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Abstract

Hoffman, Singh, and Prakash (2014) observe that perception evolves to serve as an interface between

the perceiver and the world and proceed to reason that percepts need not, or even cannot, resemble their

objects. I accept their premise, but argue that there are interesting ways in which perception can be

truthful, with regard not to “objects” but to relations, and that evolutionary pressure is expected to favor

rather than rule out such veridicality.

Introduction

In the four decades since the publication of (Dobzhansky, 1973), many of us in the cognitive sciences have

invoked his title — “Nothing in biology makes sense except in the light of evolution” — in print and in

classroom discussions. Typically, however, such invocations amount to little more than a flat “because”

answer to a bothersome “why” question. In their remarkable paper, Hoffman, Singh, and Prakash (2014;

hereafter HSP) advocate the use of evolution as the key guiding principle, not to mark the final resting place

for a certain type of psychological inquiry, but rather to motivate a reassessment of the entire psychology of

perception.

Adopting an analogy from jurisprudence, one may take the HSP paper to be a draft of the first article

of a constitution, which would impose certain strictures on all manner of psychological explanations. To
∗A commentary on Hoffman, D., M. Singh, and C. Prakash, The interface theory of perception (2014).
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succeed, such a project must amount to more than insisting on a certain style of informal reasoning about

specific phenomena (as in what came to be known as “evolutionary psychology”; Cosmides and Tooby,

1997) — it must offer a formal framework for developing and evaluating models and theories. This, HSP

does.

While psychology at large has not yet been blessed with the kind of general quantitative laws that serve

as the foundations of physics, the situation in perception science is more advanced. Explicit computational

approaches to problems in perception have become the rule rather than an exception; ideal observer methods

(Barlow, 1980; Knill and Kersten, 1991) are well-established; and there is even work on general laws — as

in the “universal law of generalization,” derived by Shepard (1987) from first principles of probability theory

and Bayesian reasoning (see Tenenbaum and Griffiths, 2001 for a more recent discussion). Interestingly, the

theory that underlies Shepard’s law of generalization both embraces evolution and predicts veridicality — a

combination that, according to HSP, should not be possible. In this commentary, I propose to take a closer

look at veridicality and reexamine its supposed incompatibility with evolution.

What is truth?

The problem of veridicality is unique in perception in that on a fundamental level it is a central concern not

just for perceptual psychology but for all science, insofar as it aims to discover truths about the world through

observation and intervention. In this context, we may begin by considering the (probably inadvertent) move

on the part of HSP to both eat their cake and leave it whole. If, as the target paper observes, “‘natural

selection tunes perception to payoffs, not to truth” (pp.21-22) and if “perception is about having kids, not

seeing truth” (p.31), what basis can there be for the authors to claim also that “the environment in which our

species evolved is a highly structured place, containing many regularities” (p.33)?

One way to avoid the problem here is to treat the latter statement as a metaphysical stance, that is, to

profess belief in the existence of certain regularities “out there” in the world — regularities without which

science would be impossible — without attempting to ground those regularities in perception. Now, I do

believe that a bit of explicit metaphysics early on can save a lot of trouble later (Edelman, 2011), but as

a scientist I would rather have as little of it as possible. In the present case, it seems that the apparent
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contradiction can be resolved if we clarify the concept of “truth” as it is used throughout the target paper.

What, then, is the meaning of “truth in perception”?1 I find HSP’s statements in this connection entirely

unobjectionable. In particular, I agree that there is no conceivable way for the taste of a substance to

be “true” (p.61: “What can we possibly mean by the veridical taste of a molecule?”). Likewise, the neural

representation of an object that is perceived as a car is merely some neural activity, and as such is nothing like

what’s actually out there (p.69: “But the objective reality is not a car and doesn’t remotely resemble a car”).

However, rather than ending the argument about the possibility of truth in perception, these observations

should be seen as the starting point in a search for ways to make it work.

To move forward, we must determine whether perception can evolve to be truthful (thereby helping

ground science more in physics, biology, and psychology, and less in metaphysics) in other ways than the

one that the above quotes from HSP expose as absurd. At least three such ways suggest themselves. I shall

first introduce them, then briefly discuss each possibility in turn, focusing on the question whether or not it

can emerge and survive in an evolutionary setting.

• Categorical consistency — I call a perceptual channel (HSP, p.41), denoted by a function f : X → Y ,

CC-truthful if, when given as input any member x of a class of stimuli X, x ∈ X ⊂ X , it reliably2

evokes a representation f(x) = y ∈ Y . Here, X and Y are sets, each equipped with its own identity

relation that defines set membership. Categorically consistent perceptual channels make it possible to

perceive truthfully the identity (modulo irrelevant transformations and noise) between stimuli, as well

as the recurrence or persistence of a stimulus over time. Example: recognizing the face of a familiar

person as such, despite the usual variability in appearance.

• Second-order isomorphism — a CC-truthful perceptual channel is SOI-truthful if both X and Y

are metric spaces and, further, if the application of f : X → Y results in a reliable and sufficiently

consistent mapping of the rank order of similarities between members of X to the rank order of

similarities between their corresponding representations in Y . Example: perceiving two shades of
1A question that echoes the opening sentence of Francis Bacon’s essay On Truth (1601): “What is truth? said jesting Pilate, and

would not stay for an answer.”
2This qualifier and others like it below can be made precise with a bit of extra notation.
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yellow to be more similar to each other than to a shade of green (think ripe and unripe bananas).

• Causality — a CC-truthful perceptual channel is Cau-truthful if it reliably maps causal relations RX

over elements of X to isomorphic causal relations RY over elements of Y . (Causality is of course a

notoriously difficult concept (De Pierris and Friedman, 2013; Schaffer, 2009; Lagnado, Waldmann,

Hagmayer, and Sloman, 2007); for our present purposes, it suffices, in the spirit of Hume (1748,

4.6), to define RX simply as a time-ordered pair of cause and effect (xt11 , x
t2
2 ), where x1, x2 ∈ X

and t2 = t1 + ∆t for some sufficiently small ∆t, with RY defined accordingly.) Example: taking

thunder to be caused by lightning (while possibly remaining perfectly ignorant as to what each of

them “really” is).

Categorical consistency

Although this and the other two types of veridicality have been extensively discussed in the literature (see

(Edelman, 2008) for an overview), much remains to be said. I shall therefore keep my remarks to an

absolute minimum, focusing mainly on evolvability. With regard to CC-veridicality, we should note that the

structure of categories depends on the choice of features and their use, as determined by fixing the perceptual

channel f (for a formal argument, see, e.g., Watanabe, 1969, pp.376-377). This choice is precisely the

“pressure point” through which evolution may exert its influence, by conferring selective advantage on

perceivers who stumble on a good “prior spacing of qualities” (Quine, 1969; see also Clark, 1993).

A concept that can be used to link this type of evolutionary thinking to the psychology of categorization

is that of consequential region, introduced by Shepard (1987) in the context of his proposed universal law of

generalization. Given a stimulus that has already been encountered, with known consequences (say, an apple

that has been found, pondered, tasted, and enjoyed), another comparable stimulus (a second apple) should be

assigned to the same category as the first one (“crunchy,” as opposed to “mushy”) if it happens to fall within

the consequential region defined by the first stimulus in the representation space. Shepard (1987) was able to

reach some surprisingly deep and general results regarding categorization and generalization, by reasoning

probabilistically from first principles about the shape of the putative consequential region associated with a

stimulus.

4



Second-order isomorphism

The preservation of similarity ranks by a perceptual channel f is an instance of what Shepard and Chipman

(1970) called the second-order isomorphism between (aspects of) the world and (the corresponding aspects

of) its representation. On this account, first-order isomorphism obtains when a percept resembles its object

— a nonsensical proposition, as pointed out by many theorists, including HSP. In contrast, second-order

isomorphism requires that some relation over percepts resemble the corresponding relation over their ob-

jects. I have in the past referred to this distinction as the (first-order) representation by similarity, vs. the

(second-order) representation of similarity (Edelman, 1998). The extensive available evidence for percep-

tual SOI-veridicality has been reviewed elsewhere (Edelman, 1999; Edelman and Shahbazi, 2012).

It is important to note that SOI-veridicality cannot be expected to hold for objects that differ too much

from each other, that is, are too far apart in the representation space in the sense of Shepard (1987) —

as, for instance, is the case for two hues that are diametrically opposite on Newton’s color circle, such as

orange and blue. Just how far apart the representations of two objects end up depends not only on their

physical make-up but also on the perceiver’s needs (witness, for instance, the categorical perception effect;

Macmillan, Kaplan, and Creelman, 1977; Harnad, 1987), which are, of course, shaped by evolution (this

makes the present account consistent with the spectrum example discussed by HSP). Locally, however,

SOI-veridicality is not only possible, but is in fact generic: it obtains under any smooth perceptual channel

function f (Edelman, 1999). I suspect that in terms of the analysis of the effect of group action offered by

HSP, the global/local distinction corresponds to the distinction between classical and Lie groups (the latter

mentioned on p.72 of the target paper as being outside the scope of the discussion).

As HSP note in a related context, the all-important questions here are, first, whether or not smooth

perceptual channels become available often enough in the course of evolution, and, second, whether or

not such channels survive competition with ones that are not smooth in the requisite manner. I conjecture

that the answer to both questions is affirmative. The default initial condition for a newly acquired channel

(corresponding to the emergence of a new sensory modality) seems to be inefficiency, such that it takes a

large change in the stimulus to bring about even a small change in the response. This would make for a tightly

knit representation space, where all things in the new modality feel alike. Evolutionary pressure would
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then work to improve sensitivity (if it’s worth the species’ while; if not, the new modality will sink back

into oblivion), so that eventually small changes in the stimulus bring about small changes in the response,

making the channel smooth and therefore generically SOI-veridical.

Causality

The concept of Cau-veridicality introduces a new dimension to the representation space, that of time. Given

the importance of serial order of events in guiding and forming behavior (Lashley, 1951; Kolodny and

Edelman, 2014), temporal succession that is close enough (Lagnado and Speekenbrink, 2010) between

salient xt11 and xt22 must be noted and the subsequent input monitored for possible predictive value of x1

with regard to x2 (see (Pearl, 2009) for a formal basis and (Holyoak and Cheng, 2011) for a review in the

context of psychology).

Knowledge of the causal structure of the world, which is what this process aims to learn, is more useful

than mere knowledge of the joint probability over the variables of interest (Pearl, 2001, 2013). Such knowl-

edge can be made more reliable by taking special note of actions and by employing targeted interventions

(which in science are called experiments) — a strategy that has been documented both in rats (Leising,

Wong, Waldmann, and Blaisdell, 2008) and in human children (Kushnir and Gopnik, 2005). Causal knowl-

edge, at least of simple two- or three-variable situations, is thus certainly easy enough to glean from temporal

succession and intervention data. Could true causal knowledge fail to be advantageous enough to become

incorporated, under evolutionary pressure, into the cognitive toolbox of behaving animals? As Virgil’s line

puts it, Felix qui potuit rerum cognoscere causas,3 or, in Dryden’s translation:

Happy the man, who, studying nature’s laws,

Thro’ known effects can trace the secret cause.

Concluding remarks

The thesis advanced by HSP carries with it a lesson for studying the brain basis for vision and other fac-

ulties, which the target paper leaves implicit. Namely, instead of focusing exclusively on the function of
3“Fortunate [is he] who was able to know the causes of things” (Georgics II:490).
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the sensory cortex, which at least in the case of vision can be effectively approximated by unsupervised

learning methods (Poggio, Mutch, Leibo, Rosasco, and Tacchetti, 2012; Yamins, Hong, Cadieu, Solomon,

Seibert, and Dicarlo, 2014), we should study the entire brain, including sub-cortical circuits that support

reinforcement learning (Woergoetter and Porr, 2007; Singh, Lewis, and Barto, 2010; Edelman, 2014).

Finally, it would be interesting to apply HSP’s methods to the study of phenomenal awareness, which

is the basic component of consciousness. The phenomenological consequence of the HSP thesis is that the

world looks the way it does “because evolution.” This is fair enough, but in light of the notion that phe-

nomenal awareness is first and foremost the awareness of distinctions and differences (Fekete and Edelman,

2011), and assuming that phenomenality is subject to evolution (Cleeremans, 2008; Ginsburg and Jablonka,

2010), we must hypothesize, in addition, that there are some things about the world that evolving agents get

right.
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