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Abstract  The production of novel behavioral sequences that gives rise to animal innovation and creativity is one of the most 

intriguing aspects of behavioral evolution. Numerous studies have recently documented the abundance and diversity of innova-

tive and creative behaviors between and within species, yet the ability to innovate or to act creatively has mainly been described 

and quantified as a measure of animals’ cognitive ability without explicit reference to cognitive mechanisms that may account for 

these behaviors. Here we discuss the creative process from a computational point of view and suggest such a mechanistic frame-

work. In light of recent research on human creativity, animal learning, and animal problem solving, we suggest that animal crea-

tivity is best understood as the production of context-appropriate novel behavioral sequences, which may be facilitated by the 

ability to learn the regularities in the environment and to represent them hierarchically, allowing for generalization. We present a 

cognitive framework that we recently developed, which employs domain-general mechanisms and has been used in the modeling 

of a range of sequential behaviors, from animal foraging to language acquisition, and apply it to behavioral innovation. In a series 

of simulations, we show how innovation and creative behavior can be produced by this learning mechanism, as it constructs a 

network representing the statistical regularities of the environment. We use the simulations to demonstrate the role of particular 

cognitive parameters in this process and to highlight the effects of the learning dynamics and individual experience on creativity 

[Current Zoology 61 (2): 350–367, 2015]. 
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1  Introduction 

1.1  What is creativity? 
We begin by considering a working definition of 

creativity and innovation in animal behavior. First and 
foremost, as is the case with any theoretical characteri-
zation of behavior, such a definition must be functional 
(see discussions in Reader and Laland, 2003; Reader 
and MacDonald, 2003; Shettleworth, 2010). A defini-
tion that requires a priori that behavior be considered 
creative only if it is the outcome of a particular cogni-
tive or computational process (e.g. Witt, 2009), would 
thus be irrelevant to the current discussion, as would be 
one that depends on subjective data (e.g. questionnaires; 
see discussion in Fleck and Weisberg, 2004). 

Following Kaufman and Kaufman (2004), Simonton 
(2000), and the discussion in Boden (1995), we consider 
a behavioral sequence creative if: (1) it is novel, in the 
sense that it had never been produced by that individual 
and that individual had never been exposed to the beha-
vior, and (2) it is 'good' in some sense (see below).  

This is not to say that creative behavior must be 
completely novel: nearly all creative behavioral sequ-
ences are composed of previously known sub-units. In 
this spirit, we shall argue that the use of generalization 
and analogy among known behaviors is a major source 
of creative behavioral sequences (see, e.g., Edelman, 
2008; Hofstadter, 1995; Hofstadter and Mitchell, 1995; 
Lieven, Tomasello et al., 2003; von Bayern et al, 2009). 
Following Ramsey et al. (2007), we also limit the scope 
of novel behaviors to those that are not a direct influ-
ence of the environment, i.e. novel behaviors are only 
those that are not induced in all individuals alike by 
environmental cues, as may occur with instinctive be-
haviors and reflexes. Note that this definition is very 
broad, and should thus be applied carefully to different 
fields and in different contexts: in some realistic settings 
of animal behavior, for example, it makes sense to de-
fine also a repeated behavior as creative if it is in accord 
with the definition above, despite the fact that techni-
cally only the behavior’s first execution satisfies it in  
full. In the context of automated search algorithms, on 
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the other hand, which seek solutions to given problems 
in a predefined space of possible “behaviors”, our defi-
nition would encompass virtually any solution that the 
algorithm might produce, and so in that context it might 
not prove so useful. 

The demand that creative behavior be 'good' in some 
sense is one of the constraints on creativity discussed 
and debated by Boden (1995) and others (e.g. Kaufman 
and Kaufman, 2004; Simonton, 2000). In animal beha-
vior, this type of constraint has a natural interpretation: 
for a behavioral sequence to be creative, it must be 
adaptive (in the classical evolutionary sense), or more 
accurately, the tendency to produce this behavior must 
be adaptive on the average. An adaptive behavioral se-
quence could be, for example, one that increases the 
likelihood of finding food, navigating successfully, ge-
nerating an attractive song or courtship display, or suc-
cessfully communicating with other individuals.  

A concept that is closely related to creativity is inno-
vation. Definitions of this term vary widely, as dis-
cussed in depth by Reader and Laland (2003). Lately, 
innovation has been invoked in the context of creative 
behavior at the level of the population and the study of 
the spread of new ideas and behaviors in social groups 
(e.g. Allen et al., 2013; Bateson and Martin, 2013; 
Hoppitt and Laland, 2013; see discussion in Ramsey et 
al., 2007 and Logan and Pepper, 2007). Given that our 
focus here is on the cognitive mechanisms that may 
underlie creative behaviors, we mostly use the term 
‘creativity’; the occasional mention of ‘innovation’ refers 
simply to creative behavior, possibly in a social context.  

One of the several posited essential characteristics of 
creativity is insight. Many authors (e.g. Sternberg and 
Davidson, 1995) have suggested that insight, as mani-
fested in the subject’s “aha!” feeling, is a cornerstone of 
creative behavior (see discussions in Boden, 2004; 
Bowden et al., 2005; and a computational view of the 
role of surprise in the learning process in Schmidhuber, 
2006; 2008; 2010; 2013). We refrain from including 
insight in our definition of creativity, both because we 
remain agnostic with regard to its objective nature (in 
particular, given the possibility that the underlying 
unconscious dynamics are in fact gradual; see, e.g., 
Kounios and Beeman, 2009; Simonton, 2000; Weisberg, 
2006), and because this subjective experience is usually 
not well communicated to the observer by animal sub-
jects (Reader and Laland, 2003; Shettleworth, 2010). 
Moreover, the term 'insight' is frequently used in animal 
behavior to describe a different phenomenon, in which 
an animal seems to predict the outcome of a behavior 

without trying it out in its entirety beforehand (see, e.g., 
Seed and Boogert, 2013; Shettleworth, 2012; Thorpe, 
1956). That said, we will return to discuss insight from 
a computational perspective, as it does seem that a cer-
tain element of surprise is characteristic of most beha-
viors that we intuitively view as creative.  
1.2  Creativity and innovation in animal behavior 

Many instances of animal creative behavior have 
been documented, such as opening of milk bottles by 
birds (Fisher and Hinde, 1949), activation of different 
contraptions that contain food by tits, babblers, mynas, 
and meerkats (e.g. Griffin et al., 2014; Keynan et al., 
2015; Morand-Ferron et al., 2011; Thornton and Sam-
son, 2012), a range of types of tool use by primates and 
corvids (e.g. Bluff et al., 2007; Boinski, 1988; Goodall, 
1986; Seed and Byrne, 2010; Visalberghi, 1987), and 
surprising methods of food handling by various species 
(e.g. Hosey et al., 1997; Kawai, 1965). Many of these 
are reviewed in (Reader and Laland, 2003). 

The addition of novel behaviors to an organism's re-
pertoire is a double-edged sword: it may have a signifi-
cant effect on fitness, in both directions. Much work has 
been done to understand which individuals are most 
likely to produce creative behavior and when, showing 
a range of patterns in various species, that may vary 
across individuals and contexts (see, e.g., Keynan et al., 
2015; Kummer and Goodall, 2003; Lefebvre and Bol-
huis, 2003; Morand-Ferron et al., 2011; Sol, 2003).  

Importantly, a number of studies have shown a strong 
effect of the details of the individual's experience, and 
in particular of the individual’s tendency to actively 
explore its environment and its elements, on its propen-
sity to produce a novel behavior (e.g. Bateson and Mar-
tin, 2013; Bekoff and Byers, 1998; Bluff, et al., 2007; 
Burghardt, 2005; Reader and Laland, 2003). 
1.3  What kind of computational process can give 
rise to creative behavior?  

To interact effectively with its environment, it is 
useful for an organism to have a cognitive representa-
tion of the environment, of the possible actions that it 
can perform in it, and of their possible effects (Byrne 
and Russon, 1998; Conant and Ashby, 1970). A central 
cognitive challenge in producing behavior is sequencing 
actions in a manner that is likely to be adaptive (Sa-
vage-Rumbaugh and Lewin, 1994; Byrne, 2002). Our 
interest focuses on this computational task, as well as on 
the construction of representations that may facilitate 
the solution of this computational task. That is, we focus 
on the learning process that allows to construct a repre-
sentation of the environment in the learner’s memory, in 
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the form – for example – of a hierarchical network (see 
below), and that can serve for constructing sequences of 
actions. 

It might seem that for an organism that constantly 
constructs behavioral sequences, being creative is trivial; 
this is not the case. The vast majority of sequences that 
can be produced arbitrarily may be physically nonsen-
sical, and almost all of the remaining sequences are ex-
tremely unlikely to be adaptive. The search space is 
typically huge: the combinatorial space spanned by a 
mere 6-element repertoire of possible behaviors, in the 
construction of a 4-element sequence, already contains 
more than 1,200 possible options. A challenge in con-
structing creative behavior is thus in conducting a bi-
ased search in this vast space and in pruning the tree of 
possibilities effectively so as to eliminate sequences that 
are unlikely to be adaptive, or in constructing sequences 
in a biased manner that would bring this outcome about 
(see, e.g., Boden, 1995; Edelman, 2008; Forth et al., 
2010). 

Importantly, the structure of the internal representa-
tion that serves as the substrate for the construction of 
new behavioral sequences (e.g. the links connecting 
nodes in a network representation) strongly influences 
its ability to give rise to creative solutions (see, e.g., 
Boden, 2004). This is true for what the representational 
structure allows and supports, e.g. whether or not the 
mechanism supports the construction of categories and 
of concepts at various levels of abstraction; it is also 
true for the particular instance of representational struc-
ture that an individual managed to learn, e.g. whether or 
not it is a rich enough representation. Both these aspects 
are touched upon below. 

A number of computational frameworks have been 
used to model creativity in various settings, aimed at 
providing insight into human creativity (see, e.g., Forth, 
et al., 2010; Hofstadter and Mitchell, 1995; Johnson-   
Laird, 1991). These studies underscored the importance 
of hierarchical representations and of the ability to infer 
similarity among elements and to generalize or draw 
analogies accordingly. Typically, they leave the task of 
evaluating the results (e.g., with regard to their aesthetic 
impact or ‘goodness’ value) to the subjective opinion of 
the human users of the models, an approach that cannot 
reveal the fitness benefits of creativity, and is therefore 
not very useful for the study of creativity in biological, 
evolutionary contexts. For instance, the CopyCat model 
of creative analogy (Hofstadter and Mitchell, 1995) was 
shown to be capable of producing not only high-pro-
bability, conservative, solutions but also ones that had a 

low probability, yet were deemed striking by the mod-
el’s designers. Whether such creativity is evolutionarily 
adaptive remains to be shown; this may not be easy to 
demonstrate in the case of human creativity, but may be 
possible to study in the context of animal behavior.  

Notably, Schmidhuber and others (Schmidhuber, 
2006; 2008; 2010; 2013) have developed an elaborate 
computational theory of creativity, suggesting that the 
essence of creative behavior is in uncovering a pre-
viously unknown regularity in the environment, as sig-
nified by a newly available means of compressing its 
representation, and that the search for such regularities 
can be cast as intrinsically motivated RL. While it is 
computationally sophisticated and widely appreciated in 
cognitive psychology, machine learning, and AI, we do 
not adopt this view of creativity in the present work, 
since the requirement that all creative behaviors must 
lead to improved compression of the world representa-
tion rules out many behaviors that we deem creative 
because they are adaptive in other biologically mea-
ningful respects. Additionally, deciding whether a beha-
vior is creative according to Schmidhuber’s definition 
requires access to the learner’s internal representation, 
which is difficult or impossible to achieve in studies of 
animal behavior. 

In the next section we present a framework that al-
lows for hierarchical representation and for generaliza-
tion in both humans and animals. It has been previously 
developed to account for a range of learning tasks and 
production of behaviors (Kolodny et al., 2014a, b), and 
is offered here as a simple, first-approximation compu-
tational model of creativity in animals, and in particular 
of the capacity for “unlikely” yet useful innovation. We 
then apply the framework to a number of learning and 
production challenges in a set of simulations. While 
some existing computational models of reinforcement 
learning can be adapted so as to replicate the findings 
detailed below, the mechanism that we propose differs 
from these in that it is quite simple and easily evolvable 
from even simpler building blocks, thereby offering a 
view of creativity that can be of direct use to ethologists. 
See further discussion in section 5. 
1.4  Learning of behavior: The cognitive framework 

Computational cognitive models are not common in 
the study of animal behavior. Typically it is assumed 
that much of the studied behavior can be explained by 
simple associative learning (Heyes, 2012), or, in more 
complex cases, by backward chaining (Ferster and Bo-
ren, 1968; Millenson, 1967; Skinner, 1966). In many 
cases, the learning or decision task that the animal faces  
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is viewed as a choice among a small number of options 

such as whether to prefer to peck at one spot or the other, 
or whether to forage in one of two localities – chal-

lenges that can be met by relatively simple learning 

rules (Bush and Mosteller, 1951; Giraldeau, 1997; 
Harley, 1981; McNamara and Houston, 1987; Trimmer 

et al., 2012). Elsewhere (Kolodny et al., 2014a) we have 
argued that these models and tasks have taught us much 

about animal learning and behavior, but may be insuffi-

cient for handling the broader challenges that animals 
face in their environment (see also Fawcett et al., 2013; 

McNamara and Houston, 2009). Relevant to this paper 
is the fact that such models leave little room, if any, for 

creativity on the part of the animal. Moreover, labora-
tory and field studies that do yield examples of animal 

creativity are typically "model-free" in that they do not 

attempt to put forth a mechanistic account of the beha-
viors in question (e.g. Griffin et al., 2013; Aplin et al., 

2014).  
To fill this gap, we present here an explicit cognitive 

computational model that learns and represents the 

world and can accommodate a wide range of behaviors.  
Importantly, the model’s ability to construct sequences 

in general can also provide a framework for studying 
the construction of context-appropriate novel sequences 

of behavior, and hence creativity. This cognitive-com-
putational approach makes it possible to go beyond the 

description of creative behaviors and the comparison of 

quantifiable descriptive traits, to the modeling of the 
cognitive mechanisms that underlie the behavior. This, 

in turn, leads to possible refinement of the questions 
that are asked and the learning challenges that are stu-

died, so as to uncover the details of the actual cognitive 
mechanisms and of the processes involved. 

2  The model 

The model we propose, LEBS (an acronym for 

Learning and Exploration of Behavioral Sequences), 

allows an organism to construct a "grammar of beha-
vior": a representation of elements that comprise the 

modality of interest and the possible sequential relations 
among them. This model is based on simple principles 

of associative learning, but despite its simplicity, it can 
give rise to many abilities that are thought of as “higher 

cognition”, such as generalization, analogy, and abstrac-

tion. It is an instance of a framework that we have ap-

plied with success to learning and behavior in various 

modalities and environments①, from learning in song-

birds and their composing of song sequences from syl-
lables (Menyhart et al., under revision), through learn-

ing regularities in a foraging environment composed of 
various objects and optimizing the choice of foraging 

routes among them (Kolodny et al., in review; Kolodny 

et al., 2014a), to the learning of human language 
(Kolodny et al., 2014b). For generality, in this paper we 

apply the model to an abstract modality, most readily 
envisioned as a modality of possible physical actions. 

The framework was developed with special attention to 
biological realism and evolutionary plausibility, consi-

dering how simple mechanisms can incrementally 

evolve into complex ones, as explored and discussed in 
(Kolodny et al., 2014a, b). 

2.1  Learning and representation 
A LEBS learner starts out with a clean slate; with 

time it gradually encounters units that comprise the 

learned modality. These are extracted from the stream of 

sensory and motor data and are committed to memory; 
they are introduced into an internal representation, 

which is structured as a directed graph: a set of nodes, 
connected by edges that represent the statistical tempor-

al/sequential relations between them (see simplified 
example in Fig. 1). 

The extraction of units from the data stream is done 
in a number of ways. First, the data stream may be na-
turally divisible into basic elements, such as phonemes 
in language, syllables in birdsong, physical objects in 
the environment, or movements of body parts (see, e.g., 
Byrne, 1999). In this case, the learner adds to its repre-
sentation every new element as it is encountered (hen-
ceforth EBL: element-based learning). A second method 
of extraction of units is applicable also to data streams 
that are not easily broken down into their constituent 
units: the learner searches for recurring sequences in the 
data stream and adds those to its representation (hence-
forth RBL: recurrence-based learning). This search is 
conducted only along the sequence of input acquired 
within a rather short time-window, allowing it to be 
efficient computationally and memory-wise. This turns 
out to have an additional functional advantage: a se-
quence that recurs within a short time-window is un- 

 
 

① The LEBS (Learning and Exploration of Behavioral Sequences) model is a version of the framework dubbed CBLS (Kolodny et 

al., under review) or U-MILA (Kolodny et al., 2014), run with a set of default parameter values. 
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Fig. 1  An illustration of an internal representation of a black rat's actions in the context of handling of food 
Nodes denote actions or occurrences and solid edges denote temporal relations. An example of a high-order hierarchy (chunk – see text for defini-
tion) is shown in red (dashed) line, signifying that alongside separate representations of holding a nut and of climbing onto a secure branch, this 
learner has a combined representation of the two actions as a single unit, allowing it to represent the fact that the chunk is always followed by the 
action of gnawing the nutshell. See main text for a discussion of the need for such units. An example of a bi-directional link, representing high simi-
larity between units, is denoted in green (dotted) line. See detailed explanation at the end of this section. The purple (dash-dot) high-order unit de-
notes potential entrenchment and is referred to in the results section. For clarity, edge weights are not shown.  

 
likely to be coincidental, and is more likely to reflect a 
stable and potentially meaningful unit in the learned  
modality (Goldstein et al., 2010; Lotem and Halpern, 
2008, 2012; Onnis et al., 2008a, 2008b). Thus, every 
such recurring unit is added tentatively to the represen-
tation (but decays if it does not recur at a frequency 
above a certain threshold). Note that in this manner a 
learner may add to its repertoire long sequences 
("chunks") which are themselves composed of smaller 
units (see discussion below). The third method by which 
units may be added to the representation is via a bot-
tom-up construction mechanism: if two previously-  
learned units follow one another frequently (above a 
certain statistical threshold), a sequence (chunk) which 
is a concatenation of the two will be added to the repre-
sentation. 

The high-order units, hierarchies, that are added to 
the learner's repertoire by the two latter mechanisms 
represent encapsulations of behavioral sequences. This 
may be advantageous in several respects. First, a certain 
high-order unit may have a different meaning, reflected 
in its statistical relations with other units, from a mere 
concatenation of its constituents. As (a simplified) exa-
mple, consider a pecking action that can be a precursor 
of food collection or of an attack of an opponent. The 
latter is usually preceded by a wing stroke while the 
former is not. In this case, it would be worthwhile to 
code the sequence of <wing stroke + peck> as a unit in 

the repertoire, allowing the learner to code its statistical 
temporal relations with other units separately from those 
of a peck that is not preceded by a wing stroke (i.e. 
<wing stroke + peck> → <opponent> versus <peck> → 
<food>). Other advantages of high-order encapsulation 
of sequences are reduced processing time or computa-
tional effort and thus faster reaction times, reduced 
probability of unplanned diversions from an action-plan, 
and a means of representing highly stereotyped beha-
viors in which small deviations from the sequence are 
costly. These advantages are not unique to animal 
learning and behavior, in which these features may car-
ry high adaptive value: such high-order encapsulation of 
action-sequences are also commonly used in control 
structures and flow charts in many industries, from au-
tomated production of goods, through robotics, to air-
craft control (Harel, 1987, 2007).  

Importantly, high-order encapsulations of sequential 
behaviors can be viewed as an abstraction of the beha-
vior, allowing the learner to process the sequences effi-
ciently, easily learn the similarity between complex be-
haviors, and combine complex sequential behaviors, in 
turn, into higher order hierarchical sequences. This idea 
can be illustrated intuitively on the example of the see-
mingly simple task of throwing a stick. On the face of it, 
this requires grasping the stick, picking it up, and fling-
ing it away. In reality, though, each of these steps is 
composed of a multitude of sub-tasks, such as reaching 
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for the stick, opening the fingers, and closing them at 
the right timing, each in itself a complex challenge that 
involves multiple sensory and motor systems and per-
fect coordination among them. The abstraction to a 
small number of complex units that are highly auto-
mated (grasp, pick up, fling away) makes a real-time 
execution of such a complex sequence possible. 

As a learner encounters previously-learned units, it 
updates the representation with regard to their frequen-
cy of occurrence and it learns their statistical relations 
with other units: edges between units denote which ones 
had been encountered following one another, and each 
edge is weighted to reflect the frequency with which 
this happened. An edge’s weight thus constitutes an 
estimate of the actual (real-world) statistical relation 
between the two nodes that the edge connects. 

These concepts are illustrated in Fig. 1, which de-
picts a rat's simplified representation of actions that are 
related to food handling (Aisner and Terkel, 1992). Note 
that multiple high-order chunks and links that represent 
high similarity among nodes are to be expected in such 
a representation, if the animal is capable of learning 
such properties. For visual clarity only a few examples 
of each type are depicted. Note also that the depicted 
actions are in reality composed of multiple sub-units; 
any such representation requires a certain level of ab-
straction, which, we suggest, is also to be found in real-   
life cognitive representations (Kolodny and Edelman, 
submitted). 
2.2  Generalization and analogies 

Learners in our framework can generalize and draw 
analogies among units in a rather simple manner based 
on the internal representations that they construct. They 
do so by calculating the extent of similarity between 
pairs of units, as reflected by the contexts in which they 
are encountered, arriving at an estimated similarity in-
dex: If the edge profile of unit A is similar to that of unit 
B, it may be reasonable to generalize and expect that 
unit A may follow elements that had preceded unit B, 
even if A had not been encountered in this context (see 
details and method of calculating the similarity index in 
the Electronic Supplementary Material, ESM). Thus, for 
example, the simple representation in Fig. 1 suggests 
that <climb onto secure branch> and <hide beneath 
large rock> have a high similarity index, as half of their 
incoming and outgoing links to other nodes are identical 
(note that a realistic representation would be richer and 
the similarity index accordingly more reliable). Given 
this similarity, the rat, while holding a cone and plan-
ning its next step, may replace the <climb onto secure 

branch> with <hide beneath large rock>. The realized 
sequence should be regarded as creative: it is both novel 
and may be highly adaptive, depending on the rat's lo-
cation. The decision of whether or not to generalize 
depends on a parameter in our model (Pgen), which is 
the probability of similarity-based generalization being 
used in the production of sequences. As we shall further 
demonstrate below, the ability and the tendency to ge-
neralize (based on Pgen) may play a crucial role in a 
learner's ability to act creatively.  
2.3  Sequence production 

The representation produced as described above can 
be useful for predicting what is likely to follow, for 
making choices among multiple options, for the as-
sessment of novel data in relation to existing memories 
as in the assessment of a courtship sequence, and for a 
range of other objectives (see also Kolodny et al., 2014a, 
b). Most importantly for the present study of creative 
behavior, however, the representation can be used for 
the production of behavioral sequences. The graph-   
based representation in the form of directed edges be-
tween nodes that represent meaningful units lends itself 
naturally to producing sequences, including novel ones: 
a sequence can be composed simply by following a path 
over the edges of the graph. Various algorithms can be 
used for this purpose; one simple option is to start out at 
a certain node (in the simulations below all sequences 
start with a special node representing "begin"), and 
choose an edge from among the outgoing edges of that 
node, taking into account the edges' relative weights 
(see ESM and Kolodny et al., 2014b for computational 
details). This choice leads to the next node in the con-
structed sequence, and the process can be iterated again 
and again (in the following, a trajectory terminates upon 
reaching the special node 'end'). In the results section, 
we present a number of alternative algorithms, along-
side the model parameters that govern their action, and 
their effect is demonstrated. 

3  Methods: Examining the Effect of 
Learning on Creativity in a Simple 
Cognitive Framework 

To demonstrate the use of the proposed cognitive 
framework for the study of creativity, we ran simula-
tions in which learners were exposed to a set of input 
sequences and were then required to produce sequences 
of their own. The input sequences in each simulation 
followed a set of rules regarding the sequential relations 
among different elements that can presumably be expe-
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rienced in nature, in a scenario – for example – of a 
young animal watching or joining the behavior of expe-
rienced individuals. These take the form of finite auto-
mata, and are depicted in Fig. 2. 

Importantly, the input datasets never included all se-
quences that are acceptable (i.e., behaviorally adaptive) 
in the learned modality, thus leaving room for the pro-
duction of novel sequences by the learner. The produc-
tion of a novel adaptive sequence would constitute crea-
tive behavior. Note that we henceforth refer to se-
quences that are acceptable, i.e., that follow the regular-
ities that underlie the sequences in the input datasets, as 
‘adaptive’ or simply as ‘acceptable’. These behavioral 
sequences should be viewed as sequences whose execu-
tion is likely to increase the learner’s fitness in the clas-
sic sense, for instance by increasing its foraging success. 
Note also that the definition of a creative sequence re-
quires that it had never been produced before by that 
individual, and thus it would seem that at best each cre-
ative sequence should be viewed as such in our simula-
tion only on the first time that it is produced by the 
learner. This is not the case, because the learning me-
chanisms were disabled once the exposure of the learn-
ers to input sequences ended and before they started to 
produce sequences of their own. Produced sequences 
can thus be viewed as though they occurred immediate-

ly at the end of the learning from the input sequences, 
independent of one another.  

The behavioral sequences produced by the learner 
depend on the model’s parameters that govern the pro-
duction of behavioral sequences and, obviously, on 
what the learner had learned: the structure of the di-
rected-graph representation that it had constructed. 
Through adjustment of the model's parameters, existing 
explanations for creative and innovative behaviors can 
be accommodated by our computational framework. For 
example, attributing an organism's reluctance to act 
creatively to factors such as neophobia, conservatism, 
or functional fixedness (e.g. Brosnan and Hopper, 2014; 
Overington et al., 2011) may be made more explicit by 
suggesting how these factors act as parameters in a 
computational model such as ours. Similarly, differen-
ces in these parameters' values may shed light on why the 
tendency to innovate may be context-dependent, task-   
specific, or vary across individuals (e.g. Cole et al., 
2011; Griffin et al., 2013; Griffin et al., 2013; Laland 
and Reader, 1999; Morand-Ferron et al., 2011).  

To explore and to demonstrate the potential effects of 
the learning experience and of the model's parameters 
on animal creativity, each of the following sections de-
scribes simulation results in which one or more of these 
factors were altered. 

 

 
 

Fig. 2  The rules that we used to construct the training sets in the simulations, presented in the form of finite automata: 
each trajectory along directed edges from begin to end appeared in the simulations' training phases with some probability 
A. Automaton 1, used to produce training sets for simulations 1–3. B. Automaton 2, used to produce training sets for simulations 4–6, see more 

details in the main text. C. Automaton 3, used to produce the training sets for simulation 7. D. Automaton 4, used to produce the training sets for 
simulation 8. Note that the rules described by these automata do not produce all the acceptable (adaptive) sequences; see main text for further details 
and for an interpretation of each automaton's regularities in the context of defining creative behavior.   
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4  Results and Discussion 

4.1  Simulation 1: two routes may lead to creativity 
In this simulation, adaptive behavioral sequences are 

defined as all (and only) sequences of the form “begin 
{Group 1} {Group 2} {Group 3} end”, in Fig. 2A. The 
sequences that comprise the 10,000-sequence training 
set are those produced by following trajectories along 
black (solid) edges in Fig. 2A, with the exception of the 
sequence “begin A F I end”, all instances of which were 
removed from the training set (depicted as a red, dashed 
line). The learner is exposed to the training set, and is 
required in the test phase to construct 100,000 se-
quences. We then evaluate how many of the produced 
sequences are adaptive and whether any of those are 
creative (i.e. both acceptable and novel).  

This simple framework is useful to explore creativity, 
as it allows the learner to potentially construct a very 
wide range of behaviors, while setting clear constraints 
on what is deemed adaptive. Moreover, given the train-
ing set, it is straightforward to identify which potential 
sequences should be regarded as creative, i.e. both nov-
el and adaptive. The possible creative sequences are 
therefore be: "begin A F I end" and the sequences of the 
form "begin {Group 1} {G,H} {K,L} end". 

We trained and tested two learners in this simulation; 
both use only the EBL mechanism, i.e. they construct a 
graph whose nodes are only the base-elements that they 
encounter while training (and no high-order units). In 
the first learner (L1), the generalization parameter (Pgen), 
which sets the extent to which similarity-based genera-
lization is used in the production of sequences, was set 
to 0 (i.e. no generalization), while in learner 2 (L2) this 
parameter was set to a value of 0.2. This implies that 
during sequence production, each node that is initially 
chosen to take part in the sequence may be replaced by 
another node, at a probability of 0.2. The choice of a 
“similar” node to be used from all candidate nodes is 
proportional to its similarity index; see details in section 
1 and 2 of the ESM. 

All the 100,000 sequences produced by each of the 
learners were adaptive, i.e. of acceptable form in both 
length and structure. Nearly 1% of the sequences pro-
duced by L1 (that is incapable of generalization) were 
of the form begin A F I end, demonstrating that at least 
some creative behaviors do not require the ability to 
generalize per se (for full numerical results see Table 1 
in the ESM). An examination of the simulation's log-
book shows that these novel sequences were con-
structed simply by the learners' combining learned se-

quences with one another: F had been encountered fol-
lowing A and I had been encountered following F, so 
their concatenation was straightforward even though the 
three had never been encountered following one another 
as a full sequence. In fact, the simple representation 
constructed by L1 does not enable it to avoid the con-
struction of such sequences, because no long-distance 
data beyond first-order transitions regarding the en-
countered sequences is recorded. Thus, one route to 
creativity that does not require generalization is a sim-
ple concatenation of learned sequences of two nodes 
(bigrams) into novel sequences of three nodes.    

Further examination of the simulation results shows 
that no sequences of the novel form “begin {group 1} 
{G,H} {K,L} end” were produced by L1, while nearly 
6.5% of the sequences produced by L2 were in this 
form. This result suggests a second route to creativity, 
which does require generalization. Indeed, an examina-
tion of the simulation's logbook revealed that L2 had 
inferred that I and J are similar to K and L, as all four 
have a large overlap in their edge profiles, and in its 
production process it occasionally replaced I or J by K 
or L. 
4.2  Simulation 2: The effect of the generalization 
parameter on creative output 

This simulation was identical to simulation 1, but in 
this case the learners that were trained and tested dif-
fered from one another by the value of their generaliza-
tion parameter. This parameter determines the learner's 
tendency to try out new combinations based on its infe-
rence of similarity among learned units, and as expected 
we found that the higher the tendency to generalize, the 
higher the probability that novel sequences of the form 
“begin {Group 1} {G,H} {K,L} end” would be con-
structed (Fig. 3). Note that in this simulation, generali-
zation never led to the construction of maladaptive se-
quences because of the extremely simple structure of 
the learned modality. In other conditions, including most 
realistic scenarios, it is quite likely that over-generaliza-
tion would frequently lead to the construction of mala-
daptive sequences (see examples in simulations 7 and 8). 
4.3  Simulation 3: A third (but risky) route to crea-
tive behavior through random choice of nodes in 
sequence production  

Trial and error of completely random behavioral se-
quences may lead to sequences that answer the criteria 
for creative behavior. It is expected that such activity 
would also give rise to many non-adaptive sequences, 
some of which might even be detrimental, setting a rea-
listic constraint on such behavior. Nevertheless, it seems 
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that this is the gist of the strategy chosen by some ani-
mals in certain contexts (e.g. in the exploration of novel 
types of food, in the interaction with unfamiliar objects 
in the environment, or in young individuals’ attempts to 
communicate with adult individuals). To model this, we 
repeated the previous simulations with a learner whose 
generalization parameter was set to 0, but with a differ-
ent parameter, Prandom, set to 0.1. In production, with a 
probability of 0.1 in each step of constructing the se-
quence, this learner inserts to the sequence a randomly 
chosen node from its internal representation. This is 
done regardless of whether or not the unit represented 
by that node had been encountered previously in the 
newly constructed context.  

Not surprisingly, more than a quarter of the sentences 
that this learner produced were not acceptable. At the 
same time, 0.7% and 0.3% of the produced sequences 
were, respectively, of the creative forms “begin A F I 
end” and “begin {Group 1} {G,H} {K,L} end” (see table 
1 of the ESM). This suggests that in contexts in which 
the cost of ill-formed sequences is low while the poten-
tial advantage of uncovering novel adaptive sequences 
is high, some moderate level of random trial and error 
in the construction of sequences may be adaptive and 
may circumvent the need for informed generalization, 
which may have a high cognitive cost.  
4.4  Simulation 4: The risk of entrenchment 

This simulation was similar to the previous ones, but 
the automaton used to generate the training set was 
slightly different (Fig. 2B, henceforth 'automaton 2'). In 
this automaton, most edges are assigned very low pro-
bability, and thus occur rarely in the training set (dotted 

edges in Fig. 2B), while few edges occur very frequent-
ly (solid edges in Fig. 2B). In constructing the training 
set, 95% of the steps are along the solid edges. The 
length of the training remained as before, and the num-
ber of encounters with each element was maintained 
similar to the previous experiments. Despite these, the 
frequent recurrence of certain edges and not others led 
to entrenchment of certain sequences in the leaner's 
representation, which significantly lowered the proba-
bility of construction of some creative sequences (see 
below). We again trained and tested learners L1 and L2, 
which differ from one another in that L2 uses similari-
ty-based generalization.  

As before (and as expected), L1 produced no se-
quences of the form “begin {Group 1} {G,H} {K,L} 
end”, but as opposed to its behavior following training 
with sequences derived from automaton 1 (Fig. 2A), in 
which nearly 1% of the produced sequences were “be-
gin A F I end”, in this simulation only 0.01% of the 
sequences were of this form (this and all other differ-
ences reported as significant refer to two-tailed chi-   
squared tests with df = 1 and p < 0.001). Learner L2 
produced slightly more sequences of this form (0.08%), 
but also showed a great reduction compared to its pro-
duction of such sequences previously (1.1%). Yet, L2 
production of sequences of the form “begin {Group 1} 
{G,H} {K,L} end” did not change significantly and cer-
tainly did not decline in comparison to simulation 2 
(6.6% versus 6.5%, see table 1 in the ESM). 

Analysis of these results and of the process that 
brought them about offers a few insights. The creative 
sequences whose production was significantly reduced 

 

 
 

Fig. 3  The number of creative sequences produced by EBL learners which differ by their values of the generalization   
parameter (simulation 2) 
Each learner produced an output of 100,000 sequences. Error bars depict ± two standard deviations derived from a bootstrap analysis. See ESM for 
details. 
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are of the form that can be constructed without need for 
similarity-based generalization (analogy). This is a re-
sult of entrenchment of certain sequences: a tendency to 
follow only particular trajectories along the learners' 
internal representations. The vast experience that the 
learners had accumulated in encountering the sequences 
A E, F J, and F L lowered the probability that A F and F 
I would be produced, lowering the production probabi-
lity of A F I to near zero. We find that L2's tendency to 
use generalizations at a certain probability creates a 
“rescue” effect: L2 also showed a significant reduction 
in the production of these sequences, but it was alle-
viated somewhat (a near 10-fold reduction, as opposed 
to a near 100-fold reduction in L1) by the construction 
of these sequences via generalization: although F oc-
curred rarely following A and I rarely followed F, L2 
could infer that qualitatively their edge profiles were 
similar to those of other elements in their groups, and it 
generalized accordingly. These findings suggest that 
rich experience, in which the various elements occur in 
a wide range of contexts that reflect the range of possi-
ble roles that each of them may assume, may be critical 
for the production of creative behavior through similar-
ity-based generalization.   

The production of creative sequences that are de-
pendent on generalization was not altered by the change 
in the training set that induced entrenchment. This is 
due to a combination of a two factors. First, even rare 
occurrences affect the assessment of similarity among 
nodes, and may do so strongly (see the calculation of 
the similarity index in the ESM). Second, the imple-
mentation of the learners that was used is such that the 
rate of using generalizations depends on the generaliza-
tion parameter and is insensitive to the similarity index: 
the level of similarity may influence which node will be 
chosen as a replacer but not whether a replacement will 
be executed. Jointly these factors lead to the mainten-
ance of a high production level of novel sequences of 
the form "begin {Group 1} {G,H} {K,L} end” also under 
conditions that induce entrenchment. 

Note that there are other, quite reasonable, ways to 
model the use of generalization. One scheme that comes 
to mind is a model in which the extent of generalization 
depends on the leaner's assessment of the probability 
that the generalization would be adaptive, which is de-
termined by the level of similarity between units: the 
higher the similarity, the higher the perceived probabi-
lity of a generalization's success. To find out whether in 
such a scheme the frequency of creative sequences 
would be reduced under conditions that induce entren-

chment, we implemented such a learner and trained it 
on the training set produced from automaton 2. As ex-
pected, the frequency of creative sequences of both 
forms was lower than in L2 (0.025% and 4.5%, respec-
tively; see Table 1 in the ESM under “altered generali-
zation”, and see the details of the generalization process 
in the ESM).  
4.5  Simulation 5: Production strategies that can 
bypass the entrenchment problem and increase crea-
tivity 

Entrenchment of certain combinations may have ad-
vantages (as will be discussed in the next section), but 
as shown above, it may impair creativity. This pheno-
menon was demonstrated most clearly with regard to 
the construction of the sequence “begin A F I end” by 
L1 following training on the automaton 2 training set. 
To examine possible production strategies on the part of 
the learner that might overcome this challenge, we im-
plemented two learners similar to L1, but whose prefe-
rences regarding which edges to follow in the internal 
representation during construction of new sequences 
were altered: one learner (L3) ignores edge weights, and 
the other (L4) prefers to make use of rarely encountered 
sequences. As expected, the frequencies of instances of 
the sequence "begin A F I end" constructed by the two 
learners were much higher than in the previous results: 
1.5% and 3.9% respectively (see table 1 of the ESM). 
The potential risk of using these strategies is that rare 
occurrences may be less reliable or less frequently 
adaptive in common conditions. This implies that such 
strategies are likely to evolve only when the benefit 
from producing novel adaptive sequences greatly ex-
ceeds the cost of producing maladaptive ones. 
4.6  Simulation 6: High-order units may impair 
creativity via increased entrenchment  

Fig. 1 illustrates an example of a potential entrench-
ment following the inclusion of high-order units in the 
repertoire: had the rat never encountered nuts while 
foraging among branches in the trees (i.e. the weight of 
the edge among these units were zero), it is likely that 
the sequence forage among branches => find cone 
would have become encapsulated as a single unit, as 
illustrated in purple (dash-dot line). This would lead to a 
situation in which foraging in the trees is associated 
solely with search for cones, and the rat would have 
been likely not to expect other food sources that may be 
found there. This potential pitfall is demonstrated expli-
citly in the following simulation. 

So far the learners in the simulations we described 
used only the EBL mechanism to add units to their re-
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pertoire. To explore the effects of the representation of 
high-order units in the repertoire, we conducted a simu-
lation in which four learners that implement the RBL 
mechanism (recurrence-based learning, see section 2.1) 
were trained on sequence sets derived from automata 1 
and 2. For simplicity, all explorations of the effects of 
high-order chunks on creativity that are presented in this 
paper were conducted using RBL, rather than bottom-up 
chunking (see section 2.1) or a combination of the two. 

As discussed above, it may be reasonable for an or-
ganism to prefer the use of encapsulated sequences of 
behavior (i.e. chunks) over the construction of se-
quences from basic elements. The extent to which the 
learner gives precedence to longer units in its construc-
tion of sequences is determined by a parameter, given 
values of 0, 1, 2, 3 respectively, that differed among the 
learners in this simulation.      

The generalization parameter in all learners was set 
to zero, and so none of them produced sequences of the 
form "begin {Group 1} {G,H} {K,L} end". All learners 
produced some instances of the sequence "begin A F I 
end" when trained on the dataset derived from automa-
ton 1, but all produced significantly fewer such se-
quences then the learners in previous simulations, with 
a clear decreasing trend among them: the higher the 
preference for longer units, the fewer creative sequences 
were produced (the frequencies of the creative sequence 
in the learners' outputs were, respectively, 0.15%, 
0.05%, 0.02%, 0.004%). This result was pronounced 
when trained on the dataset from automaton 2: the fre-
quency of A F I sequences in the output was between 
0.002% and 0% in all four learners. 

These results are easy to explain: the only acceptable 
3-element sequence that does not occur in the training is 
A F I; all others recur in it, and the training is long 
enough for most or all triplets to recur within a short 
time-window and thus be recognized as units by the 
learner. In production, even when no particular prefe-
rence is assigned to long units, many of the composed 
sequences are simply instances of these 3-element units, 
and thus A F I has an extremely decreased representa-
tion in the output. This trend is even more extreme fol-
lowing training on automaton 2 data, because in it the 
sequence A F is rare and unlikely to be recognized as a 
unit by the learners; thus alongside sequences that are 
instances of 3-element units and do not include A F I, 
sequences that initiate with a 2-element unit also never 
result in a sequence that initiates with A F.  

This demonstrates that one major effect of construct-
ing high-order units may be to decrease creativity by 

boosting the learners' tendency to be conservative and 
by intensifying the effect of entrenchment (see also Lo-
tem and Halpern 2008 for possible causes and implica-
tions of this effect in impairing generalization and crea-
tivity in autism). 
4.7  Simulation 7: Can high-order units contribute 
to the production of creative behavior? 

As noted earlier, high-order units (chunks) may be 
useful as a realization of action-plans, i.e. a sequence of 
behaviors that it is worthwhile to encapsulate as a unit. 
In other cases the high-order units may simply play the 
role of units whose breaking down into their individual 
constituents strips them of their meaning. This suggests 
that although learning of high-order units may lead to 
entrenchment as shown above, there may be cases in 
which it is essential in order to bring about creative be-
havior.  

To further explore the effects of chunking, we con-
structed a novel training set based on the simple auto-
maton described in Fig. 2C (automaton 3). Using this 
dataset we trained and tested L1, L2 and three RBL 
learners whose generalization parameters were set to 0, 
0.1 and 0.2 respectively. In this automaton the only 
equivalence groups among units are {A, B} and {C D , 
E F}, and thus creative behaviors would be the con-
struction of the novel sequences "begin A E F G H end" 
or "begin B C D G H end". These can be brought about 
only by means of drawing the analogy between the units 
C D and E F and not by constructing a new combination 
of previously encountered sequences. 

On reviewing the simulation results we found that 
none of the five learners constructed either of the crea-
tive sequences. An inspection of the simulation log-
books shows that the reasons vary among learners, L1 
and the first RBL learner do not generalize, and their 
failure to act creatively in this setting is expected. L2 
does not represent high-order units, and thus failed to 
learn that C D and E F are units whose constituents are 
non-separable, demonstrating that without the ability to 
learn high-order chunks, creativity may be severely li-
mited in some settings. An inspection of the internal 
representations of the latter RBL learners showed the 
reverse obstruction: they had learned the sequences A C 
D G H and B E F G H as whole units, and did not rec-
ognize that these sequences constitute whole action 
plans and not non-separable units, i.e. they too did not 
learn that C D and E F are independent units and that 
they are similar to one another. This is a second demon-
stration of the hazards of entrenchment, which could 
have been overcome only by a richer experience with 
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each of the units that compose this modality. This is 
demonstrated in the following simulation. 
4.8  Simulation 8: How variation sets that facilitate 
correct segmentation contribute to the production of 
creative behavior based on high-order units  

In simulation 7 we have seen that a faliure to seg-
ment the units <C D> and <E F> from the longer se-
quences <A C D G H> and <B E F G H> precluded the 
learner’s ability to recognize their similarity and to use 
them for generalization. This connection between seg-
mentation problems and generalization failures has been 
suggested in the past (Lotem and Halpern, 2008), as 
well as the need to provide appropriate distribution of 
data input in order to allow proper segmentation based 
on alignment and comparison of data strings (Goldstein 
et al., 2010; Lotem and Halpern, 2012; Onnis et al., 
2008a). In fact, as described earlier, the design of our 
RBL learner was inspired by this idea of identifying 
units that recur within a limited time window as an effi-
cient and reliable method for data segmentation (see 
Introduction and Kolodny et al., 2014b). The recurrence 
of units in multiple contexts, like variants on a theme, 
within a short time window is known as a 'variation set', 
and is common in child-directed speech (Waterfall, 
2006; Brodsky, et al., 2007), and instrumental in im-
proving adults' learning of linguistic units (Onnis et al., 
2008b). Thus, by providing additional data in our simu-
lation, in the form of variation sets, we predicted that 
the segmentation of <C D> and <E F> will become 
possible, which may then allow the learner to recognize 
the similarity between them and to creatively generate 
useful novel sequences that are based, in this case, on 
high-order units.  

To that end we constructed training sets based on au-
tomaton 4 (see Fig. 2D). In this automaton the equiva-
lence groups (groups containing similar units) are {A, 
A2, B, B2}, {C D, E F} and {G G2}, and creative se-
quences are the sequences of the forms "begin A/A2 E F 
G/G2 H end" and "begin B/B2 C D G/G2 H end". Note 
that now segmentation of <C D> and <E F> may be 
possible by their recurrence in sequences such as  "A2 

C D G" and  "A C D G2" (or "B E F G" and "B2 E F 
G2").  

The results of this simulation show that as opposed to 
simulation 7, the RBL learners whose generalization 
parameters were greater than zero succeeded in con-
structing creative sequences (at a frequency of 0.2% and 
0.4% of their overall produced sequences). This was 
possible because in this simulation these learners 
learned C D and E F as units whose similarity to one 

another is high. The crucial difference from the previous 
dataset lies in that automaton 4 leads to the construction 
of different sequences in which each of these two units 
occurs in multiple contexts, allowing the learners to 
correctly segment the entire sequences through align-
ment and comparison during the search for recurring 
units. In addition to allowing for improved segmenta-
tion and correct recognition of the modality's underlying 
units, these multiple contexts lead to the building up of 
a rich representation of each unit's edge profiles, in-
creasing the learners' ability to infer which units are 
similar to one another. 

5  General Discussion  
To help us understand the mechanisms underlying 

animal creativity we suggested in this paper to make use 
of a computational cognitive framework that we pre-
viously developed for analyzing and reproducing a 
range of behavioral phenomena, from animal foraging 
to the learning of human language (Kolodny et al., 
2014a, b). Common to these phenomena is the need to 
learn regularities in the environment, to represent them 
hierarchically, and to use this representation for the 
production of behavioral sequences. Animal creativity is 
viewed in this framework as the production of novel 
behavioral sequences that are likely to be adaptive.  

This framework differs from most existing computa-
tional models in that it was designed with an eye to-
wards biological realism in a number of respects, such 
as the use of limited computation and memory resources, 
the exclusive reliance on incremental (as opposed to 
batch) learning, the application of domain-general me-
chanisms, and the attention to the possible evolutionary 
factors that may have led to its development (Kolodny 
et al., 2014a; and see further details and discussion in 
Kolodny, Lotem, and Edelman, 2014). It is particularly 
suitable for the modeling of animal behavior due to its 
simplicity and generality, lending itself easily to the 
modeling of a wide range of behaviors, including novel 
behaviors whose definition as creative is independent of 
internal cognitive processes that are not accessible to 
the observer.  

Our simulations, conducted within this framework, 
highlighted a few different mechanisms that can pro-
duce creative behaviors and elucidated some constraints 
and intricacies. First (in simulation 1), we demonstrated 
two main routes to creativity: novel concatenation of 
previously learned units and similarity-based generali-
zation (also referred to as the use of analogies). We then 
showed how creativity may be enhanced by increasing 
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the propensity to generalize (simulation 2), or, in the 
absence of generalization, by simply introducing some 
random choices into the process of sequence production 
(simulation 3). Note that these two mechanisms corres-
pond to different types of creativity. In the first one, 
novelty is canalized to similar objects or actions and is 
therefore likely to be context-appropriate and adaptive. 
In the second mechanism, animals may ‘gamble’ on the 
next step, which may be successful in only a small pro-
portion of the cases and may therefore be adaptive only 
when the cost of errors is low, as in the context of ex-
ploratory or play behavior (Bateson and Martin, 2013; 
Bekoff and Byers, 1998; Burghardt, 2005; Heinrich and 
Smolker, 1998).  

A general important constraint on creativity is demon-
strated in our model by the problem of entrenchment 
(simulations 4 and 5). While the ecological costs and 
benefits of creative or innovative behaviors have been 
discussed in some depth (e.g. Kummer and Goodall, 
2003; Lee, 2003; Reader and Laland, 2003), the prob-
lem of entrenchment deals with the tradeoff arising 
from the working principles of the cognitive mechanism 
that produces the creative sequences, as described 
throughout this paper: on the one hand, following the 
weights in the network that represent the statistical fre-
quencies of sequences in nature is necessary for pro-
ducing the most probable sequences that are likely to be 
adaptive (Goldstein et al., 2010, Lotem and Halpern, 
2012; Kolodny et al., 2014a, b). On the other hand, re-
lying on the most frequent sequences necessarily causes 
entrenchment and prevents creativity.  

Our model offered three partial solutions to this 
problem. First, and perhaps most important, it shows 
that similarity-based generalization may partly over-
come entrenchment by generalizing from common to 
rare nodes (or from rare to common nodes) while still 
adhering to the use of weights (see simulation 4). 
Second, the risk of overgeneralization may be mini-
mized by a mechanism that adjusts the propensity to 
generalize according to the level of similarity between 
nodes (the second part of simulation 4). Finally, in si-
mulation 5 we showed that an alternative solution to the 
entrenchment problem (that does not involve generali-
zation) is simply to ignore the weights in the network, 
or to invert their values and choose the rare instead of 
the common options. As discussed earlier, this route to 
creativity is risky but may occasionally be adaptive. 
More generally, the extent to which the production of 
sequences is determined by the weights in the network 
illustrates a spectrum of strategies, which range from 

conservatism and rigidity on the one side to creativity 
on the other.   

The last three simulations of our paper (6 to 8) ad-
dressed the more realistic and cognitively advanced 
form of our framework that accommodates high-order 
units (chunks or hierarchies). Our results show that the 
effect of high-order units on creativity may be complex. 
On the one hand, creating long chunks can limit creati-
vity because it does not allow novel concatenations of 
nodes that are ‘locked’ within the chunks, which inten-
sifies the effect of entrenchment (see simulation 6). On 
the other hand, high-order units are critical for repre-
senting real high-order entities in the environment, and 
when these are represented correctly in the network, 
generalization and creativity may be most powerful (see 
simulation 8). Yet, in order to correctly represent high-   
order units in the network, we have seen that the seg-
mentation process must work properly and this was af-
fected by the amount of experience and the availability 
of data strings with partly shared sequences (variation 
sets). This result suggests that advanced creative beha-
viors, such as those required for sequential problem 
solving or tool use (see, e.g., Bentley-Condit and Smith, 
2010; Wimpenny et al., 2009) cannot be generated 
solely by the simple mechanisms suggested earlier, but 
must also be supported by extensive experience that 
allows the animal to construct a rich network of high-  
order units, across which generalizations can be made. 
Indeed, it seems that most evidence for highly creative 
behaviors comes from species where exploratory and 
play behavior is extensive (see, e.g., Diamond and Bond, 
1999; Heinrich and Smolker, 1998; Pellegrini and Smith, 
2005). 

The ability to generalize and draw analogies between 
learned units, which we have found to be crucial to the 
construction of certain creative behaviors, plays a cen-
tral role in models of human creativity. The model in 
(Hofstadter and Mitchell, 1995), for example, deals with 
this concept elaborately; Hofstadter and Mitchell sug-
gest that the "depth" of a notion, i.e. its degree of ab-
straction, is related to the degree of surprise in the crea-
tive outcome that is based on an analogy to that notion. 
This “depth” of notion may find its counterpart in our 
framework in the extent of similarity among units that 
are used in an analogy, and perhaps more important, in 
the level of hierarchies being compared and generalized. 
For example, a young Arabian babbler that learns to 
turn over small branches on the ground in order to find 
food may generalize this behavior to little stones or 
leaves that may look very different from branches. This 
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creative behavior may be explained in a straightforward 
manner by our framework, as branches, stones and 
leaves are simple units that are likely to occur in similar 
contexts and thus have a high index of similarity among 
them, all together suggesting that the depth of notion 
required for such an analogy is not great. On the other 
hand, a New Caledonian crow that upon being faced 
with a challenge made a hook from a metal wire and 
used it to pull out a food item from a tube (Weir et al., 
2002) seems to be using a more sophisticated process of 
sequence production. This process may be based on 
multiple analogies that are based on high-order units 
(sequences of actions) and perhaps on employing only 
liberal constraints on the extent of similarity that units 
must exhibit to be allowed to replace one another in 
behavioral sequences.  

While excluded from our modeling here, the element 
of surprise or insight is a recurring theme in the discus-
sion of human creativity, which we find interesting (see, 
e.g., Boden, 2004). The intuitive notion of creativity is 
bound to the feeling of surprise on encountering or 
coming up ourselves with a certain new behavior that is 
appropriate in the given context, and this is true for 
many animal behaviors that have been described as cre-
ative. The process of constructing a creative behavioral 
sequence can be viewed from a computational perspec-
tive, as noted before, as a search in the vast possible 
space of sequential behaviors for one that would be 
adaptive in a certain context. This search may produce 
multiple candidate sequences, among which only one or 
very few can eventually be carried out. This requires an 
assessment and decision mechanism, perhaps one that 
involves an internal simulation to infer the possible 
outcomes of each sequence (an example for such a 
choice mechanism is implemented in our framework in 
(Kolodny et al., 2014)). We suggest that the feeling of 
'insight' (as used by Boden, 2004) or surprise accompa-
nies the cases in which this process yields a sequence 
whose initial probability of being constructed was low 
or whose initial assessment in the choice procedure was 
not promising, but which was eventually chosen and 
turned out to be successful. Similarly, it might be eli-
cited by a sequence that contains a far-reaching analogy 
that had not been used before. While the “feeling” of 
insight or surprise is currently not being produced by 
our model, the circumstances under which it may be 
elicited can be fully specified in our current framework, 
as in the version developed in (Kolodny et al., 2014a) 
that includes a choice procedure based on the learner's 
assessment of an option's likelihood of success. The 

adaptive function of the feeling of insight or surprise 
deserves further discussion. We suggest briefly that like 
other emotional states, it may be related to drawing at-
tention and assigning more weight in memory to rare 
but important discoveries (see, e.g., Lotem and Halpern, 
2012; Schmidhuber, 2010; 2013).  

Notably, some specific suggestions regarding the na-
ture of the process that gives rise to creative behaviors 
in humans are particularly in line with our approach. 
Thus, Bowden et al. (2005) suggest that many creative 
solutions to problems follow a re-phrasing of the prob-
lem. Similarly, the literature review offered by Edelman 
(Edelman, 2008) suggests that creative behavior can be 
characterized as the outcome of running into an impasse 
in trying to cope with a situation in a certain way of 
thought, and the need to backtrack one's train of thought 
and try a different approach. In terms of our model, 
such re-phrasing or trying different approaches may 
initially be analogous to multiple searches along differ-
ent paths of nodes and links in the network, but then 
may include repeated searches after modifying the pro-
duction strategies or the generalization parameters in 
our model, or may even involve some re-segmentation 
of the data in different ways.    

Finally, we would like to stress that the computation-
al framework we presented here to study animal crea-
tivity was kept simple in order to make it generally ap-
plicable and suitable for the study of a wide range of 
phenomena in cognition and behavior. It was con-
structed in a modular and flexible way so as to allow the 
accommodation and integration of more detailed models 
of particular aspects of the cognitive process. We hope 
that future research will both benefit from the generality 
of the present framework and realize its potential for 
elaboration. The software used in this study is available 
upon request. 
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Supplementary 

1  Generalization and analogy based on nodes' similarity  
Learners generalize and draw analogies among units by assessing the extent of similarity between pairs of units, as reflected by 

the contexts in which they are encountered. If the edge profile of unit A is similar to that of unit B, it may be reasonable to genera-

lize and expect that unit A would be productive following elements that had preceded unit B, even if A had not been encountered in 

this context. This is a simplification of realistic assessments of similarity, which are most likely based on information from multiple 

modalities and on multiple aspects within each modality. The value of similarity between two units is taken to be the inner product 

of their transition probability vectors: 

   

2 2 2 2

( ) ( ) ( ) ( )

( , )
( ) ( ) ( ) ( )

x X x X

x X x X x X x X

Weight x A Weight x B Weight A x Weight B x
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Weight x A Weight x B Weight A x Weight B x
 

   

     
 

     

 

   
 

where A and B are the two units between which the similarity is calculated, X denotes all vertices in the graph, and   denotes a 

directed link. A non-existent directed link is treated as having a weight of zero. Intuitively, this expression simply calculates the 

extent of overlap between the two units' links, taking into account not only the existence of a link but also its weight: if all their 

links' weights are identical, the similarity between the two units is 1, and if no links are shared at all, the similarity index is zero.  

2  Sentence production 
To produce a sequence, the learner traverses the graph representation that it had constructed beginning at the special node < be-

gin > and ending the sequence with the special node < end >. At each node ('the focal node'), the next node to be appended to the 

sequence is chosen from among the nodes that the outgoing edges of the focal node go to. It is drawn with proportion to the edges' 

relative weights, i.e. when choosing among a number of possible nodes, those that had followed the focal node more frequently in 

the training phase are the most likely to be chosen. 

A number of parameters may alter this process:  

1) If Prandom is set to a non-zero value, then at each choice of a new node to be appended to the sequence, there is a probability of 

Prandom that a randomly chosen node from the representation will be chosen and appended (see simulation 3). 

2) If the parameter that sets the preference to high-order units in producing sequences is set to a value other than zero (see simu-

lation 6), the draw among candidate nodes that was described above changes slightly, and is executed after each edge's weight is 

updated to its weight in the representation, multiplied by its length raised to the power of the preference parameter. Thus, if the 

preference parameter is set to 2, each edge weight is updated to be original_weight x length2. The length of a node is the number of 

elementary units from which it is composed.   

3) If the generalization parameter (Pgen) is set to a non-zero value, at each draw of a new node to be appended, there is a proba-

bility of Pgen that after the node is chosen (the 'candidate node'), it will be replaced by a node similar to it. The choice of which node 

to replace it with from among the nodes similar to it is also done by a draw, in which each node in the representation might be cho-

sen at a probability that is proportional to its similarity to the node that is being replaced. If all nodes' similarity to the node that was 

initially chosen is zero, no replacement takes place. 

Simulation 4 notes an alternative mode of generalization (and the simulation results following its use are found under "altered 
generalization" in table 1): in this mode, the probability that generalization will take place is affected by Pgen alongside the extent of 
similarity that the candidate node has to other units. Instead of choosing to replace the candidate node at a probability of Pgen, it is 
replaced at a probability of Pgen × SC. SC is a measure of how similar are other nodes to the candidate node: it is equal to the sum 
of the similarity assessments between the candidate node and all other nodes, divided by the number of other nodes. Thus, if all 
other nodes in the representation had a similarity index of 1 to the candidate node, there would be a Pgen probability that it would be 
replaced, while if the candidate node has a similarity index of 0 to all other nodes, there would be no chance for it to be replaced. 

3  Details of the analysis in Fig. 3 
The data presented in Fig. 3 is found in numerical form in table 1 of the ESM.  
Note that the results provide a near-perfect fit to a linear curve due to the large sample size, of 100,000 output sequences, and to 

the fact that the generalization parameter's effect on the probability of producing a creative sequence is, in the simple modality stu-
died here, strictly linear. This is not the case in more complex modalities (results not shown).  

The error bars depict two standard deviations above and below the simulation result. Standard deviations were calculated via a 
bootstrap analysis: 100,000 sequences were drawn at random with repeats from among the original 100,000 sequences produced by 
the learner. The number of creative sequences in each such sample was calculated. This process was repeated 10,000 times, giving 
rise to a vector of 10,000 counts of creative sequences. The standard deviation of this vector was calculated. This is equivalent to 
the standard deviation of a simple binomial draw whose parameter is the number of creative sentences in the learner's output, di-
vided by the size of the output, 100,000. 



368 Current Zoology Vol. 61  No. 2 

 

 

  
 


