
Anatomical origin and computational role of diversityin the response properties of cortical neurons�Kalanit Grill Spectory Shimon Edelmany Rafael MalachzDepartments of yApplied Mathematics and Computer Science and zNeurobiologyThe Weizmann Institute of ScienceRehovot 76100, Israelfkalanit,edelmang@wisdom.weizmann.ac.il bnmalach@weizmann.weizmann.ac.ilAbstractThe maximization of diversity of neuronal response properties has been recently suggestedas an organizing principle for the formation of such prominent features of the functionalarchitecture of the brain as the cortical columns and the associated patchy projection patterns(Malach, 1994). We report a computational study of two aspects of this hypothesis. First, weshow that maximal diversity is attained when the ratio of dendritic and axonal arbor sizes isequal to one, as it has been found in many cortical areas and across species (Lund et al., 1993;Malach, 1994). Second, we show that maximization of diversity leads to better performance intwo case studies: in systems of receptive �elds implementing steerable/shiftable �lters, and inmatching spatially distributed signals, a problem that arises in visual tasks such as stereopsis,motion processing, and recognition.1 IntroductionA fundamental feature of cortical architecture is its columnar organization, manifested in the tendency ofneurons with similar properties to be organized in columns that run perpendicular to the cortical surface.This organization of the cortex was initially discovered by physiological experiments (Mountcastle, 1957;Hubel and Wiesel, 1962), and subsequently con�rmed with the demonstration of histologically de�ned columns.Tracing experiments have shown that axonal projections throughout the cerebral cortex tend to be organizedin vertically aligned clusters or patches. In particular, intrinsic horizontal connections linking neighboringcortical sites, which may extend up to 2� 3 mm, have a striking tendency to arborize selectively in preferredsites, forming distinct axonal patches 200� 300 �m in diameter.Recently, it has been observed (Malach, 1992; Amir et al., 1993; Malach et al., 1993) that the size of thesepatches matches closely the average diameter of individual dendritic arbors of upper-layer pyramidal cells.Insofar as this correlation between column or patch size and dendritic spread is a fundamental property thatholds throughout various cortical areas and across species (Lund et al., 1993), one is led to assume that itconstitutes an important characteristic of the columnar architecture of the cortex. Determining its functionalsigni�cance may, therefore, shed light on the principles that drive the evolution of the cortical architecture.One such driving principle may be the maximization of diversity in the neuronal population in the cortex(Malach, 1994). According to this hypothesis, matching the sizes of the axonal patches and the dendriticarbors causes neighboring neurons to develop slightly di�erent functional selectivity pro�les, resulting in aneven spread of response preferences across the cortical population, and in an improvement of the brain's abilityto process the variety of stimuli likely to be encountered by the owner of the brain in the environment.The present work concentrates on two aspects of this hypothesis. First, we address the basic question of themanner whereby the patchy columnar architecture can support the maximization of diversity. In section 2, we
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Figure 1: Left: histograms of the percentage of patch-originated input to the neurons, plotted for three valuesof the ratio r between the dendritic arbor and the patch diameter (0:5; 1:0; 2:0). The attest histogram isobtained for r = 1:0 Right: the diversity of neuronal properties (as de�ned in section 2) vs. r. The maximumis attained for r = 1:0, a value compatible with the anatomical data.propose a quantitative de�nition of diversity and analyze its dependence on the ratio of axonal and dendriticpatch sizes, showing that a maximum is attained when that ratio is equal to 1. Second, we explore the possiblecomputational rationale behind the maximization of diversity. In section 3, we show that diversity in orienta-tion and location of receptive �elds (RFs) is bene�cial when considered in the framework of steerable/shiftable�lter generation. In section 4, we consider the inuence of diversity in RF location on the ability of RF-basedsystems to match spatially distributed signals { a problem that arises in visual tasks such as stereopsis, motionprocessing, and recognition.2 An anatomical correlate of neuronal sampling diversityTo test the e�ect of the ratio between axonal patch and dendritic arbor size on the diversity of the neuronalpopulation, we conducted computer simulations based on anatomical data concerning patchy projections(Rockland and Lund, 1982; Lund et al., 1993; Malach, 1992; Malach et al., 1993).1 The patches were modeledby disks, placed at regular intervals of twice the patch diameter, as revealed by anatomical labeling. Dendriticarbors were also modeled by disks, whose radii were manipulated in di�erent simulations. The arbors wereplaced randomly over the axonal patches, at a density of 10; 000 neurons per patch. We then calculated theamount of patch-related information sampled by each neuron, de�ned to be proportional to the area of overlapof the dendritic tree and the patch. The results of the calculations for three values of the ratio of patch andarbor diameters appear in Figure 1.The presence of two peaks in the histogram obtained with the arbor/patch ratio r = 0:5 indicates that twodominant groups are formed in the population, the �rst receiving most of its input from the patch, and thesecond { from the inter-patch sources. A value of r = 2:0, for which the dendritic arbors are larger than theaxonal patch size, yields near uniformity of sampling properties, with most of the neurons receiving mostlypatch-originated input, as apparent from the single large peak in the histogram.�Category: Neuroscience; Keywords: functional architecture, orientation columns, steerable �lters, matching,diversity; Presentation preference: oral.1Necessary conditions for obtaining dendritic sampling diversity are that dendritic arbors cross freely throughcolumn borders, and that dendrites which cross column borders sample with equal probability from patch and inter-patch compartments. These assumptions were shown to be valid in (Malach, 1992; Malach, 1994).



To quantify the notion of diversity, we de�ned it as:diversity � 1< jdndp j > (1)where n(p) is the number of neurons that receive p percent of their inputs from the patch, and < � > denotesaverage over all values of p. Figure 1, right, shows that diversity is maximized when the size of the dendriticarbors matches that of the axonal patches, in accordance with the anatomical data. This result con�rms thediversity maximization hypothesis stated in (Malach, 1994).3 Orientation tuning as a functional manifestation of neuronal samplingdiversityIn this section, we consider the smooth gradation of orientation tuning across the cortical surface in area V1in mammals as a possible consequence of highly diverse sampling in the underlying neuronal population. Westart with some background regarding the orientation columns in V1.3.1 BackgroundThe orientation columns in V1 are perhaps the best-known example of functional architecture found in thecortex. On the basis of single unit recordings (Hubel and Wiesel, 1962) reported that cells encountered inpenetrations perpendicular to the cortical surface have similar orientation selectivity. In tangential penetra-tions, orientation preference shifts as the electrode advances. In their early recordings, Hubel and Wieselreported discrete shifts rather than a continuous change in orientation preference. In subsequent recordingsthey found that orientation shifts can vary more smoothly, and concluded that orientation preference variescontinuously throughout V1 (Hubel and Wiesel, 1977). Cortical maps obtained by optical imaging (Grinvaldet al., 1986) reveal that orientation columns are patchy rather then slab-like, i.e., domains corresponding to asingle orientation appear as a mosaic of round patches, which tend to form pinwheel-like structures. Moreover,incremental changes in the orientation of the stimulus were found to lead to smooth shifts in the positions ofthese domains. We hypothesize that this smooth variation in orientation selectivity found in V1 originatesin patchy projections, combined with diversity in the sampling properties of cortical neurons sampling fromthese projections. The simulations described in the rest of this section substantiate this hypothesis.3.2 Modeling orientation columns: computer simulationsThe goal of the simulations was to demonstrate that a limited number of discretely tuned elements can giverise to a continuum of responses. To set the size of the original discrete orientation columns, we invoked thenotion of a point image (MacIIwain, 1976; MacIIwain, 1986), de�ned as the minimal cortical separation of cellswith non-overlapping RFs. Thus, we created a network of orientation columns, whose size was determinedby the diameter of their constituent RFs. Each column was tuned to a speci�c angle, and located at anapproximately constant distance from another column with the same orientation tuning (we allowed somescatter in the location of the RFs). The RFs of adjacent units with the same orientation preference wereoverlapping, and the amount of overlap was determined by the number of RFs incorporated into the network.The preferred orientations were equally spaced at angles between 0 and �. The RFs used in the simulationswere modeled by a product of a 2D Gaussian G1, with center at ~rj , and an orientation selective �lter G2, withoptimal angle �i: G(~r; ~rj; �; �i) = G1(~r; ~rj)G2(�; �i)According to the recent results on shiftable/steerable �lters (Freeman and Adelson, 1991; Simoncelli et al.,1992), a RF located at ~r0 and tuned to the orientation �0 can be obtained by a linear combination of basisRFs, as follows: G(~r; ~r0; �; �0) =PM�1j=0 PN�1i=0 bj(~r0)ki(�0)G(~r; ~rj; �; �i) (2)=PM�1j=0 bj(~r0)G1(~r; ~rj)PN�1i=0 ki(�0)G2(�; �i) (3)
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Figure 2: The e�ects of (independent) noise in the basis RFs and in the steering/shifting coe�cients. Left:the approximation error vs. the number of basis RFs used in the linear combination. Right: the signal to noiseratio vs. the number of basis RFs. The SNR values were calculated as 10 log10 (signal energy=noise energy).Adding RFs to the basis increases the accuracy of the resultant interpolated RF.From equation 3 it is clear that the linear combination is equivalent to an outer-product of the shifted RFand the steered RF. The numbers fki(�0)gN�1i=0 and fbj(~r0)gM�1j=0 denote the steering and shifting coe�cients,respectively. Since orientation and localization are independent parameters, the steering coe�cients can becalculated separately from the shifting coe�cients. The number of steering coe�cients depends on the polarFourier bandwidth of the basis RF, while the number of steering �lters is inversely proportional to the basis RFsize. Our simulations show that in the presence of noise this minimal basis has to be extended (see Figure 2).The results of running this simulation for several RF sizes are shown in Figure 3, left. As predicted bythe mathematical formulation, the number of basis RFs required to approximate a desired RF is inverselyproportional to the size of the basis RFs. The right panel in Figure 3 shows that as the basis RFs are madebigger, fewer of them are needed to achieve a given approximation error.3.3 Steerability and biological considerationsThe anatomical �nding that the columnar \borders" are freely crossed by dendritic and axonal arbors (Malach,1992), and the mathematical properties of shiftable/steerable �lters outlined above suggest that the columnararchitecture in V1 provides a basis for creating a continuum of RF properties, rather that being a form oforganizing RFs in discrete bins. Computationally, this may be possible if the input to neurons is a linearcombination of outputs of several RFs, as in equation 3. Is this assumption warranted by other anatomicaland physiological data regarding cortical interconnection patterns?Horseradish peroxidase (HRP) labeling studies (Rockland and Lund, 1982) have shown that lateral connectionsof orientation columns extend to a range of 2 � 4 mm. In other studies that used 2DG autoradiography andretrograde labeling, connectivity patterns were superimposed on functional maps (Gilbert and Wiesel, 1989).The results showed that cells tended to connect to cells of like orientation preference. The relationship betweenfunctionally de�ned columns and patchy connections was studied by (Malach et al., 1993). They used opticalimaging techniques to construct functional maps of orientation columns, then targeted injections of biocytintracer to selected functional domains. Their results show that long-range connections, extending one mmor more, tend to link cells with like orientation preference. In the short range, up to 400 �m from theinjection site, connections were made to cells of diverse orientation preferences. The selectivity of the short-range connections is markedly disrupted probably because dendritic arbors and axonal connections freely crossorientation column borders.We suggest that the long-range connections, which connect cells of like orientation preference, provide theinputs necessary to shift the position of the desired RF, while the short-range connections, which connect cells
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Figure 3: Left: error of the steering/shifting approximation for several basis RF sizes. Right: the number ofbasis RFs required to achieve a given error for di�erent sizes of the basis RFs. The dashed line is a hyperbolanum RFs� size = const.of diverse orientation preference, provide the connections needed to steer the RF to an arbitrary angle.24 Matching with patchy connections4.1 The problem of matchingMany visual tasks require matching between images taken at di�erent points in space (as in binocular stereop-sis) or time (as in motion processing). The �rst and foremost problem faced by a biological system in solvingthese tasks is that the images to be compared are not represented as such anywhere in the system: instead ofimages, there are patterns of activities of RFs, whose pro�le parameters and location in the visual �eld are,to a considerable extent, random.It is now a matter of common agreement that while the cortex is not wired as precisely as an electronic device,neither it is a free-for-all jumble of connections completely devoid of order. On the one hand, the intrinsicpatchy connections exhibit a certain degree of wiring precision. On the other hand, there is also a signi�cantpatch-interpatch mixing (Malach, 1992), and a typical patch has a non-negligible diameter of 200� 300 �m.The number of axonal arborizations in a patch is of an order of magnitude of 104, and about the same numberof dendrites sample it. On the average each dendritic tree makes one synapse with an overlapping axonalarbor (Braitenberg and Schuz, 1991; Schuz, 1992), but the degree of target speci�city in a patch is di�cult toestimate. An additional complication is due to the plasticity of cortical connections, as evident both in theclassical deprivation experiments (Hubel, 1988), and also in the data on behaviorally controlled stimulation(Merzenich et al., 1990; Recanzone et al., 1992). (LeVay, 1989) suggests that intrinsic patchy connectionscould arise during development in response to a rule of the kind \cells that �re together wire together". It ispossible that these connections emerge from profuse non-patchy projections, by a selective activity-dependentelimination of synapses.Patchy connections are not, however, necessarily bad news. As we show in the following section, a systemcomposed of scattered RFs with smooth and overlapping tuning functions can perform matching precisely byallowing patchy connections between domains. Moreover, the weights that must be given to the various inputsthat feed a RF carrying out the match are identical to the coe�cients that would be generated by a learningalgorithm required to capture a certain well-de�ned input-output relationship from pairs of examples.2Our simulations also support the �ndings of (Dow et al., 1981) on the relationship between cortical magni�cationand RF size. They reported that foveal RFs, of size 250� 300, show more overlap than peripheral, of size about 2�� 4�,in accordance to our results, as depicted in Figure 3.



4.2 Matching patchy signals: a mathematical formulationWe formulate the matching problem according to the scheme sketched in Figure 4, in which the dendrites ofunit C sample two domains, A and B. The dendritic arbor is a patch of diameter equal to that of the projectionpro�le of cells feeding areas A and B. This pro�le is modeled by a multi-dimensional Gaussian. The task facedby unit C is to determine the degree to which the activity patterns in domains A and B match.
DOMAIN  A

DOMAIN  B

NEURON  CFigure 4: Unit C receives patchy input from areas A and B which contain receptors with overlapping RFs.Let �jp and �jp be the responses of the j'th unit in domains A and B, respectively, to an input ~xp:�jp; �jp = expf�( ~xp � ~xj)22�2 g (4)where ~xj be the optimal pattern to which the j'th unit is tuned. If, for example, domains A and B containorientation selective cells, then ~xj would be the optimal combination of orientation and location of a barstimulus. For simplicity we assume that all the RFs are of the same size �, that unit C samples the samenumber of neurons N from both domains, and that the input from each domain to unit C is a linear combinationof the responses of the units in each area. The input to C from domain A, with ~xp presented to the system isthen: Ain = NXj=1 aj�jp (5)The problem is to �nd coe�cients fajg and fbjg such that on a given set of inputs f ~xpg the outputs ofdomains A and B will match. We de�ne the matching error as follows:Em = PXp=1 NXi=1 ai�ip � NXi=1 bi�ip!2 (6)Theorem 1 The desired matching coe�cients can be generated by an algorithm trained to learn an in-put/output mapping from a set of examples.As an example of the learning algorithm, one may chose radial basis function (RBF) approximation (Poggioand Girosi, 1990). This approach is particularly suitable for our purpose, because the basis functions in RBFapproximation can be regarded as multidimensional Gaussian RFs.



Proof: To �nd the coe�cients we di�erentiate equation 6 with respect to each coe�cient, The following linearsystem is obtained: @Em@aj = 0) PXp=1�jp NXk=1 ak�kp = PXp=1�jp NXk=1 bk�kp 8j = 1:::N (7)The inner sums in equation 7 are the outputs of the two domains on the training set (cf. equation 5), andwe require that they match, for each example in the training set. Therefore, to calculate the coe�cients, thefollowing set of equations must be solved for fajg and fbjg:NXk=1ak�kp = NXk=1 bk�kp = tp 8p = 1:::P (8)where tp is the required output for the p'th example. Consider now an algorithm that learns an input-outputrelation by minimizing the total error on a given training set:E = PXp=1 NXi=1 ai�ip � tp!2 (9)Minimizing the error in equation 9 yields the same system for ai and bi as equation 8. 2Further research is needed to generalize this result to the case when the two inputs should be related by afunction which is not the identity. For example, in bilateral symmetry detection the patterns in A and Bshould be, in a sense, mirror images of each other. In general, therefore, to �nd the synaptic weights forunit C, one must minimize: Em = PXp=1 NXi=1 ai�ip � f  NXi=1 bi�ip!!2 (10)5 SummaryOur results show that maximal diversity of neuronal response properties is attained when the ratio of dendriticand axonal arbor sizes is equal to 1, a value found in many cortical areas and across species (Lund et al.,1993). It also appears that maximization of diversity leads to better performance in systems of receptive �eldsimplementing steerable/shiftable �lters, which may be necessary for generating the seemingly continuous rangeof orientation selectivity found in V1, and in matching spatially distributed signals. Thus, the maximizationof diversity of neuronal response properties considered as a cortical organization principle (Malach, 1994)may have the double advantage of accounting for the formation of the cortical columns and the associatedpatchy projection patterns, and of explaining how systems of receptive �elds can support functions such asthe generation of precise response tuning from imprecise distributed inputs, and the matching of distributedsignals, a problem that arises in visual tasks such as stereopsis, motion processing, and recognition.ReferencesAmir, Y., Harel, M., and Malach, R. (1993). Cortical hierarchy reected in the organization of intrinsicconnections in macaque monkey visual cortex. J. Comp. Neurobiol., 334:19{46.Braitenberg, V. and Schuz, A. (1991). Anatomy of the cortex, statistics and geometry. Springer, Berlin,Heidelberg, New-York.Dow, B., Cynader, A., Vautin, R., and Bauer, R. (1981). Magni�cation factor and receptive �eld size in fovealstriate cortex of the monkey. Experimental Brain Research, 44:213{228.
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