a computational framework sketched
in section 5. Section 6 offers a glimpse of a possible brain basis for this framework. Finally, section 7
summarizes our thesis and mentions some directions for future exploration.

2 A case study: multimodality and concurrency in language

As a means of communication that has been, and still is, co-evolving with embodied agents (Christiansen
and Chater, 2008), language in the wild is essentially multimodal and concurrent (Vigliocco, Perniss, and
Vinson, 2014; Hilliard, O’Neal, Plumert, and Wagner, 2015). In its “default” spoken form, it appears that
voice dominates over gesture and articulation over prosody — an impression that is strengthened by the
possibility of capturing much of the meaning of an utterance by transcribing merely the sequence of words
that comprise it (a step that Edelman (2008a, sec. 7.2.1) called “going digital”). The amount and the nature
of the information that such transcription leaves out may, however, be quite significant; indeed, in some
settings, such as impromptu social interactions, ignoring prosody may leave out most of what is important.2

Moreover, the existence of sign languages and the documented cases of their spontaneous emergence (e.g.,
Senghas, Kita, and Özyürek, 2004) suggest that gestural and vocal modalities are equally capable of carrying
information.

The main modalities comprising a stream of language — the articulated sequence of phonemes, the
prosodic dimensions, and the gestures — are all hierarchically structured; this is a matter of consensus in
present-day linguistics (see, e.g., Chomsky, 1957; Hockett, 1960; Fodor, Bever, and Garrett, 1974; Lan-
gacker, 1987; Phillips, 2003; Lamb, 2004; Culicover and Jackendoff, 2005; the realization that language
and other sequential behaviors must be hierarchically structured was one of the main insights of Lashley’s
1951 paper). As an utterance unfolds in time, the concurrent flow of information in the different channels

2Consider how easy it is to change the meaning of an utterance such as “Yeah, yeah” by adjusting its prosody, as demonstrated
by Sidney Morgenbesser, the John Dewey Professor of Philosophy, late of Columbia University (Shatz, 2014).
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Figure 1: The multimodal, concurrent nature of the “primary linguistic data” (reproduced from Edelman,
2011; cf. Goldstein, Waterfall, Lotem, Halpern, Schwade, Onnis, and Edelman, 2010). Top: a graph-like
grammar, learned (Solan et al., 2005) from a small corpus of language, consisting of the seven English ut-
terances listed on the left. In building this graph, vertices initially correspond to discrete elements such as
phonemes or words, and edges – to transitions between these elements. The graph is then recursively refined
by aligning utterances at matching elements and detecting recurring series of elements (collocations); a hi-
erarchical structure emerges when categories (equivalence classes) of vertices are defined, e.g., by grouping
together elements that appear in similar contexts. Middle: the grammar constructed in this manner leaves
out much of the important information in natural language, such as prosody, illustrated here by a spectro-
gram of one of the utterances (“look at the nice kitty”). Prosodic and other dimensions of language, which in
natural discourse appear concurrently with its discrete elements, contain cues that are important in language
acquisition and use. Bottom: a diagram illustrating some of the social cues, such as timed eye contact and
shared attention, which also assist learning (Goldstein et al., 2010; Frank et al., 2013).
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is intricately coordinated. During language acquisition, this coordination makes learning easier, as, for in-
stance, when shared visual attention between the speaker and the listener helps communicate the referent of
a noun (Goldstein, Waterfall, Lotem, Halpern, Schwade, Onnis, and Edelman, 2010; see Figure 1, bottom).
Cross-modal coordination also helps the learner grasp and eventually master the hierarchical combinatorial
structure of the medium — the structure that makes it possible for language to be both richly expressive
(Hockett, 1960) and learnable (Edelman, 2008b). Likewise, at all times during language use, multimodal
coordination between competent speakers makes it easier for meaning to be shared (Dale, Fusaroli, Duran,
and Richardson, 2013).

A number of recent computational modeling efforts achieved some success in learning language in
an unsupervised manner exclusively from transcribed speech or written text, unannotated with respect to
prosody, gesture, or any other “extralinguistic” cues (van Zaanen, 2000; Adriaans and Vervoort, 2002; Solan
et al., 2005; Bod, 2009; Waterfall, Sandbank, Onnis, and Edelman, 2010; Kolodny, Lotem, and Edelman,
2015).3 In particular, the study described in (Kolodny et al., 2015) aimed not just to attain a grammar for
which precision and recall could be measured, but to do so in a biologically inspired architecture and using
a realistic, incremental approach to learning, in the hope that the resulting model would replicate a range of
psycholinguistic phenomena.

The model of (Kolodny et al., 2015) represents grammar as a directed graph — more precisely, as a hi-
graph, which is a generalization of the familiar graph data structure and which serves as the representational
basis of statecharts (Harel, 1988, 2007), more about which in section 5 below). The grammar is initialized as
an empty graph. As learning progresses, vertices and edges are added to the graph incrementally, the former
representing discrete elements such as phonemes or entire words, and the latter — the observed temporal
transitions. At the same time, the graph structure is processed so as to identify and make explicit various
types of linguistic structures, such as collocations, substitutability in context, etc. (Figure 2).

This learning process results in a gradual build-up of hierarchical structures that compactly represent the
model’s experience and that support generalization — that is, the production of novel well-formed utterances
— based on similarities among substructures detected during learning. The grammar also supports parsing,
or the analysis of new utterances in terms of the existing structures. In addition to being capable of accepting
and generating utterances, including some novel ones (an ability that is quantified, respectively, by perplexity
or recall and by precision), this model was also shown to replicate certain findings from language acquisition
and processing (Kolodny et al., 2015).

Despite this progress, the learning abilities and the formal linguistic performance of the grammars ac-
quired by this and related approaches still fall far short of the human-set standards. In line with (Goldstein
et al., 2010), we conjecture that these shortcomings stem to a large extent from two design choices: first,
treating language as a single sequence of tokens that bear no relation to the world or to each other, except as
members of the sequence, and, second, from pretending that language learning is completely unsupervised.

In reality, of course, linguistic behavior is a bundle of concurrently unfolding, diverse, multidimensional
processes, which, moreover, are socially situated and coordinated. In these respects, language is just like
any other complex behavior — as indeed stressed by Lashley in his discussion of the problem of serial order.
To understand how language and other behaviors like it are learned and used, one must, therefore, take up

3Rather than attempting a review of the vast literature on language acquisition, we refer here only to those few implemented
systems that were shown to scale up to realistic corpora and to be capable of unsupervised learning of a generative grammar.
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That s a green ball
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Wilson is a volleyball

Figure 2: The graph structure used by the U-MILA language acquisition model of (Kolodny et al., 2015) to
represent its knowledge of language, or grammar. The example shown here illustrates the patterns derived
from the three-sentence corpus listed in the upper left corner. As in Figure 1, one type of pattern is collo-
cation: a sequence of tokens that occurs more often than expected by chance (e.g., “is a”). A collocation
may contain a slot (as in “a ball”), which may be filled by any of a class of tokens that are deemed
sufficiently similar, hence equivalent, to each other (e.g., “green” and “big”); as in (Solan et al., 2005), a
recursive application of this process leads to the emergence of hierarchical structures. Various elements of
the approach to language pattern detection described by Kolodny et al. (2015), such as the combination of
bottom-up and top-down cues, are applicable to the detection of objects in other modalities (more about
which in section 3.3).

the twin problems of multimodality and concurrency, which we do, respectively, in sections 3 and 4.

3 The structural aspect of the problem of behavior: multidimensionality
and multimodality

To fully realize how pervasive is the need to deal with multidimensional and multimodal information, con-
sider as an example President Lyndon Johnson’s assertion that the then House minority leader (and future
President) Gerald Ford was so dumb as to be unable to walk and chew gum at the same time. The first key
observation here is the fact that walking, chewing gum, and pretty much any other of the many “simple” be-
haviors of which even Mr. Ford was presumably capable, even when undertaken separately from the others,
is multidimensional.

In particular, mastication involves at least four distinct muscles, which entails that the representation
space for the instantaneous state of the gum-chewing motor program is nominally at least four-dimensional.
This is because four independent numbers are needed in principle to individuate each such state. The formal
concepts on which this observation is based are taken up in section 3.1.

The second key observation is that walking in bipedal vertebrates involves at least two distinct sets of
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variables that cannot be mixed: those that control the (dynamic) upright balance of the body and those that
control perambulation. Any attempt to “integrate” these variables (e.g., by projecting them onto a common
set of dimensions) would result in a pratfall. This issue is further discussed in section 3.2.

3.1 Dimensionality: nominal, effective, and intrinsic

The (multi)dimensional aspect of problems arising in neurobiology and neuroethology stems, on one level,
from the simple fact that nervous systems consist of elements whose states (e.g., membrane polarization
or spiking rate) are in principle independent of each other. Assuming that neurons are the elements of
interest,4 an n-neuron system thus requires a list of n numbers to represent it, which makes it nominally
n-dimensional (Edelman, 1999, p.97). The instantaneous state of such a system can be treated as a point
in a vector space Rn — a methodological move that makes the formidable formal machinery of geometry
applicable to neurobiology (Mumford, 1994).

In practice, however, interactions among the neurons comprising a system constrain its dynamics so as
to exclude large portions of the total n-dimensional volume in which this dynamics resides.5 The effective
dimensionality of such a system is lower than its nominal dimensionality, often by a very large margin. This
is just as well, because the intrinsic (outside-world) dimensionality of sensorimotor tasks that neural systems
represent and solve is typically low (or else they would be intractable6), and it is the intrinsic dimensionality
of the task that an animal should care about.

As an example of intrinsic dimensionality, consider the motor task of reaching out and touching a target
object that is in front of you. This task is intrinsically three-dimensional insofar as the target location is com-
pletely specified by three numbers in the familiar Cartesian coordinate system. The intrinsic dimensionality
of a task is, however, always addressed through the lens of representations, whose composition and “grain”
may vary. Thus, the reaching task becomes four-dimensional when approached with a two-joint manipulator
that has a ball joint at the shoulder (contributing three degrees of freedom) and an angular joint at the elbow
(one more degree of freedom). Furthermore, when considered on the level of dynamical control of the joints
(rather than their kinematics), the relevant dimensionality is dictated by the number of muscles involved, or,
more appropriately, by the number of independently activated muscle fiber bundles, illustrating the notion
of representational grain.

3.2 Multimodality

The multimodality aspect of the problem of behavior is due to the qualitative differences that may exist
among the dimensions that define sensory, motor, and, a fortiori, sensorimotor tasks. Its best-known guise is
the need for “sensory integration” faced by all animals that are equipped with multiple sensory modalities,
such as vision and hearing (e.g., Groh and Werner-Reiss, 2002; Fetsch, DeAngelis, and Angelaki, 2013).

4As opposed to the level of consideration being parts of neurons (such as ion channels of which each neuron has many), or
perhaps cliques of tightly coupled neurons.

5For instance, a system of two neurons that inhibit each other cannot stay for long in the corner of its state space corresponding
to both neurons being active; cf. (Edelman, 2008a, p.162).

6The intractability of learning and control in high-dimensional spaces is known as the curse of dimensionality (Bellman, 1961);
see (Edelman and Intrator, 2002; Edelman, 1999) for detailed discussions.
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It is crucial to note that the differences among the various dimensions of representation and control
of behavior are not in any sense “given,” obvious, or even readily apparent to the system in charge. In
particular, from the standpoint of a neuron or a circuit that implements integration, there is no a priori
difference among the signals that impinge on it: visual and auditory inputs can only be (and feel) different
insofar as the statistics of the signals they carry differ (O’Regan, Myin, and Noë, 2004).7

The multimodality problem is, therefore, merely a special case of a structural problem that arises within
the traditional senses as well, and, generally, in any multidimensional system. It is faced not only by a
human being, such as Mr. Ford from the above example, but also by the bacteria in his gut, each of which
must deal, in parallel, with stimuli from multiple chemical sensors embedded in its membranes, all the while
managing, in parallel, multiple internal biochemical processes and controlling, in parallel, multiple cilia that
help it move. Moreover, because all animals that sense their environment also act, the integration in question
is always sensorimotor rather than merely sensory (for an overview of the brain mechanisms of sensorimotor
integration in vertebrates, see Doubell, Skaliora, Baron, and King, 2003).

Whereas cross-modal and sensorimotor integration is widely studied, the full scope of the problem at its
core is rarely, if ever, acknowledged. For one thing, as we just noted, the problem arises also within each of
the traditionally defined sensory modalities (e.g., when multiple visual cues, such as shape and texture, are
“integrated”; Treisman and Gelade, 1980). We thus have no choice but to admit that the problem springs
into being, metaphorically speaking, the moment a hitherto single-sensor animal species evolves a second
photoreceptor, hair cell, or whatever, to serve alongside the one it had all along (and if a line-up of two or
more sensors appears on the scene all at once, the animal is thereby immediately burdened with the problem
of multimodality).

This take on the situation may seem extreme but it is the only tenable starting position for reasoning
about a developmentally early, or an evolutionarily nascent, stage of sensorimotor integration, when the
processes charged with integration are yet to be calibrated (Philipona et al. (2004) pose and address a related
computational problem). Moreover, from a meta-theoretical standpoint, it seems reasonable to demand that
the details of the key explanatory concepts arising in this situation — dimension and modality — be deter-
mined by computational means from the sensorimotor data, instead of through philosophical analysis (or
by trying to combine philosophy with neuroscience, as in, e.g., Keeley, 2002). Note that this consideration
applies to the predicaments both of the cognitive scientist and, more importantly, of the developing cogni-
tive system that needs to start making sense of the world it finds itself in, and to do so by computationally
effective and reliable means (as judged by the usual evolutionary criteria; Dobzhansky, 1973).

3.3 How many dimensions? How many modalities? How many objects?

When pondering the reduction of dimensionality and the integration of modalities, we face three related
questions: How many dimensions of interest are there in my world? Which of these are to be grouped
together, and apart from others, in distinct modalities? And how many independent sources of information

7As O’Regan et al. (2004, p.87) phrase it, “[. . . ] the quality of a sensory modality does not derive from the particular sen-
sory input channel or neural circuitry involved in that modality, but from the laws of sensorimotor contingency that are involved.”
Philipona, O’Regan, Nadal, and Coenen (2004) discuss computational methods for extracting useful information from such contin-
gencies.

8



in 
pr

es
s

— which is one way of defining what an “object” is — are out there? (We shall see momentarily why this
last question belongs here.)

For the dimensionality question, the default starting point for the inquiry is the nominal dimensionality of
the sensorium. Thus, a sensory system whose “front end” consists of, say, two photoreceptors and three hair
cells spans a five-dimensional data space through which it perceives the world. From there on, the cognitive
system must resort to some combination of computational methods for estimating intrinsic (as opposed to
nominal) dimensionality (Camastra, 2003; Braun, Buhmann, and Müller, 2008; with regard specifically to
time series, as opposed to merely multivariate, data, see Chen and Müller, 2012).

While a discussion of such methods is beyond the scope of the present paper, it is important to note that
most of them require that distances among the data points — samples from the sensorimotor representation
stream — be known. Distance (or, equivalently, dissimilarity) is, however, in the eye of the beholder:
whether or not two stimuli should be considered more similar to each other than to a third one depends on the
consequences that treating them as such would have for the agent (Shepard, 1987). In his foundational paper
on the psychology of generalization, Shepard showed how distance between two stimuli in a psychological
representation space can be estimated from first-principles topological considerations (namely, from the
statistical expectation of the degree of overlap between their “consequential regions”). Of the many methods
for dimensionality estimation one should, therefore, prefer those that are rooted in topology over those that
make prior assumptions about the metrics of the representation space.

Moving on to the second question, that of the number of distinct modalities among the intrinsic dimen-
sions, we note that here too a purely topological method is desirable. One such method, proposed by Clark
(1993), is based on the concept of matching, which is, very appropriately, topological rather than metric.
Two stimuli “match” if they are physically distinct yet are conflated by the perceptual system; with this
definition in mind, “One can get from red to green by a long series of intermediaries, each matching its
neighbors; but no such route links red to G-sharp” (Clark, 1993, pp.140-41).8

Finally, the question of the number of objects belongs here because the information pertaining to it is
confounded with the information regarding the number of modalities. As noted above, modalities can only
be distinguished in multidimensional data on the basis of their distinct topological and statistical signatures.
The observed distinctions can, however, be due to the presence of several independent sources of varia-
tion — objects — in the data. Natural settings typically contain multiple distinct objects, which register
simultaneously in visual, auditory, and olfactory modalities. As a rather extreme example, we may think
of a rain-forest scene with a multitude of plant and animal life (with the qualification that for many animal
species such scenes are mostly “background,” against which very few types of distinct objects, such as con-
specifics, predators, or prey, need to be discerned). Computationally, this leads to the problem of source
separation (e.g., Cardoso, 1998).
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6.3.2 Classical Architectures 

Surprisingly, even though all of the above applications address a diverse assortment of 

computational problems, their implementations have similar – sometimes almost identical 

– architectures.  Namely, they share a common framework where sensory inputs are 

individually processed in isolated, specialized pathways (Figure 1.2).  Each perceptual 

pipeline then outputs an abstract description of what it sees, hears, senses, etc.  This 

description captures detail sufficient for higher-level manipulation of perceptions, while 

omitting the actual signal data and intermediate analytic representations.  Typically, the 

perceptual subsystems are independently developed and trained on unimodal data; in 

other words, each system is designed to work in isolation.  They are then interconnected 

through some fusive mechanism that combines temporally proximal, abstract unimodal 

inputs into some integrated event model.   

The integration itself may be effected in many different ways.  These include: 

multilayered neural networks (Waibel et al. 1995); hidden Markov models (Stork and 

Hennecke 1996); coupled hidden Markov models (Nefian et al. 2002); dynamic Bayesian 

 
 

 
Figure 6.5 – Classical post-perceptual integration in multimodal systems.  Here, auditory (A) and visual 
(V) inputs pass through specialized unimodal processing pathways and are combined via an integration 
mechanism, which creates multimodal perceptions by extracting and reconciling data from the individual 
channels.  Integration can happen earlier (a) or later (b).  Hybrid architectures are also common.  In (c), 
multiple pathways process the visual input and are pre-integrated before the final integration step; for 
example, the output of this preintegration step could be spatial localization derived solely through visual 
input.  This diagram is modeled after (Stork and Hennecke 1996). 

Figure 3: In the literature, sensory or sensorimotor integration is typically depicted as converging to a single
arrow/box, implying, perhaps inadvertently, that the resulting space is one-dimensional. In this example,
reproduced from (Coen, 2006, fig.6.5), auditory (A) and visual (V) perceptual modalities are processed for a
while separately, then integrated, sooner (a) or later (b). In a “hybrid” architecture (c), intermediate within-
modality integration stages may be present. Coen (2006) rejects the view that focuses exclusively on the
convergence stage, because “perceptual phenomena [. . . ] are complex amalgams of mutually interacting
sensory input streams — they are not end-state combinations of unimodal abstractions or features.” We
concur: the classical view is untenable, if only because neither perception nor action can be boiled down to
a single variable (see section 3.5).

3.4 Respects for similarity

Similarity is useful and perhaps indispensable in guiding the detection of, and reasoning with, objects (Shep-
ard, 1987; Tenenbaum and Griffiths, 2001; Edelman and Shahbazi, 2012), as indicated in particular by the
popularity of the “nearest neighbor” methods (Cover and Hart, 1967) in machine learning (e.g., Andoni and
Indyk, 2008). It is, however, also deeply problematic, because, being a scalar, similarity can only be arrived
at following the most drastic possible reduction of dimensionality — from many to one (cf. Figure 3).

To make this happen, the representational system must fix the contributions (in the simplest case, linear
weights; cf. the Ugly Duckling Theorem of Watanabe, 1969, p.376) of various relevant dimensions of the
stimuli.9 These contributions are, however, liable to differ between one case and the next, even when the
same objects are involved. Tellingly, when psychologists and philosophers complain about the problem-
aticity of similarity, they often focus precisely on the dangers of pretending that the functional demands
with which similarity is saddled can be met by a scalar. Thus, for instance, Eisler (1960, p.77) wrote: “An
observer instructed to estimate the similarity of, e.g., two differently colored weights is supposed to ask: in
what respect?”

A standard approach to addressing this issue is to specify the respects under which the hypothesis of
similarity is entertained in each case at hand (Medin, Goldstone, and Gentner, 1993; Edelman and Shahbazi,

8Keeley (2002) criticizes this approach for resulting in more than the five traditional sensory modalities (e.g., hue and the
direction of visual motion end up being distinct). In our view, this speaks to the inadequacy, not of Clark’s method, but of the lay
(and philosophical) preconceptions regarding the senses.

9This is what Kolodny et al. (2015) did in formulating their measure of similarity between elements comprising a grammar.
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2012). For instance, when the agent’s task calls for inferring a hypothesized common cause behind a set of
measurements (say, a visual object that manifests itself in reflectance, stereo, texture, and motion data), the
agent may employ Bayesian inference, or an approximation thereof, to estimate the posterior probability of
the object’s presence (Kersten, Mamassian, and Yuille, 2004). The same instrumental considerations and
the same Bayesian techniques apply when the task is sensorimotor integration and control (Körding and
Wolpert, 2006) and, more generally, prediction (Clark, 2013). Integration, however, is not always the right
goal to pursue, as we argue next.

3.5 The buck stops here

The funneling of the data into a single variable is justified when the “respect” in question is crystal-clear, as,
for instance, when two sets of multimodal cues whose similarity is to be estimated are likely to have been
generated by the same kind of object or the same kind of event (i.e., motor program). Even in these cases,
however, integration typically involves information loss, e.g., when a decision criterion such as Maximum
A Posteriori (MAP) likelihood is applied to the posterior distribution. In general, if carried out in the
absence of a well-defined task, dimensionality reduction or integration violates Marr’s Principle of Least
Commitment, according to which an information processing system should postpone as long as possible
undertaking actions that cannot be effectively undone (Marr, 1976, p.485). Moreover, dimensions that
do not belong together (as in the case of balance- and movement-related degrees of freedom in walking,
mentioned earlier) must never be integrated.

In light of these observations, and seeing that multi-modality/dimensionality is an inherent aspect of
the world that animals confront, it seems that the best a cognitive agent can do is employ some means of
dimensionality reduction to reduce the complexity of its sensorium, without yet “going all the way.” The
goal of the reduction should be, generically, not to boil the information down to a single dimension, but
rather to discover the typically few intrinsic dimensions of interest in the typically high-dimensional data set
(Edelman, 1999; O’Regan et al., 2004; Philipona and O’Regan, 2010).

Because the dimensions of the resulting maximally reduced representation will be mutually irreconcil-
able,10 they would have to be used — for instance, mapped onto actions by Bayesian or other inference
mechanisms — as they are. This too is just as well: as we just reiterated, the dimensions of motor con-
trol in a realistic embodied cognitive system are no more reducible to a single scalar than the dimensions
of perception. Synchronically, or instantaneously, therefore, the problem of behavior is many-to-many-
dimensional.

4 The temporal aspect of the problem of behavior: concurrency

What happens diachronically, when time is allowed to roll? Some types of dynamical systems can be
effectively characterized when observed repeatedly (sequentially) over time through the “window” of a
single variable, according to a theorem proved by Takens (1981). Even in this case, however, the use of
multiple parallel measurements leads to much more effective inference: Deyle and Sugihara (2011), whose

10The sense in which some dimensions of a representation space may be irreconcilable or incommensurable is related to the
distinction between integral and separable dimensions in psychology (Garner and Felfoldy, 1970).

11



in 
pr

es
s

approach generalizes the Takens theorem, note that it works best when applied “to a wide variety of natural
systems having parallel time series observations for variables believed to be related to the same dynamic
manifold” (our italics). Our argument for the need for many-to-many-dimensional mappings in controlling
behavior holds, therefore, even as the representations unfold over time. Moreover, as we shall see this
section, the constituent dimensions of such representations — the data in the parallel streams — need not
be synchronized, which leads to more complications.

4.1 Physical underpinnings of asynchrony among concurrent processes

In addition to there being multiple processes, both in the world and in the animal’s brain, that unfold and
must be dealt with in parallel, these processes are typically asynchronous, for deep physical reasons. The
ubiquity of asynchrony in systems that require process coordination is due to a combination of two factors:
(1) the spatially distributed nature of all physical systems and (2) the finite maximum speed with which
information can propagate, the speed of light in vacuum. In this sense, asynchrony is a corollary of special
relativity (Edelman and Fekete, 2012, p.83). Enforcing synchrony in an electrical circuit, such as a logical
gate array, through the use of a global clock only works because the relevant physical dimensions of a
typical circuit are much smaller than the distance traveled by light between clock ticks. In a neural circuit,
however, the signal propagation speed relative to the distances involved is too low to be assumed infinite
(Izhikevich, 2006), which makes neural computation asynchronous across different signal propagation paths
and localities.

Neural processes driven by quasi-global periodic signals (such as respiration driving olfaction) or by a
central pattern generator (CPG) are asynchronous too, when scrutinized at a fine enough grain. For instance,
while the neural computation in the rabbit olfactory bulb is time-locked to sniffing (Kepecs, Uchida, and
Mainen, 2006), each aspiration merely sets off a number of neural processes, which then proceed and wind
down at their own pace until the next cycle is initiated. Such subordinate processes may be not only not
synchronous, but (deterministically) chaotic (Skarda and Freeman, 1987). Moreover, the inner functioning
of CPGs, such as the pyloric and gastric mill circuits in the lobster (Selverston, 2008), is asynchronous,
which helps make the timing controllable from the outside, e.g., through dopamine modulation (Harris-
Warrick, Coniglio, Levin, Gueron, and Guckenheimer, 1995).

In vertebrates, a similar arrangement is found, on a finer temporal scale, in the distributed neural activity
driven by cortical rhythms such as gamma and theta, where functionally significant local phase lead/lag
“details” superimpose on global temporal periodicity (Buzsáki and Diba, 2010). Indeed, on one account, the
synchronous cortical activity in itself has no functional role in cognitive computation, serving instead as an
“infrastructural” mechanism for balancing inhibition and excitation (Merker, 2013a).

4.2 The computational challenge of asynchronous concurrency

Stepping back from specifically neural computation, we note that the problem of asynchronous coordination
looms large in any parallel computation framework, such as the one sketched in Figure 4, right, which can
be taken to depict the spread of activation in a network of diverging and converging concurrent processes.11

11The paper from which we adapted this illustration (Briegel, 2012) assumes that activation flows out of a node along one and
only one of the several possible connections, but of course, as we pointed out in section 4, this is in general not the case.
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Aplysia and the complex memory of higher vertebrates, is the
appearance of different functions of memory. Different from simple
animals, a call of memory in humans and primates does not auto-
matically lead to motor action. This means that there exists a plat-
form on which memory content can be reinvoked, which is
decoupled from immediate motor action. The evolutionary emer-
gence of such a platform means that an agent with more complex
memory can become increasingly detached from immediate res-
ponse to environmental stimuli.

However, the actions of the agent still remain determined by the
memory content, which itself was formed by the agent’s percept
history. In other words, the actions of the agent remain determined
by its past, and there is no real notion of freedom. What is still
missing is an element of spontaneity in the agent’s response to a given
environmental situation. If C elegans is enslaved by the present stim-
uli, a more complex agent remains still enslaved by its past, i.e., the
history of its stimuli. How could Nature get rid of such a time-delayed
enslavery?

A possibility to break determinism is to introduce indeterminism
(i.e. genuine randomness). But, as we have discussed earlier, it is not
clear what the effect of randomization should be. If we adopt a
computational or algorithmic view of the brain, we will not change
anything. However, the effect of indeterminism depends on the nat-
ure of the processing and memory where it occurs. We will show that
it can indeed have a positive effect on the agent, not in the sense of
making some ‘‘computations’’ more efficient, but in the sense of
introducing an element of creative variation in its memory-driven
interactions with the environment. Here it will be expedient to aban-
don the picture of the brain as a computer and, instead, propose a
dynamic model of memory which is fully embedded in the agent’s
architecture and which grows as the agent interacts with the world.

In the next section, we will discuss an abstract scheme of memory
processing which we call projective simulation. It operates entirely
under the principles of physics but nevertheless exhibits an element
of freedom in an agent’s interaction with the environment. It is not
clear whether this scheme is at all implemented in a real brain, but we
claim that it could be realized, in principle, in artificial agents.

Projective simulation. In Ref.11, we considered a standard model of
an artificial agent that is equipped with sensors and actuators,
through which it can perceive its environment and act upon it,
respectively. Internally, the agent has access to some kind of
memory, which we shall describe below. Perceptual input can
either lead to direct motor action (reflex-type scenario) or it first
undergoes some processing (projective simulation) in the course of
which it is related to memory.

The memory itself is of a specific type, which we call episodic &
compositional memory (ECM). Its primary function is to store past

experience of the agent in the form of episodes, which are (evaluated)
sequences of remembered percepts and actions. Physically, ECM can
be described as a stochastic network of clips, where clips are the basic
units of episodic memory, corresponding to very short episodes (or
patches of ‘‘space-time memory’’)11.

The process of projective simulation can be described as follows.
Triggered by perceptual input, some specific clip in memory, which
relates to the input, is excited (or ‘‘activated’’), as indicated in
Figure 1. This active clip will then, with a certain probability, excite
some neighboring clip, leading to a transition within the clip net-
work. As the process continues, it will generate a random sequence of
excited clips, which can be regarded as a recall and random reas-
sembly of episodic fragments from the agent’s past. This process
stops once an excited clip couples out of memory and triggers motor
action. The last step could be realized by a mechanism where the
excited clips are screened for the presence of certain features. When a
specific feature is detected in a clip (or it is above a certain ‘‘intensity’’
level) it will, with a certain probability, lead to motor action.

The decribed process is the basic version of episodic memory, but
it is not the only one. In a more refined version, which we called
episodic and compositional memory, we consider not only transi-
tions between existing clips, but clips may themselves be randomly
created (and varied), as part of the simulation process itself. Random
clip sequences that are generated this way may introduce entirely
fictitious episodes that never happened in the agent’s past.

The random walk in memory space, as described, constitutes part
of what we call projective simulation. In another part, the agent’s
actions that come out of the simulation are evaluated. The result
of this evaluation then feeds back into the details of the network
structure of episodic memory, leading to an update of transition
probabilities and of ‘‘emotion tags’’ associated with certain clip tran-
sitions11. In a simple reinforcement setting, one assumes for example
that certain actions or percept-action pairs are rewarded. Learning
then takes place by modifying the network of clips (ECM) according
to the given rewards. This modification of memory occurs in differ-
ent ways: by bayesian updating of transition probabilities between
existing clips; by adding new clips to the network via new perceptual
input; by creating new clips from existing ones under certain com-
positional and variational principles; and by updating emotional tags
associated with certain clip transitions. Details of this scheme are
presented in Ref.11.

In the following, coming back to the main topic of this paper, we
want to relate the projective structure of the agent’s behavior to the
emergence of a primitive notion of creativity and freedom. The basic
idea is that the episodic memory provides a platform for the agent to
‘‘play with’’ previous experience, before concrete action is taken (see
Figure 2). A call of episodic memory initiates a random walk
through memory space, invoking patchwork-like sequences of past

Figure 1 | Model of episodic memory as a network of clips. Triggered by perceptual input, the process of projected simulation starts a random walk

through episodic memory, invoking patchwork-like sequences of virtual experience. Once a certain feature is detected, the random walk stops and is

translated into motor action (See also Ref.11).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 2 : 522 | DOI: 10.1038/srep00522 3
Figure 4: Asynchronous concurrent processes. Left: This diagram depicts a system that is in a superposition
of states (solid horizontal lines), with state transitions (vertical lines) driven by events (wavy horizontal
lines). Adapted from (Sowa, 2000, ch.4, fig.2), where the following definition is offered: “Processes can
be described by their starting and stopping points and by the kinds of changes that take place in between.
[. . . ] In a continuous process, which is the normal kind of physical process, incremental changes take place
continuously. In a discrete process, which is typical of computer programs or idealized approximations
to physical processes, changes occur in discrete steps called events, which are interleaved with periods of
inactivity called states.” Right: A more general case, in which there is no central clock. Adapted from
(Briegel, 2012, fig.1).

Letting activation propagate unchecked in such an architecture is a recipe for a timing disaster of the same
kind that was visited upon Shakespeare’s Romeo and Juliet. As the reader will recall, in the play, Friar
Laurence set up a seemingly straightforward scheme for orchestrating a happy end to the love story that he
was witnessing, a scheme whose success depended critically on the need to coordinate just two concurrent
processes.

In the play, a single message miscarried; the relative timing of the two processes went awry; each of the
two lovers committed an irreversible act; and the outcome —

A glooming peace this morning with it brings;
The sun, for sorrow, will not show his head [. . . ]

In the theory of parallel computation, there is a coordination mechanism that could have prevented this
tragedy, namely, guarded command: an action whose release is predicated on the prior fulfillment of a certain
condition — the guard (see (de Bakker and Zucker, 1982) for the formal semantics of such constructs).
Specifically, Friar Laurence should have instructed Juliet to go ahead with the sleeping drug scheme only
after it becomes certain that Romeo has been informed of it.12 The key concept in this approach is that of
event.

12In a truly distributed system, where communication between processes, as between Verona and Mantua, is not entirely reliable
and involves delays, such coordination is generally intractable (see the discussion and the references in Edelman and Fekete, 2012,
section 4.1). Fortunately, the formalism advocated below circumvents this problem.
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5 An event-based computational approach to multimodality and concur-
rency

In this section, we propose that the problem of behavior be considered, both in its structural and temporal
aspects, as the coordination of a bundle of concurrent, asynchronous processes, interspersed with events, as
defined and illustrated in Figure 4, left.

5.1 Events as an organizing principle in multimodal, concurrent systems

The concept of event has been discussed extensively in philosophy (Davidson, 1980; see Casati and Varzi,
2014 for a detailed treatment and many references), psychology (Zacks and Tversky, 2001; McAuley, Jones,
Holub, Johnston, and Miller, 2006; Zacks, Speer, Swallow, Braver, and Reynolds, 2007; DuBrow and
Davachi, 2013; Rubin and Umanath, 2015; Reimer, Radvansky, Lorsbach, and Armendarez, 2015), neu-
roscience (Damasio, 1989; Eichenbaum, Otto, and Cohen, 1994; Wallenstein, Eichenbaum, and Hasselmo,
1998; Zacks, Braver, Sheridan, Donaldson, Snyder, Ollinger, Buckner, and Raichle, 2001; Fortin, Agster,
and Eichenbaum, 2002; Schendan, Searl, Melrose, and Stern, 2003; Paz, Gelbard-Sagiv, Mukamel, Harel,
Malach, and Fried, 2010; Allen, Morris, Mattfeld, Stark, and Fortin, 2014), as well as AI and computational
linguistics (Park and Aggarwal, 2004; Chambers and Jurafsky, 2008; Elman, 2009; Mehlmann and André,
2012). Here, we propose that events are the key to managing both multimodality and concurrency. A sen-
sorimotor event can be thought of as a “narrowing” or causal nexus at which a bundle of perception and
action processes comes together for a while in space and time, before pulling apart again (cf. Spivey, 2006,
fig.12-2). Within this conceptual framework, a visual object (say) is a kind of event (the coming into view
of a part of the visual world, brought about by a shift of gaze; cf. Dewey, 1896, p.358) and so is, of course,
a motor act.13

To illustrate the usefulness of the concepts of process and event, consider the task of visually guided
grasping in primates. It begins as the gaze disengages from whatever it is that the animal is fixating and
lands on the object of interest (we nearly always make a saccade to the place where our hands or feet will be
going next). As other body parts start to move in turn, fingers gradually open and the arm rotates, pre-shaping
the hand and pre-positioning it for the final approach (it is the sequential instead of concurrent execution of
these steps that makes the movement of old-fashioned cinematic robots look so robotic). Finally, the hand
makes contact, while the eyes move on and the brain is already a couple of hundred milliseconds into the
next stage of motor planning. It is only through the abstract notion of the grasp procedure and the event
in which it culminates that the relative timing of the multimodal neural and mechanical processes involved
can be understood. It stands to reason, therefore, that events should play a central role in making sense of
experience and in the (concurrent) planning and execution of behavior.

Very few of the events that unfold in the system comprising an embodied and environmentally situated
brain are global in the sense that they involve (and synchronize) all the relevant processes14 (cf. Figure 4,
left). Thus, generally speaking concurrency and multimodality exist and must be dealt with even on the level
of events, just as they exist and must be dealt with, recursively, within events. However, a narrower-scope

13Interestingly, Hurford (2003) called objects “slow events”; cf. (Edelman, 2008a, p.33).
14Death is one example that comes to mind.
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situation, such as a task that requires sequential decisions,15 can probably be approximated reasonably
well by a single thread of events. In this connection, Edelman (2015b) notes that a temporally extended
task that involves repeated “crisp” decisions, each of which requires that any distributed representation or
superposition of states be collapsed, is effectively serially local. In other words, the representations behind
such a task cannot remain probabilistic and distributed at all times: every now and then, the probability
distribution must be collapsed.16

Presumably, it is this, relatively high-level and discretized view of behavior that prompted Lashley to
formulate his “problem of serial order.” So as not to lose sight of the problem of essential concurrency,
we stress that Lashley’s discussion skirts it entirely — he writes as if a horse’s step, to pick just one of his
examples, is a unit; a link in a chain, rather than a woven rope that consists of many threads, corresponding
to the concurrent activations of many muscles, etc.

Modern formulations of sensorimotor control in behavior likewise tend to skirt the problems of concur-
rency and asynchronous coordination.17 For instance, the excellent treatment by Coen (2006) of imitation-
based learning of birdsong takes the song’s representation to consist, both on the perceptual and on the motor
side, of a simple sequence of units (“songemes”), each obtained by categorical clustering in the appropri-
ate multidimensional space. The all-important social aspect of birdsong is, however, often multimodal and
asynchronous. One of the many examples here is the interplay between male song (an acoustic signal) and
female wing stroke (a visual signal) in cowbirds (Gros-Louis, White, King, and West, 2003).

The importance, in particular, of the relative timing between modalities is illustrated by cases such as
that of the female túngara frogs, which are more strongly attracted to a male call if in addition to hearing it
they also see the male’s vocal sac — but not if the visual cue is shifted in time relative to the natural delay, as
would happen in the wild when the male that is being looked at is not the same one that is being heard (Taylor
and Ryan, 2013). A game-theoretic analysis carried out by Wilson, Dean, and Higham (2013) suggests that
such synergy among multiple modalities promotes the evolution of multimodal communication, which may
otherwise be too costly to sustain. Not surprisingly, in primates too the processing of audio-visual signals
turns out to be sensitive to the asynchrony between modalities (Perrodin, Kayser, Logothetis, and Petkov,
2015).

Finally, in human cognition, a single-threaded approach to behavior is clearly inadequate for most types
of music, nor, as we argued in section 2, does it work for language, where prosody, gaze control, and
gesticulation are integral to its realistic use in social situations (cf. Figure 1).

5.2 Computational tools for dealing with concurrency

The best-known or most-intuitive computational tools at the disposal of cognitive scientists and ethologists
are not necessarily well-suited for dealing either with multimodality or with concurrency. With regard to the
former, we saw earlier that a multidimensional state space indiscriminately lumps together dimensions that

15For a construal of decision as a type of event in a dynamical system that describes sequential behavior, see (Rabinovich, Huerta,
Varona, and Afraimovich, 2008).

16An example of a serially local task offered by Edelman (2015b) is glade skiing, where the skier must every now and then decide
whether to pass to the left or to the right of the next tree down the glade.

17In a purely sensory setting, the coordination problem has been discussed by Eagleman (2010), in the context of conscious
visual awareness.
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motion loop

1

2

3

4

5

6

7

8

⎛
⎜⎝
∃X↑ ∈ Σ

+
(oldest(σ, (mode(σ, speech)∧
(data(σ, drag) ∨ data(σ, drop))∧
after(σ, �↓)), X↑)))

⎞
⎟⎠

(
∃Y↑ ∈ Σ

+
(foratleast(0.8, σ, (mode(σ, gaze)

∧ during(σ,X↓)), data(σ, Y↑))

)

(assert(command(X↓, Y↓)))

(
∃X↑, Y↑ ∈ Σ

+
(latestofall(σ, command(σ, ), X↑)

∧ command(X↓, Y↑))

)

(
∃Z↑, P↑ ∈ Σ

+
(latest(σ,mode(σ, gaze), Z↑)∧
data(Z↓, P↑) ∧ data(X↓, drag))

)

(move(Y↓, P↓))

(data(X↓, drop))

(�← α)

(�← X↓)

Figure 6: Using parallel processes for the concurrent processing of continuous and discrete interaction.

object reference in Y is movable to position P by inspecting
the semantic network, before it looks for the latest command
again. A system command within the loop can be used to
update the position of the object in the user interface fol-
lowing the user’s gaze until the user gives the command to
drop the object.

5. TECHNICAL FRAMEWORK
We implemented our multimodal event logic, described

in Section 4, and the functionality for the construction and
modification of the event history in the logic programming
language Prolog using the development environment and in-
ference engine of SWI-Prolog [24]. The implementation of
the event history as part of a Prolog knowledge base and
the various Prolog predicates was straightforward. For ex-
ample, Figure 7 shows the implementation of the formajor
quantifier in SWI-Prolog.

formajor(Template,Generator, Condition) : −
bagof(Template,Generator,Range)

bagof(Template, (Generator, Condition), Scope)

length(Range,R), length(Scope, S), S/R > 0.5.

Figure 7: The formajor predicate in SWI-Prolog.

We used the modeling framework SceneMaker [15] for
the integration of the event logic with state charts. Scene-
Maker’s plug-in mechanism allowed us to integrate the Pro-
log inference engine with minimal effort. SceneMaker was
very well suited for the rapid realization of our approach
since its state chart language allows the hierarchical refine-
ment of the model in order to reuse and easily extend already
modeled components. Parallel decomposition can be used to
specify parallel parsing and interaction management in con-
current processes. SceneMaker is implemented in Java and
relies on an interpreter approach for the execution of the
state charts. Java reflect invocation was used to call system
commands for feedback and error recovery. SceneMaker’s
IDE enfolds a visual state chart editor and a runtime visu-
alization mechanism which facilitates rapid prototyping and
testing.

Figure 8 shows parts of the implementation of the example

Figure 8: Incremental parsing variant of Bolt’s [2]
”put-that-there” with SceneMaker and Prolog.

from Figure 5 with SceneMaker. The runtime visualization
mechanism is used to highlight states and transitions that
are executed during the single parsing steps.

6. CONCLUSION AND FUTURE WORK
In this work we presented a novel approach to the model-

ing of modality fusion and dialogue management exploiting
widely declarative and visual representation languages. The
generic and extendable notion of multimodal events avoids
restrictions for the combination of different modalities and
devices. The event logic defines a variety of functional,
temporal and spatial predicates and we use semantic net-
works for modeling semantic relations and context knowl-
edge. The event history in combination with generalized
and fuzzy quantifiers can be used for regression analysis and
disambiguation. Our approach allows the contemporary and
incremetal parsing and fusion of user input. This is used to
realize an early error recovery and feedback delivery to the
user. Since we pursue an incremental and parallel parsing
approach, we are able to realize the simultaneous processing
of discrete and continuous interactions. Our approach also

Figure 5: The time course of incremental parsing of Bolt’s (1980) “put-that-there” command using the
multimodal event logic formalism of (Mehlmann and André, 2012). Note that concurrent processes are in
play and that the state transitions are “guarded” by logical preconditions.

may be incommensurable. With regard to the latter, the main challenge is how to coordinate multiple con-
current processes without resorting to a special “central executive” process or at least to a centralized, global
clock — options that seem less relevant to biological information processing than layered and subsumption
architectures that implement distributed control (Prescott, Redgrave, and Gurney, 1999; Brooks, 1989).

In computer science, concurrent programming languages built around the concepts of processes and
events have been around for a long time (Diaz, Muñoz-Caro, and Niño, 2012). Some of these support
asynchronous parallel processing and offer tools, such the guarded command mentioned in section 4.2, for
imposing logical conditions on execution, so as to allow inter-process coordination.18 Clearly, concurrency
can be formalized and operationalized without positing a single, central “master” process that would alone
be in charge of integration.

In recent years, the growing demand for multiplayer gaming and social computing has spurred the devel-
opment of networked and cloud-based architectures and has renewed the interest in parallel asynchronous
computation. This, in turn, has resulted in a better appreciation for the full range of challenges arising from
what we termed the generalized problem of behavior, including both its multimodality and concurrency
aspects. Entire conferences are now devoted to these challenges, such as the 16th ACM International Con-
ference on Multimodal Interaction (ICMI), held in 2014. Our goal here is not to describe the state of the art
in theory and practice of parallel asynchronous computation, but rather to facilitate the forging of conceptual

18One example of such a language is Concurrent Prolog, used by Edelman (1987) to implement a distributed algorithm for
determining topological connectivity in image processing.
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links between that work and the cognitive and brain sciences.
For the cognitive scientist setting out to explore the computer science literature on concurrency and

multimodality, one useful entry point is the recent paper on multimodal event logic (Mehlmann and André,
2012), which aims “to express structural and functional constraints for the unification of partial information
distributed over events from multiple devices and modalities” (Figure 5). It is interesting to note that this
approach uses a graph-based formalism (cf. Figures 1 and 2) and that it relies heavily on the concept of
event.

5.3 Graphical formalisms for language and other types of concurrent processes

Our experience with developing models of language (Solan et al., 2005; Kolodny et al., 2015) suggests that a
graph-based approach to representation is the right one here. To fully exploit the potential of this approach,
while meeting the constraints that we argued for earlier, the graph grammar must be made to include the
multimodal aspects of natural linguistic input, while tolerating — or, even better, putting to good use —
the asynchronous concurrent unfolding of the different modalities. Of course, this consideration applies
not only to language, but also to the generalized problem of behavior, which is the broader concern of the
present paper.

One way of making concurrent use of multiple modalities would be to treat one modality as dominant
and the others as subservient to it. In language, seeing how much structure can be learned from bare text
alone (Solan et al., 2005; Kolodny et al., 2015), it seems natural to assume that the sequence of phonemes
(heard or transcribed and read) constitutes the dominant modality, with prosodic, gestural, and other ad-
ditional cues helping the learner “annotate” the main sequence by segmenting significant chunks, building
up hierarchical representations, and inferring their meaning. The model illustrated in Figure 2, if extended
along these lines, would involve learning multimodal collocations, etc. The other extreme would be to keep
the modalities separate, conduct within each the kind of pattern extraction just mentioned, and coordinate
the resulting representations when possible, perhaps on a need basis. The need could be signaled by a partic-
ular type of event (as in, for instance, reaching out and grasping an object that is being spoken of, an act that
immediately reduces the uncertainty of reference and of inter-modality coordination). Finally, as a fall-back
option suitable for categorization tasks, different modalities can be used to infer an integrated representation
(Coen, 2006) or an amodal one (Yildirim and Jacobs, 2015).

Given how general the problem is, which approach would work better depends on the species and the
circumstances of the learner. For instance, the behavior of animals whose primary habitat is an open field
is likely to be predominantly visually guided, while communication and coordination out of line of sight
is expected to make heavier use of the acoustic modality (cf. the “Buena Vista Sensing Club” of MacIver,
2009, sec. 2.2). A “generalist” species such as our own would do well to avoid an exclusive commitment to
a single modality, and indeed while some behavioral findings suggest that the auditory modality dominates
in human perception of temporal sequencing (Guttman, Gilroy, and Blake, 2005), other evidence points
toward a more balanced and perhaps hierarchically staged integration (Keele, Ivry, Mayr, Hazeltine, and
Heuer, 2003; van Wassenhove, 2009; Danz, 2011).

As we stressed in section 3.4, any such integration of modalities needs to do the right thing with regard
to dealing with multimodal similarity among objects, so as to support informed categorization and gener-
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alization. Kolodny et al. (2015, sec. 2.5) define the similarity between two elements of the grammar (that
is, vertices in the graph; cf. Figure 2) as a weighted average of three components: proximity between their
edge weight vectors, probability of occurring in the same collocation slot, and within-slot interchangeability
within a short time window. The problem of choosing the optimal weights — or rather of having to commit
to a particular choice of weights, as discussed earlier — is vexing enough; if the elements are made to be
multimodal, it would only be exacerbated (notwithstanding the availability of powerful clustering algorithms
for multimodal sequential data, such as those of Coen, 2006 or Ghassempour, Girosi, and Maeder, 2014).

In software engineering, there is an existing formalism that seems well-suited for representing multi-
modal concurrent patterns, without necessarily clumping them together on the basis of some fixed criterion,
is Live Sequence Charts (LSC) (Damm and Harel, 2001). The LSC framework includes both formal seman-
tics and software development tools and is based on “multi-modal scenarios, each corresponding to an indi-
vidual requirement, specifying what can, must, or may not happen following certain sequences of events”
(Harel, Marron, and Weiss, 2012). LSC is a dual formalism to that of statecharts (Harel, 1988, 2007), which
came up as a candidate formalism in our earlier work (Edelman, 2011; Goldstein et al., 2010; Kolodny et al.,
2015; Edelman, 2015b). Whereas statecharts focus on states that a system can occupy (including a superpo-
sition or Cartesian product of several states at once), Live Sequence Charts focus on processes and events.
As such, LSC seems even better suited to modeling brain and behavior than statecharts.

To construct a biologically relevant model of this type, we need, however, first to form some reasonably
specific hypotheses regarding the brain counterparts to the various intuitive and formal concepts that came
up so far in this paper. The next section lists some of the initial conditions for this effort.

6 A brain basis for multimodal, concurrent serial behavior

Most of the literature on the brain basis of multimodal information processing deals with multisensory
integration — an extremely active research area.19 Instead of attempting to survey it here, we shall mention
some of the methodological trends that strike us as characteristic of the work in this area, while staying in
touch with the analysis of the generalized problem of behavior offered earlier.

Perhaps not surprisingly, many of the available papers on sensory integration concentrate each on ad-
dressing a specific type of perceptual problem or behavioral task — a setting in which, as we discussed in
section 3, combining data from multiple sensors and/or modalities into a single decision variable is justi-
fied. Alongside computational modeling (much of it Bayesian), such studies investigate the anatomy and
the physiology of convergence of different cues onto multisensory neurons (Angelaki et al., 2009; Fetsch
et al., 2013; Chabrol et al., 2015).

Certain modeling efforts concerned with integration do look beyond the level of single neurons to the
dynamics of entire circuits. These, however, often make problematic choices both with regard to the inter-
pretation of the behavioral function whose modeling is attempted and with regard to their architecture. To
single out just one broader-scope study, consider, for instance, the ambitious and commendably computa-
tionally explicit model of temporal integration in working memory, described by Fuster and Bressler (2012).
Among its assumptions are the reducibility of behavior to the perception/action cycle and an undue focus

19A Google Scholar search for the conjunction of the terms “multisensory integration” and “brain” conducted in May 2015
yielded about 5, 300 publications dated 2011 or later.
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on the isocortex at the expense of other brain structures and circuits (fig.5). Moreover, this model uses a
uniform all-to-all connectivity in its proposed working memory circuit (fig.4). These design choices, we
feel, need to be revisited and scrutinized (see section 1 and Edelman, 2015b).

As a way of setting possible directions for future modeling work, and with the general problem of
behavior in mind, we propose to consider the actual circuitry of the (vertebrate) brain not merely as an
inspiration but rather as an extensive and complicated body of findings that need to be related to each
other and to the relevant functional and computational thinking. Consequently, in the three subsections that
follow, we touch upon the possible brain mechanisms that subserve, respectively (i) cue convergence and the
emergence of spatially anchored objects; (ii) binding of objects and their contexts into episodes, or events,
and the spatiotemporal sequencing of these; and (iii) coordination and switching of sequences for behavioral
control.20

6.1 The superior colliculus: modal/dimensional convergence and spatial anchoring of ob-
jects

In the sense that the convergence of certain cues defines an object,21 it is the convergence of pathways
carrying information from different modalities that one should be looking for in the brain. This is indeed
what modelers do when, like Fuster and Bressler (2012), they study integration in the prefrontal cortex.
Most vertebrate species, however, manage very well without isocortex, which suggests that there must be
an evolutionarily older structure in the brain that supports object- and action-based integration. Moreover,
given that any action is necessarily anchored spatially with reference to the actor (a threat looming from
here; an escape route leading there), we can expect that the structure in question should also directly encode
space, in a coordinate system centered on the self. An old, vertebrate-universal structure with the requisite
characteristics is found in the midbrain, in the superior colliculus or SC (Meredith and Stein, 1986; Doubell
et al., 2003; May, 2006).

In SC, spatial direction — the glue that holds together the features of an object or an action — is
represented, in adjacent layers of neural tissue arranged in spatial register, in the visual and auditory modal-
ities, with likewise spatially coded motivational and motor representations residing in nearby brain areas
(Merker, 2007, 2013b). This anchoring in space resolves the “binding problem” that plagues corticocentric
approaches to multimodal integration, while at the same time explaining the spatial aspect of the first-person
experience (Metzinger, 2003; Merker, 2007; see Edelman, 2008a, ch.9 for a synthesis and an extensive dis-
cussion).

The special role of SC in bundling together features into objects (and in giving rise to the subject) should
not be taken to mean that it is the exclusive location of such information in the brain. The SC is unique in
being the last station in the oculomotor pathway where control is exerted before motor commands are issued.
And yet, gaze direction is represented, in addition to SC, in the parietal and frontal cortical areas (namely, in
intraparietal sulcus and frontal eye fields, respectively). Thus, to come to grips with the generalized problem
of behavior, we must try to understand how SC fits into this broader context, both neuroanatomically and

20In singling out the three brain areas discussed below, we imply neither that each of these structures is the only one supporting
the stated function, nor that its role is exclusively to support the stated function.

21That is, in the sense of Hume (1740, IV, 6), who held this view not only with regard to the objects of perception, but also to the
perceiver/self, who is “[. . . ] nothing but a bundle or collection of different perceptions.”

19



in 
pr

es
s

functionally. Specifically, we need to understand how feature bundles come to persist over time and enter
memory.

6.2 The hippocampus: binding and temporal sequencing of events in episodic memory

Compared to rich representations supported by the cortex, the sensorimotor representations of objects,
events, and actions in SC are rather minimalist, focusing mostly on spatial direction. While they do serve as
an essential basis for behavior in all vertebrates, in mammals and birds these representations are augmented
with information mediated, respectively, by the isocortex and by the corresponding parts of the pallium. This
information includes hierarchically structured sensorimotor representations, carried by occipito-temporal
and parietal pathways, and representations supporting planning and problem solving, likewise hierarchical,
in the frontal lobe (see Edelman, 2015b and the many references therein for a review). The allocortical
structure where these pathways converge is the hippocampus (Buzsáki, 1996; Merker, 2004).

Whereas in SC the representation encodes space by being arranged topographically with respect to
spatial direction, in the hippocampus the spatial information is effectively (if not literally) map-like. The
basic functional unit of hippocampal representations is an episode: a bundle of sensory and other memories
pegged to a specific time and location in the environment (Eichenbaum et al., 1994; Wood, Dudchenko,
Robitsek, and Eichenbaum, 2000; Eichenbaum, MacDonald, and Kraus, 2014). These representations are
supported by ensembles of “place cells” (better called “episode cells”) which respond selectively to various
aspects of the animal’s experience associated with the given location in space, including just being there.
In this sense, episode cells are just the kind of neural basis of object/event/episode representation expected
from the discussion in section 5.1.

In the hippocampus, sequences of place-related episodes (events) are encoded (Fortin et al., 2002) and
later (in particular during sleep; Wilson and McNaughton, 1994) replayed, as demonstrated in rat foraging
and exploration behavior (Davidson, Kloosterman, and Wilson, 2009), birdsong (Dave and Margoliash,
2000), and human event timing (Ekstrom, Copara, Isham, Wang, and Yonelinas, 2011). Interestingly, the
replay can be speeded or time-reversed relative to the original sequence (Davidson et al., 2009); it can also
precede action rather than recalling it (Muller and Kubie, 1989; Dragoi and Tonegawa, 2013). As expected,
the hippocampus activity is coordinated with that of other brain areas, such as visual cortex (Ji and Wilson,
2007) and prefrontal cortex (Peyrache, Khamassi, Benchenane, Wiener, and Battaglia, 2009).

Given the “critical role” of the hippocampus in memory for sequences of events (Fortin et al., 2002), it
makes sense that it is critical also for language acquisition and use, as indicated by a growing list of findings
(DeLong and Heinz, 1997; Breitenstein, Jansen, Deppe, Foerster, Sommer, Wolbers, and Knecht, 2005; Duff
and Brown-Schmidt, 2012; Kurczek, Brown-Schmidt, and Duff, 2013). Because language is a paradigmatic
case of the generalized problem of behavior, we take these findings as motivation for taking a closer look
at the role of the hippocampus in experiencing, remembering, and planning sequential behaviors. We next
consider how the brain might be learning to coordinate sequences of events.

6.3 The basal ganglia: sequence learning, coordination, and switching

Dealing with information streams that comprise an embodied and situated linguistic exchange requires an
occasional synchronization of concurrent neural processes. Mechanisms capable of such synchronization

20



in 
pr

es
s

are found in the set of subcortical structures referred to collectively as the basal ganglia (see Atallah, Frank,
and O’Reilly, 2004 for a review that stresses the computational functions of basal ganglia and sketches their
connectivity with the rest of the brain).

The “backbone” of these mechanisms is a loop that connects the frontal cortex to the striatum, the
striatum to the complex consisting of the internal globus pallidus and the substantia nigra pars reticulata
(both directly and indirectly, via an “inverting” inhibitory relay in the external globus pallidus), on to the
thalamus, and back to the frontal cortex. The multiple parallel pathways comprising this loop are highly
specific in their patterns of connections along the way. These connections link them to additional brain
areas, both cortical (the entire isocortex is mapped in an orderly fashion onto the striatum) and others —
notably, the cerebellum, the superior colliculus, and the hippocampus (a very brief overview of these circuits,
along with further references, can be found in Edelman, 2015b).

Of particular interest to us here is evidence for the involvement of the basal ganglia in learning in humans
(Seger, 2006). Studies too numerous to be listed here have documented the central role of the basal ganglia
circuits in the coding of multimodal sequences, both perceptual and motor, and in switching between motor
programs (for a tiny sample of the literature, see Nakahara, Doya, and Hikosaka, 2001; Bullock, 2004;
Aldridge and Berridge, 2003; Kotz, Schwartze, and Schmidt-Kassow, 2009; Jin, Tecuapetla, and Costa,
2014). Most interestingly, some of the neurons in the striatum, for instance, seem to respond to events,
such as the onset and the termination of a movement phase relative to other movements (e.g., Aldridge and
Berridge, 1998; Atallah, McCool, Howe, and Graybiel, 2014). Finally, the circuits connecting the basal
ganglia to the cortex have been posited to play a role in language (Ullman, 2001; Lieberman, 2002) and
have helped tie theories of birdsong to theories of language (Bolhuis, Okanoya, and Scharff, 2010)).

7 Discussion

As must be the case with any attempt to come to grips with a problem as broad as the generalized problem of
behavior, and to bring to bear on it such a wide range of literature, this paper is necessarily both selective and
superficial. Our hope is that it can at least serve as a starting point for further investigations. In this closing
section, we list some issues to which we believe attention should be directed first and mention one point of
contact between the generalized problem of behavior and another topic of foremost concern in psychology:
consciousness.

To recapitulate, our main thesis is twofold: (i) certain aspects of the world (which includes the embodied
agent situated in it) cannot and should not be integrated and must therefore be represented as distinct; (ii)
over time, the resulting representations give rise to concurrent processes, which, moreover, unfold asyn-
chronously rather than in lockstep. This thesis has implications for the project of understanding the brain
basis of behavior, and in particular for the choice of a formal computational framework that would enable
such understanding, as well as for behavioral neuroscience and experimental psychology.

7.1 Suggestions for empirical studies and modeling efforts

To supplement the questions raised in section 6, we list here some predictions and possible specific targets
for empirical inquiry and computational modeling.
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Integration and convergence. The limitations of integration-based approaches to multimodality need to
be further explored. One notion to examine here is that even on the highest levels of processing in the frontal
cortex, distributed representations are the rule, while commitment — a serial bottleneck — is postponed until
as late as possible (cf. Rigotti, Barak, Warden, Wang, Daw, Miller, and Fusi, 2013).

Events. On the behavioral level, much evidence (cited elsewhere in this paper) already exists for the key
role of what the subject construes as events in orchestrating actions and coordinating their components
across perceptual and motor dimensions. On the neurophysiological level, we stress the need to seek neural
representations of events. We predict that these would be found in multiple parallel recordings (e.g., Salazar,
Dotson, Bressler, and Gray, 2012; Deco, Tononi, Boly, and Kringelbach, 2015) in the form of the functional
building blocks familiar to us from theory of parallel computing. Specifically, some processes — that
is, signals traveling down a particular pathway — should be waiting on others that unfold in parallel but
asynchronously, for purposes of coordination. Furthermore, we predict that neural implementations of guard
clauses (another concept from parallel computing, which we mentioned earlier) would be found. These can
take the form, for instance, of neurons firing in a sustained fashion until some precondition is fulfilled. A
related existing finding here is that of “start/stop activity signaling sequence parsing” by Jin et al. (2014);
cf. (Jin and Costa, 2010).

Specific brain structures and issues arising from their study. With regard to the superior colliculus, as
noted earlier, we need to understand how feature bundles that exist in SC in form of transient multi-laminar
activity foci come to persist over time and enter memory. With regard to the hippocampus, one needs to take
a closer look at its role in experiencing, remembering, and planning sequential behaviors (see (Edelman,
2015a) for a full review of the relevant literature and for some specific proposals inspired by prior work and
by the emerging theoretical synthesis). With regard to the basal ganglia, whose role in action selection and
sequential behavior has been extensively studied, many key questions remain open. Among these are (i) the
mechanism whereby BG contribute to implementing the “serial bottleneck” mentioned earlier in the paper;
(ii) the functional significance of going once around the cortico-BG loop,22 and (iii) the representation of
events in BG; cf. the reference to (Jin et al., 2014) above.

Developing a comprehensive approach to computational modeling of behavior. On a more abstract,
computational level, the goal should be to connect the neurobiological speculations offered above to formal
computational concepts from section 5. Ideally, this should result in an explicit circuit-and-synapse model
that would be, on the one hand, as computationally tractable as the LSC formalism, and, on the other hand,
as specific as the wiring diagrams that have been available for decades for the admittedly smaller-scope and
structurally much more regular circuits in the CA1-CA3 region of the hippocampus and in the parallel fiber
system of the cerebellum. This model may end up using (connection) space to represent time and sequential
order, as envisaged by Lashley (1951, p.128), as it is the case in the graph-based approaches to language
(Solan et al., 2005; Kolodny et al., 2015). Alternatively, it may turn out that the best way of representing
temporal order is to “fold” it into a recurrent network, as per (Levy, 1996; Levy, Hocking, and Wu, 2005).

22In particular, it is unclear whether or not a single traversal of the loop corresponds to the execution of a single step in a sequence
of steps comprising serial behavior (Edelman, 2015a).
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A detailed treatment of those questions is forthcoming (Edelman, 2015a). The next step would be to use
the computational model in trying to understand specific multimodal sequential behaviors, notably natural
language learning and processing. The goal here should be not merely to replicate psycholinguistic findings,
but to do so with a generative model capable of both producing and accepting utterances and of scaling up
to realistic corpora and situations (Waterfall et al., 2010). Finally, the resulting model should replicate also
those of the many “quirks” of language documented by linguists with regard to whose importance there is
a broad consensus in psycholinguistics (e.g., the so-called “island extraction” constraints; Sprouse, Wagers,
and Phillips, 2012; Stabler, 2013).

7.2 Some broader implications

It may be interesting to explore the repercussions of the proposed theory of behavior for theories of phenom-
enal experience, in particular for the so-called unity of consciousness (Bayne and Chalmers, 2003).23 Philo-
sophical debates surrounding this notion take as a starting point the intuitively obvious and incontrovertible
unity of the stream of the first-person phenomenal experience — barring rare pathological conditions, pos-
sibly the most fundamental quality of human existence (Metzinger, 2003). At the same time, however, there
are numerous considerations that cast doubts on the intuitions regarding cross-modal “integration” (recall
section 3). Furthermore, there are the constraints of the distributed, concurrent nature of brain function and
of the nonzero physical extent of the brain, which imply that it is physically impossible to instantaneously
integrate the information in a brain “state” (as per section 4.1).

We believe that the tension between the phenomenal unity and the difficulties that it runs into must be
resolved by rejecting attempts to reconcile the two. Instead, in light of the preceding discussion, we propose
that the intuitive conception of the unity of consciousness be relegated to the status of a “folk theory” that
need not be given a detailed mechanistic explanation, simply because on the level of process and mechanism
it lacks substance.24

To facilitate the transition from a unitary conception of phenomenal consciousness to a pluralistic one,
which views all of cognition (including consciousness) as a bundle of concurrent processes interspersed with
asynchronous events (as per section 5), it may be useful to revisit the familiar simile from William James
(1890, p.236):

When we take a general view of the wonderful stream of our consciousness, what strikes us first
is the different pace of its parts. Like a bird’s life, it seems to be an alternation of flights and
perchings.

This we propose to modify, likening consciousness to the life of a flock of birds, which generally moves
as one, yet includes both early birds and stragglers, so that the aggregate movement happens without the
individual birds necessarily perching or taking off all at the same time.25

23See (Mudrik, Faivre, and Koch, 2014) for an extensive survey of the concept of, and evidence for, perceptual integration and
its relation to consciousness.

24We would still have to explain, in terms that do not involve an appeal to “integration,” why our experience of the world is
normally phenomenally single-threaded, and why special conditions such as synaesthesia (Grossenbacher and Lovelace, 2001) are
not more prevalent.

25The modified simile brings to mind the Simurgh metaphor for the self (Edelman, 2008a, p.471); cf. (Borges, 1962).
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frog mating signals. Science 341, 273–274.

Tenenbaum, J. B. and T. L. Griffiths (2001). Generalization, similarity, and Bayesian inference. Behavioral
and Brain Sciences 24, 629–641.

Treisman, A. and G. Gelade (1980). A feature integration theory of attention. Cognitive Psychology 12,
97–136.

Ullman, M. T. (2001). A neurocognitive perspective on language: the declarative/procedural model. Nature
Reviews Neuroscience 2, 717–727.

van Wassenhove, V. (2009). Minding time in an amodal representational space. Phil. Trans. R. Soc. B 364,
1815–1830.

van Zaanen, M. (2000). ABL: Alignment-Based Learning. In Proceedings of the 18th
International Conference on Computational Linguistics, pp. 961–967. Available online at
http://citeseer.nj.nec.com/article/vanzaanen00abl.html.

Vigliocco, G., P. Perniss, and D. Vinson (2014). Language as a multimodal phenomenon: implications for
language learning, processing and evolution. Phil. Trans. R. Soc. B 369, 20130292.

Wallenstein, G. V., H. Eichenbaum, and M. E. Hasselmo (1998). The hippocampus as an associator of
discontiguous events. Trends in Neurosciences 21, 317–323.

Watanabe, S. (1969). Knowing and Guessing: A Quantitative Study of Inference and Information. New
York: Wiley.

Waterfall, H. R., B. Sandbank, L. Onnis, and S. Edelman (2010). An empirical generative framework for
computational modeling of language acquisition. Journal of Child Language 37(Special issue 03), 671–
703.

Wilson, A. J., M. Dean, and J. P. Higham (2013). A game theoretic approach to multimodal communication.
Behavioral Ecology and Sociobiology 67, 1399–1415.

Wilson, M. A. and B. L. McNaughton (1994). Reactivation of hippocampal ensemble memories during
sleep. Science 265, 676–679.

Wood, E., P. A. Dudchenko, R. J. Robitsek, and H. Eichenbaum (2000). Hippocampal neurons encode
information about different types of memory episodes occurring in the same location. Neuron 27, 623–
633.

34



in 
pr

es
s

Yildirim, I. and R. A. Jacobs (2015). Learning multisensory representations for auditory-visual transfer of
sequence category knowledge: a probabilistic language of thought approach. Psychonomic Bulletin &
Review 22, 673–686.

Zacks, J. M., T. S. Braver, M. A. Sheridan, D. I. Donaldson, A. Z. Snyder, J. M. Ollinger, R. L. Buckner,
and M. E. Raichle (2001). Human brain activity time-locked to perceptual event boundaries. Nature
Neuroscience 4, 651–655.

Zacks, J. M., N. K. Speer, K. M. Swallow, T. S. Braver, and J. R. Reynolds (2007). Event perception: a
mind-brain perspective. Psychological Bulletin 133, 273–293.

Zacks, J. M. and B. Tversky (2001). Event structure in perception and conception. Psychological Bul-
letin 127, 3–21.

35


	Background and motivation
	A case study: multimodality and concurrency in language
	The structural aspect of the problem of behavior: multidimensionality and multimodality
	Dimensionality: nominal, effective, and intrinsic
	Multimodality
	How many dimensions? How many modalities? How many objects?
	Respects for similarity
	The buck stops here

	The temporal aspect of the problem of behavior: concurrency
	Physical underpinnings of asynchrony among concurrent processes
	The computational challenge of asynchronous concurrency

	An event-based computational approach to multimodality and concurrency
	Events as an organizing principle in multimodal, concurrent systems
	Computational tools for dealing with concurrency
	Graphical formalisms for language and other types of concurrent processes

	A brain basis for multimodal, concurrent serial behavior
	The superior colliculus: modal/dimensional convergence and spatial anchoring of objects
	The hippocampus: binding and temporal sequencing of events in episodic memory
	The basal ganglia: sequence learning, coordination, and switching

	Discussion
	Suggestions for empirical studies and modeling efforts
	Some broader implications




