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Abstract

The publication in 1982 of David Marr’s Vision has delivered a singular boost and a course correction

to the science of vision. Thirty years later, cognitive science is being transformed by the new ways of

thinking about what it is that the brain computes, how it does that, and, most importantly, why cognition

requires these computations and not others. This ongoing process still owes much of its impetus and

direction to the sound methodology, engaging style, and unique voice of Marr’s Vision.

We find certain things about seeing puzzling, because we do

not find the whole business of seeing puzzling enough.
— Ludwig Wittgenstein

(Philosophical Investigations, 1958, II, xi, p.212f)

1 Introduction

Vision is harder than it looks. As with other cognitive faculties, the immediacy and ease of seeing belie the

difficulties faced by those trying to understand how it works. Instructors in introductory AI courses like to

tell the story of a summer project assigned in 1966 by MIT’s Marvin Minsky to a group of undergraduates:

to hook up a camera to a computer and write some software that would implement “a significant part of a

visual system.”1 In AI, the frontal attack on vision that began with such skirmishes quickly devolved into

trench warfare. By mid-1970s, whatever progress that computer vision had to show for a decade of hard

work tended to concentrate in toy domains or “blocks worlds”; not so much in natural scenes, where one is

forced to contend with what Sloman (1983) called “the horrors of the real world.”
∗Dept. of Psychology, Cornell University, Ithaca, NY 14850, USA. Address correspondence to edelman@cornell.edu
1See MIT AI Memo #100 (July 7, 1966), titled The Summer Vision Project and signed by Seymour Papert. Many of the

undergraduates involved in that project, including the coordinator, Gerald Jay Sussman, went on to make major contributions to

computer science and artificial intelligence.
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Meanwhile, the rate of progress in understanding the brain basis of vision was hardly any more satisfy-

ing. Although neuroscientists may consider themselves to be closer to the real world than computer vision

researchers,2 the typical laboratory setups used to study visual perception in the brain were (and many still

are) hardly more ecologically valid than AI’s block worlds. Worse, because the brain is so overwhelm-

ing complex, poking around in it without a clear idea of the function that is being studied is a sure recipe

for missing the proverbial forest for the trees. Thus, the initial excitement with the finding by Hubel and

Wiesel, in early 1960s, of presumed neural representations of contour elements (Hubel and Wiesel, 1959,

1968), which, moreover, looked like possible building blocks for coding objects and scenes, has led to

thousands of new studies and a flood of data, but little understanding of general principles of vision.

The work of David Marr, whose entire graduate training and research career spanned a mere decade and

a half and culminated in the posthumous publication of his book Vision (1982), served as a game-changer

both on the machine and on the biological side of vision research. Marr’s contribution to the field extends

far beyond specific theories advanced by his earlier publications (collected with commentaries in a volume

edited by Vaina, 1991). It also transcends, I believe, the unparalleled impact that his book had on generations

of scientists. The present article, intended as an homage to that contribution, takes the form of a series of

some very high-level questions, of the kind that Marr excelled in putting forward and that his work made safe

for all of us to play with. The questions are accompanied by brief answers, many of them synthesized from

previously published empirical studies and reviews, where one can also find ample references in support of

the views expressed here.

2 What does it mean, to see?

Marr’s approach to science combined a Wittgensteinian propensity to ask disruptive foundational questions

with a finely honed ability to seek answers and formulate explanations on a variety of levels. The verti-

cally integrated inquiry, spanning levels from the abstract-computational, focusing on questions of purpose

and utility, down to the implementational, which deals with neurons or with computer architectures, is, of

course, the core of Marr’s methodological contribution to brain and cognitive sciences, developed jointly

with Poggio (Marr and Poggio, 1977). While a complete explanation of a particular visual faculty requires

that all the levels be addressed, at the beginning of a project it is especially important to formulate a clear

computational-level hypothesis that alone can serve to steer the inquiry and bind together the strands of

explanation generated by it. I can think of no better way of making the first step in this direction than asking

again the question that opens Marr’s Vision: “What does it mean, to see?”

The observation that Marr offers in response to this question — “The plain man’s answer (and Aristotle’s,
2A joke about “the computer engineer, who, when asked to describe how he would write a computer program to recognize a

chicken, replied, ‘first, assume a spherical chicken’ ” even made it into print (Reynolds and Desimone, 1999, p.19).
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too) would be, to know what is where by looking” — seems entirely uncontroversial, and so does the analysis

that follows, in which a distinction is made between the process of vision and the representation of the world

that this process computes.3 And yet, both the answer and the distinction can — indeed, must, if we are to

take Marr’s own methodological legacy seriously — be skeptically examined.

2.1 Problems with the intuitive answer

The highly intuitive, “plain man’s answer” to the fundamental question of vision contains a couple of hidden

assumptions that need to be brought out into the open. As I have already written about these matters at some

length elsewhere (Edelman, 1995, 1999, 2002, 2009), my goal here is merely to call these assumptions into

question, in the hope of stimulating further discussion.

The first assumption, which I shall term ontological (cf. Akins, 1996), amounts to the belief that there

is a matter of fact regarding that which is “out there” in the scene, and, moreover, that the putative facts

are statable in a form that is both unambiguous and inherent to the scene itself (i.e., independent of the

viewer). In highly impoverished laboratory situations, it may be possible to describe each scene in the form

of a list of objects that jointly account for all of it, while leaving nothing out (“what”), accompanied by

complete information about their locations (“where”). For natural scenes of any kind, such a description

is, however, largely out of the question, simply because discrete, namable visual objects, along with any

boundaries between them, are a matter of interpretation (that is, are relative to the observer and the quirks

of the observer’s representation language), not of absolute truth (Edelman, 2009).

The breakdown of the ontological assumption suggests that it is not a good idea to equate the purpose

of vision with the recovery of 3D object-centered, part-based structure of the world (as Marr and Nishihara

(1978) have done). It also explains in part why a theory of image understanding based on that idea (Bie-

derman, 1987) did not fare well either as an account of human vision (Edelman, 1999) or as a recipe for

machine vision approaches (Dickinson et al., 1997). Tellingly, a less ambitious version of the ontological

project, which called for the recovery not of object-centered 3D geometry but of “intrinsic images” (Barrow

and Tenenbaum, 1978) did not in practice fare well either (Barrow and Tenenbaum, 1993).4

3The realization that vision, being an information processing task, is inherently computational is another key contribution of the

Marr-Poggio research program, and is also a key point in the introductory chapter of Vision. Unfortunately, this point still eludes

some people who really should know better; witness the remark made by Marcus du Sautoy, Simonyi professor for the public

understanding of science and a professor of mathematics at the University of Oxford: “. . . when I’m doing mathematics my brain

is doing so much more than just computation. It is working subconsciously, making intuitive leaps.” (The Observer on March 31,

2012).
4An intrinsic image is a representation that makes explicit certain objective (“intrinsic”) properties of the viewed scene, such as

the 3D orientation of the surfaces that comprise each object. To appreciate how problematic this idea is, note that even just parsing a

scene into sets of pixels that “belong together,” as in the LabelMe project (Russell et al., 2008), yields as many descriptions as there

are viewers. It is probably safe to expect that an attempt to compute any task-independent description of the scene with pretensions

to completeness, universality, and objectivity would be misguided.
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All this is probably just as well, for a reason that has to do with the failure of the other assumption behind

Marr’s answer to the fundamental question of vision. According to this second assumption, determining

what is where and thereby constructing a representation of the world in all its 3D geometrical detail is

actually going to serve some useful purpose for the seer — a notion that seems dubious, given that such a

representation would need to be subjected to a detailed and far from trivial interpretation, thereby placing

the seer back on square one, rather than being of any immediate use.

Textbook treatments of vision often start with a figure showing an array of numbers and an invitation

to perform “object recognition” on it, the array being a numerical representation of an intensity image

of some scene. But a full 3D geometrical reconstruction of a scene, listing the reflectance, position, and

orientation of its every surface element, would be equally opaque with regard to whatever objects that may

be present in it. At the same time, a fully annotated representation of a scene, in which all instances of all

object categories from a preset list have already been flagged, would be in itself useless for finding ad hoc

“objects” (“something to swat a fly with”) or nameless ones (“the thing I saw on your desk the other day”),

or for planning and executing any of the multitude of actions that constitute the behavioral repertoire of a

human or a robot.

2.2 An alternative answer

Given that a representation that is a faithful 3D replica of the scene or a listing of all the “objects” in it,

even if logically and computationally feasible, would do little to further the seer’s agenda, what is it that a

sense of sight would need to make explicit (an expression that we owe to Marr, 1982) to pay its keep? On

the functional level, what an embodied, situated agent needs from its visual system is to extract from the

sensorimotor data a range of affordances (Edelman and Poggio, 1989; Sloman, 1989; Poggio, 1990),5 as

defined by its circumstances, abilities, and goals. On the algorithmic level, the key computational ingredient

for affordance-oriented vision is the making explicit of similarities: “To see is to form a representation

of what you’re looking at in terms of similarities to what you’ve seen on other occasions” (Edelman, 2008,

p.142; Edelman and Shahbazi, 2012). On the level of brain implementation (more on which in section 5), this

calls for the use of familiar mechanisms such as tuned receptive fields for similarity estimation (Edelman,

1999) and topographic maps for cue integration and sensorimotor coordination (Merker, 2007; Edelman,

2008).

One implication of this very brief (one sentence per level of explanation!) sketch of an answer to Marr’s

overarching question of the meaning of seeing is that all vision is purposive: what it means to see depends

on what you are and what you do for a living. This realization puts an interesting perspective on the late

1980s purposive/active movement in vision (Bajcsy, 1988; Ballard et al., 1989; Aloimonos, 1990): although
5The concept of affordance is, of course, due to Gibson (1979), who, famously, failed to develop any appreciation of its compu-

tational meaning (Ullman, 1980).
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it may seem to have petered out, it has in fact been so successful as to become the only game in town, which

is why it no longer needs any special advertising. Indeed, none of the present-day computer vision methods

that work (and those that do, work on the kinds of images and amounts of data that were not dreamt of in the

old days) attempt anything like a reconstruction of the scene before proceeding to carry out recognition or

interpretation tasks. As I shall argue next, the purposive stance has implications also for the phenomenology

of vision — a cluster of questions that hitherto have largely escaped a computational treatment.

3 What does it feel like, to see, and why?

The question “What does it mean to see?” can be interpreted as calling not just for a functional (and

algorithmic, and implementational) explanation of vision, but also for a phenomenological inquiry into

it. Why does seeing feel the way it does? Why does it feel like anything at all? Is the feeling of seeing an

integral part of its function? Ignoring these questions or treating them carelessly may land us in the awkward

situation of having to concede that a digital camera has an inner life simply by virtue of being able to detect

faces, or (much worse) that a hatful of pieces of paper, each marked with a number, is as phenomenally

aware as an animal whose brain’s instantaneous activity, neuron by neuron, is captured by those numbers

(cf. Edelman, 2008, p.487). In this section, I outline a computational approach to the phenomenology of

visual awareness that avoids such conceptual abominations.

3.1 The classical view: phenomenal vision as a representational state

Can the phenomenology of vision be explained in terms of the properties of the representation that it com-

putes — a static snapshot of (the affordances offered by) the world? Although already in the second sentence

of his book Marr insists that vision is a process, the rest of Vision makes it clear that by this he meant merely

a sequence of steps that leads to a particular representation rather than something fundamentally dynamical.

Had one attempted to develop a phenomenology of vision based on that account, we may speculate that it

would have hinged on the nature of the final product of vision rather than on the process that leads to its

completion.

The notion that phenomenal vision is static in that sense is reminiscent of a remark made by Wittgenstein

(1958, II,xi), in the context of the important distinction that he drew between “seeing” or phenomenal

awareness and “seeing as” or interpretation: “To interpret is to think, to do something; seeing is a state”

(for a discussion, see Edelman, 2009). It is also endorsed by Smart (2004), in an encyclopedia article on

the identity theory of mind: “Certainly walking in a forest, seeing the blue of the sky, the green of the trees,

the red of the track, one may find it hard to believe that our qualia are merely points in a multidimensional

similarity space. But perhaps that is what it is like (to use a phrase that can be distrusted) to be aware of a

point in a multidimensional similarity space.”
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The appeal of the view of phenomenal awareness as a static entity — the state of a representational

system — has deep roots in contemporary sensory neuroscience. Visual neuroscience, in particular, has

for decades focused on studying the brain representation of stimuli presented in isolation from one another,

either simply for a short time, or until the animal responded. This methodology may suffice if one assumes

that the representation in question is independent of the the animal’s broader behavioral context and history

— an assumption that is, as I argued earlier, unwarranted on first principles, and that is also made suspect

by the richness of the brain activity in the absence of what used to be called a stimulus (Vincent et al., 2007;

Mason et al., 2007; Miller et al., 2009).6

From a computational standpoint, the static view of phenomenality is untenable for several reasons. The

first of these I already hinted at: equating phenomenality with being a point in a multidimensional repre-

sentation space implies that this setup is not only necessary but also sufficient for awareness. This, in turn,

amounts to postulating that any system that spans a representation space, however structured and imple-

mented, undergoes phenomenal experiences. This failure to properly narrow down the sufficient conditions

for phenomenality opens the door to a particularly annoying variety of panpsychism, according to which all

representational systems with the same dimensionality have the same phenomenality.

As if this predicament were not dire enough, there is also the issue of what counts as a representational

“system.” Are two hemispheres of a brain two systems or one? What about two brains engaged in con-

versation? These questions fail to fully make sense, let alone be amenable to a resolution, under the static

conception of representation. By itself, a list of numbers — think of the hatful of paper notes mentioned

earlier in this section, or of the “instantaneous” activities of a set of neurons — can be taken to represent

anything at all, and therefore means nothing unless further processed. Static snapshots of representation

spaces cannot therefore give rise to phenomenality, because phenomenal awareness cannot be a matter of

outside interpretation (as in a visual representation being post-processed by another stage), but rather must

be intrinsic, that is, must arise from within the system itself (Edelman and Fekete, 2012).

3.2 An alternative view: phenomenal vision as process

A proposal for a computational resolution of these issues has been recently described by Fekete and Edelman

(2011). A theory of phenomenal experience based on this approach equates the phenomenality, if any,

of a given system not with any of its states, but rather with a process, namely, with the evolution of the

system’s state over time, as directed by its dynamics. Because the minimal quintessential characteristic of
6Should we really be surprised that the brain is active even when not presented with a “stimulus”? The stimulus/response

neuroscience is still living the Sixties’ popular version of itself: the subtitle on the cover of the 1961 Science Editions paperback

printing of Donald Hebb’s The Organization of Behavior (1949) reads “Stimulus and response — and what occurs in the brain in

the interval between them.” I like to think that Hebb himself (as opposed to whoever was in charge of cover design for that edition)

knew better than handicapping his research program in that manner.
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phenomenality is discernment,7 the system’s trajectory space must be intrinsically structured so that certain

classes of trajectories differ qualitatively from others — a property of the system’s dynamics that can be

quantified by mathematical tools such as persistent homology (Fekete, 2010).

The richness of a system’s experience is thus determined jointly by the complexity of its state-space

trajectories and the structure of that space, leading to a phenomenological account of vision that is inherently

and inalienably dynamical (Edelman and Fekete, 2012). This account happens also to be in line with the

situated, embodied, purposive take on vision advocated in the previous section. Consider, for instance, the

visual experience that I have of a mug with a handle on the table in front of me. Because of the peculiarities

of my embodiment (I happen to have two fully functional arms, each equipped with an end effector capable

of grasping small objects), the mug affords to me at least two qualitatively distinct ways of grasping — a fact

that affects my perceptual experience of it (for a couple of entry points into the vast literature documenting

embodiment effects in cognition, see Anderson, 2003 and Longo, Schüür, Kammers, Tsakiris, and Haggard,

2008; embodiment with regard to consciousness is discussed by Shanahan, 2010 and reviewed by Edelman,

2011; for a range of dynamical models of phenomenal experience, see the volume edited by Edelman,

Fekete, and Zach, 2012).

4 How is vision computed?

The question of the uses of vision has a direct bearing on the choice of mathematical tools required for

studying visual systems — which, of course, merely reflect the mathematics of vision itself. Traditionally,

the mathematics of (spatial) vision — to the extent that vision researchers considered mathematics to be

important at all (Marr, 1975) — was thought to be confined to projective or affine geometry (e.g., Gibson,

1966; Hochberg, 1968). Marr’s decisive argument for the overarching importance of a computational under-

standing of the various visual tasks precipitated a tectonic shift in this domain. Computation is now central

to any theory of vision that purports to be explanatory rather than merely descriptive; and the range and the

sophistication of mathematical and algorithmic tools used by vision scientists have grown considerably.

4.1 Inverse optics and regularization

If the purpose of vision is taken to be the recovery of geometry and reflectance of surfaces comprising a

scene, then it is natural to treat it as inverse optics (Bertero et al., 1988). This insight reveals visual recovery

to be a formally ill-posed problem, insofar as it admits multiple solutions (unless properly constrained).

This, in turn, suggests that regularization can be generally used to make vision well-posed (Poggio et al.,

1985).

This idea spurred many interesting developments in the research program directly inspired by Marr’s
7Having an experiential repertoire that consists of a single quale really means being incapable of any experience.
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Vision. For instance, the seemingly ad hoc assumptions required to ensure a unique solution to the corre-

spondence problem in binocular stereopsis turned out to correspond to the regularizer term in an equation

describing possible solutions. More generally, many problems in visual recovery came to be seen as in-

stances of function approximation from examples, itself an ill-posed problem, and for the very same reason

(Poggio and Girosi, 1990). This understanding, and the conceptual link that it has established between vi-

sion and the emerging science of machine learning, proved to be fruitful even as the ideas of geometrical

recovery and of vision as inverse optics began losing their appeal (Edelman and Poggio, 1989).

4.2 A computational toolbox for vision

The alternative top-down — in Marr’s terminology, abstract-computational — conception of vision, outlined

in section 2.2, replaced the classical goal of striving for a single, general-purpose, geometrical replica of the

world with a multiplicity of goals, which are dictated by the tasks at hand and which may, therefore, rely

on a variety of representations and computational processes. Although its development had been motivated

by other factors, this dynamic, pluralistic, top-down stance is supported also by bottom-up considerations,

which belong to algorithmic and implementational levels.

Allowing bottom-up considerations to influence computational-level theorizing goes against the grain

of Marr’s preferred approach to integrating the levels of explanation. While noting that the levels should

not be thought of as independent,8 he held that the all-important topmost level, that of computational theory

of the task, should have conceptual priority (Marr, 1982, p.337). Although this stance may be useful for

understanding vision in the abstract (that is, how it can be done), an attempt to reverse-engineer a particular

visual system (that is, how vision is done) is always better served by an approach that allows implementation-

level findings or considerations to influence the top-level theory.

In the case of insect and vertebrate visual systems, in which the sensory front end is composed of

multiple receptors (ommatidia in insects; retinal photoreceptors in vertebrates), the fundamental bottom-

up constraint is that vision begins with a multidimensional set of measurements. The same goes for any

computer vision that starts with a camera sensor array. In all such systems, the number of measurements

produced by each snapshot of the world is typically large. In the human retina, for instance, the nominal

dimensionality of the output signal that goes to the rest of the brain is about 106, which is the number of

fibers (axons of retinal ganglion cells) in the optic nerve. Thus, mathematically speaking, vision indeed

turns out to be very much about geometry — just not the projective geometry of a handful of fiducial points,

but rather the geometry of manifolds embedded in multidimensional spaces (Edelman, 1999).

In itself, the claim that the subspaces of interest embedded in the measurement space are formally charac-
8This point has been lost on some of my fellow vision researchers. An anonymous NIH reviewer once commented on a grant

proposal of mine: “. . . the description of the main model is full of terms such as V1, parvo, complex cell, and so on. Why should a

computational model be based on so much biological detail instead of computational problems as defined by Marr?”

8



terized by a manifold structure is a working assumption (another conceptual/methodological tool borrowed

from Vision). This assumption is, however, solidly supported — both by implementational considerations

(the measurements and their subsequent transformations being carried out by smooth functions, correspond-

ing to graded receptive fields; Edelman, 1998) and by algorithmic ones (counterfactually, were the target

subspaces not low-dimensional and smooth, they could not be learned from examples; Edelman and Intrator,

2002).

The conception of vision as learning of manifolds embedded in high-dimensional spaces has been par-

ticularly successful as a basis for a theory of object and scene representation and recognition (Edelman,

1999; Edelman and Intrator, 2003; Edelman and Shahbazi, 2012), but its scope is in fact much broader. For

instance, it is immediately applicable to any affordance that a visual system may be called upon to esti-

mate, for the simple reason that such affordances can always be cast as functions from visual (and other)

measurements to certain indicator or utility variables (cf. Poggio, 1990). Satisfyingly, its mathematics also

connects seamlessly to the computational approach to visual phenomenology, mentioned in the previous

section. Finally, it also lends itself naturally to a probabilistic treatment, thus completing a conceptual circle

that connects back to Marr’s earlier, tremendously insightful work in theoretical neurobiology (Marr, 1970).

4.3 The probabilistic turn and Marr’s Fundamental Hypothesis

In a paper that introduced his probabilistic theory of the cerebral neocortex (a great innovation at the time),

Marr included the following “Fundamental Hypothesis” (Marr, 1970, pp.150-151):

Where instances of a particular collection of intrinsic properties (i.e., properties already diag-

nosed from sensory information) tend to be grouped such that if some are present, most are,

then other useful properties are likely to exist which generalize over such instances. Further,

properties often are grouped in this way.

Presaging a key part of Marr’s later methodological stance, which stressed the reliance of vision on certain

assumptions about how the world works, the Fundamental Hypothesis posits that the world is well-behaved

in a probabilistic sense. Together with his recourse to Bayesian inference (normatively the right thing

to do; Howson and Urbach, 1991; Edelman and Shahbazi, 2011), on which his “diagnosis theorem” is

based (Marr, 1970, p.183), this insight clearly identifies Marr, well ahead of his time, as a forerunner of

a conceptual revolution in theoretical neuroscience that is by now so complete that its tenets are taught to

college sophomores in cognitive psychology and neurobiology.9

9An undergraduate-level textbook based on these ideas is (Edelman, 2008).
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5 Where is vision in the brain?

Conceiving of vision as probabilistic and purposive may explain why so much of computer vision has now

been reduced to data-driven machine learning (e.g., Malisiewicz and Efros, 2009; Choi, Lim, Torralba, and

Willsky, 2010) — a development that I see as altogether positive. In comparison, the implications of this

view for the understanding of the brain basis of vision are yet to be fully explored. In this section, I briefly

discuss one aspect of this exploration: the shift from the corticocentric view of cognition to a broader one.

5.1 The corticocentric view

The traditional preoccupation of vision research (along with certain other areas of cognitive neuroscience)

with the cerebral cortex, which has been remarked upon in the past (Parvizi, 2009), still largely persists.

Although the discovery in the monkey inferotemporal cortex of neurons tuned to hands and to faces (Gross

et al., 1972; Perrett et al., 1982) did surprisingly little to advance the understanding of vision (as Marr noted

in Vision), it spurred and sustained a research program that combines an avowed interest in computational

issues such as invariance with an unwillingness to consider broader computational aspects of vision, its

relationships to the rest of behavior, and its roots in parts of the brain other than the cortex.

Anyone who (perhaps implicitly) holds that there is such a thing as a purely visual brain area, or that

understanding the ventral and dorsal cortical processing streams in mammalian vision would settle the most

important questions about it, is doing so in the face of overwhelming evidence to the contrary. Regarding

the purported functional specialization of the cortex, Anderson (2010) reports that “An empirical review

of 1,469 subtraction-based fMRI experiments in eleven task domains reveals that a typical cortical region

is activated by tasks in nine different domains.”10 A theoretical synthesis of decades’ worth of empirical

work carried out by Merker (2007) shows that not just elementary visual functioning but even basic visual

awareness depends more on midbrain areas, especially the superior colliculus, than on the cortex in itself.

A comparative and evolutionary view offered by Balaban et al. (2010) likewise rejects corticocentrism.

5.2 A broader view

A comprehensive understanding of vision in the brain can only be achieved on the basis of the realization

that vision in the wild is intimately intertwined with the rest of the brain’s functions, is embodied, and

is situated in the world (Anderson et al., 2012). Glimpses of such a broader understanding are already

available. For instance, an integrated view of the cortical functional architecture proposes that the sensory

and motor cortical domains converge to / diverge from an effective functional apex in the medial temporal

lobe, consisting of the hippocampus and perirhinal and entorhinal cortices (Merker, 2004). Another kind of
10The domains were action execution, action inhibition, action observation, vision, audition, attention, emotion, language, math-

ematics, memory, and reasoning.
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integration happens in the midbrain, where the layered structure of the superior colliculus brings together

perception, motivation, and action (Merker, 2007). Finally, studies of action selection and executive control,

working memory, and sequence processing have identified multiple parallel functional loops spanning the

basal ganglia, thalamus, hippocampus, and cortex (Redgrave et al., 2011).

A computational synthesis suggests a certain division of labor among all these structures, one of the

dimensions of difference being the mode of learning. The columnar cortical architecture seems to be well-

suited for unsupervised learning and for the distillation of its results into a long-term memory representation

of the statistics of the world, as envisioned by Marr (1970). At the same time, reinforcement learning relies

on the distinct architecture of the hippocampal formation, which appears to help the rest of the brain address

the structural credit assignment problem, and of the cortico-striatal loops, which are involved in temporal

credit assignment and action selection (e.g., Atallah, Frank, and O’Reilly, 2004; van der Meer, Johnson,

Schmitzer Torbert, and Redish, 2010). The interactions among all these cognitive processes, all of which

are active in an awake brain at all times, must be understood before a complete picture of what it means to

see can emerge.

6 Conclusion

Despite Marr’s own fears that vision might in the end turn out to be a “bag of tricks” devoid of unifying

theoretical principles (Marr, 1981), the computational study of vision, which his work was instrumental in

launching, has built up an impressive record of identifying such principles and finding their signatures in the

functional architecture of the brain. One meta-level principle that extends over and above these is that vision

is not a general-purpose “module” whose task is to deliver a geometrically faithful replica of the world to

the rest of cognition. Consequently, the study of the brain basis of vision cannot be confined to the “visual”

cortex, or even to the cortical areas in general. Another one is that learning is both feasible and desirable: the

world is statistically well-behaved, and so survival in it can be furthered by a combination of unsupervised

extraction of visual and other sensory patterns, which correspond to objects and events, and a supervised

tuning of courses of action afforded by the agent’s circumstances and motives.

For a continued success of the enterprise whose goal is to make sense of how vision works, we need

to preserve and promote what I believe are the most important of Marr’s contributions: the license to ask

big-picture questions11 and an appreciation of the combination of mathematical skills and scholarship in

psychology and neuroscience needed to frame them. If we don’t try out different answers to such questions,

just to see where they might lead us, the big picture of the mind will forever remain for us just a jumble of

pixels.
11Not, however, in a grant proposal — as one of Schiller’s characters remarked, “against stupidity the gods themselves contend

in vain.”
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