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Abstract

To find out how the representations of structured visual objects depend
on the co-occurrence statistics of their constituents, we exposed subjects
to a set of composite images with tight control exerted over (1) the condi-
tional probabilities of the constituent fragments, and (2) the value of Bar-
low’s criterion of “suspicious coincidence” (the ratio of joint probability
to the product of marginals). We then compared the part verification re-
sponse times for various probe/target combinations before and after the
exposure. For composite probes, the speedup was much larger for tar-
gets that contained pairs of fragments perfectly predictive of each other,
compared to those that did not. This effect was modulated by the sig-
nificance of their co-occurrence as estimated by Barlow’s criterion. For
lone-fragment probes, the speedup in all conditions was generally lower
than for composites. These results shed light on the brain’s strategies for
unsupervised acquisition of structural information in vision.

1 Motivation

How does the human visual system decide for which objects it should maintain distinct
and persistent internal representations of the kind typically postulated by theories of object
recognition? Consider, for example, the image shown in Figure 1, left. This image can be
represented as a monolithic hieroglyph, a pair of Chinese characters (which we shall refer
to as A and B), a set of strokes, or, trivially, as a collection of pixels. Note that the second
option is only available to a system previously exposed to various combinations of Chinese
characters. Indeed, a principled decision whether to represent this image as { AB}, {A, B}
or otherwise can only be made on the basis of prior exposure to related images.

According to Barlow’s [1] insight, one useful principle is tallying suspicious coincidences:
two candidate fragments A and B should be combined into a composite object AB if the
probability of their joint appearance P(A, B) is much higher than P(A)P(B), which is
the probability expected in the case of their statistical independence. This criterion may be
compared to the Minimum Description Length (MDL) principle, which has been previously
discussed in the context of object representation [2, 3]. In a simplified form [4], MDL calls
for representing AB explicitly as a whole if P(A, B) > P(A)P(B), just as the principle
of suspicious coincidences does.



While the Barlow/MDL criterion r = P(A, B)/ (P(A)P(B)) certainly indicates a sus-
picious coincidence, there are additional probabilistic considerations that may be used
in setting the degree of association between A and B. One example is the possi-
ble perfect predictability of A from B and vice versa, as measured by minCP =
min {P(A|B), P(B|A)}. If minCP = 1, then A and B are perfectly predictive of each
other and should really be coded by a single symbol, whereas the MDL criterion may sug-
gest merely that some association between the representation of A and that of B be estab-
lished. In comparison, if A and B are not perfectly predictive of each other (minCP < 1),
there is a case to be made in favor of coding them separately to allow for a maximally
expressive representation, whereas MDL may actually suggest a high degree of association
(ifr = P(A,B)/ (P(A)P(B)) > 1). In this study we investigated whether the human
visual system uses a criterion based on minC P alongside MDL while learning (in an un-
supervised manner) to represent composite objects.
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Figure 1: Left: how many objects are contained in image AB? Without prior knowledge, a
reasonable answer, which embodies a holistic bias, should be “one” (Gestalt effects, which
would suggest two convex “blobs” [5], are beyond the scope of the present discussion).
Right: in this set of ten images, AB appears five times as a whole; the other five times
a fragment wholly contained in AB appears in isolation. This statistical fact provides
grounds for considering AB to be composite, consisting of two fragments (call the upper
one A and the lower one B), because P(A|B) =1, but P(B|A) = 0.5 < 1.

To date, psychophysical explorations of the sensitivity of human subjects to stimulus statis-
tics tended to concentrate on means (and sometimes variances) of the frequency of various
stimuli (e.g., [6]. One recent and notable exception is the work of Saffran et al. [7], who
showed that infants (and adults) can distinguish between “words” (stable pairs of syllables
that recur in a continuous auditory stimulus stream) and non-words (syllables accidentally
paired with each other, the first of which comes from one “word” and the second — from
the following one). Thus, subjects can sense (and act upon) differences in transition proba-
bilities between successive auditory stimuli. This finding has been recently replicated, with
infants as young as 2 months, in the visual sequence domain, using successive presentation
of simple geometric shapes with controlled transition probabilities [8]. Also in the visual
domain, Fiser and Aslin [9] presented subjects with geometrical shapes in various spatial
configurations, and found effects of conditional probabilities of shape co-occurrences, in a
task that required the subjects to decide in each trial which of two simultaneously presented
shapes was more familiar.

The present study was undertaken to investigate the relevance of the various notions of
statistical independence to the unsupervised learning of complex visual stimuli by human
subjects. Our experimental approach differs from that of [9] in several respects. First,
instead of explicitly judging shape familiarity, our subjects had to verify the presence of a
probe shape embedded in a target. This objective task, which produces a pattern of response
times, is arguably better suited to the investigation of internal representations involved in
object recognition than subjective judgment. Second, the estimation of familiarity requires
the subject to access in each trial the representations of all the objects seen in the experi-



ment; in our task, each trial involved just two objects (the probe and the target), potentially
sharpening the focus of the experimental approach. Third, our experiments tested the pre-
dictions of two distinct notions of stimulus independence: minC P, and MDL, or Barlow’s
ratio.

2 Thepsychophysical experiments

In two experiments, we presented stimuli composed of characters such as those in Figure 1
to nearly 100 subjects unfamiliar with the Chinese script. The conditional probabilities
of the appearance of individual characters were controlled. The experiments involved two
types of probe conditions: PTYPE=Fr agnent, or A - ABZ (withV — ABZ as the
reference condition), and PTYPE=Conposi te,or AB — ABZ (with VW — ABZ as
reference). In this notation (see Figure 2, left), A and B are “familiar” fragments with con-
trolled minimum conditional probability minC P, and V, W, Z are novel (low-probability)
fragments.

Each of the two experiments consisted of a baseline phase, followed by training exposure
(unsupervised learning), followed in turn by the test phase (Figure 2, right). In the baseline
and test phases, the subjects had to indicate whether or not the probe was contained in the
target (a task previously used by Palmer [5]). In the intervening training phase, the subjects
merely watched the character triplets presented on the screen; to ensure their attention, the
subjects were asked to note the order in which the characters appeared.
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Figure 2: Left: illustration of the probe and target composition for the two levels of PTY PE
(Fragment and Conposi t ). For convenience, the various categories of characters that
appeared in the experiment are annotated here by Latin letters: A, B stand for characters
with controlled minCP = min {P(A|B), P(B|A)}, and V, W, Z stand for characters that
appeared only once throughout an experiment. In experiment 1, the training set was con-
structed with minC' P = 0.5 for some pairs, and minC P = 1 for others; in experiment 2,
Barlow’s suspicious coincidence ratio » was also controlled. Right top: the structure of a
part verification trial (same for baseline and test phases). The probe stimulus was followed
by the target (each presented for 150 ms; a mask was shown before and after the target).
The subject had to indicate whether or not the former was contained in the latter (in this
example, the correct answer is yes). A sequence consisting of 64 trials like this one was
presented twice: before training (baseline phase) and after training (test phase). For “pos-
itive” trials (i.e., probe contained in target), we looked at the SPEEDUP following training,
defined as RT (baseline) — RT (test); negative trials were discarded. Right bottom: the
structure of a training trial (the training phase, placed between baseline and test, consisted
of 80 such trials). The three components of the stimulus appeared one by one for 150 ms
to make sure that the subject attended to each, then together for 700 ms. The subject was
required to note whether the sequence unfolded in a clockwise or counterclockwise order.



The logic behind the psychophysical experiments rested on two premises. First, we knew
from earlier work [5] that a probe is detected faster if it is represented monolithically (that
is, considered to be a good “object” in the Gestalt sense). Second, we hypothesized that a
composite stimulus would be treated as a monolithic object to the extent that its constituent
characters are predictable from each other, as measured by a high conditional probability,
minC P, and/or by a high suspicious coincidence ratio, ». The main prediction following
from these premises is that the SPEEDUP (the difference in response time between baseline
and test phases) for a composite probe should reflect the mutual predictability of the probe’s
constituents in the training set. Thus, our hypothesis — that statistics of co-occurrence
determine the constituents in terms of which structured objects are represented — would
be supported if the SPEEDUP turns out to be larger for those composite probes whose
constituents tend to appear together in the training set. The experiments, therefore, hinged
on a comparison of the patterns of response times in the “positive” trials (in which the
probe actually isembedded in the target; see Figure 2, left) before and after exposure to the
training set.
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Figure 3: Left: unsupervised learning of statistically defined structure by human subjects,
experiment 1 (n = 14). The dependent variable SPEED-UP is defined as the difference in
RT between baseline and test phases (least-squares estimates of means and standard errors,
computed by the LSMEANS option of SAS procedure MIXED [10]). The SPEED-UP for
composite probes (solid line) with minCP = 1 exceeded that in the other conditions by
about 150 ms. Right: the results of a simulation of experiment 1 by a model derived from
the one described in [4]. The model was exposed to the same 80 training images as the
human subjects. The difference of reconstruction errors for probe and target served as the
analog of RT; baseline measurements were conducted on half-trained networks.

21 Experiment 1

Fourteen subjects, none of them familiar with the Chinese writing system, participated in
this experiment in exchange for course credit. Among the stimuli, two characters 4, B
could be paired, in which case we had P(A|B) = P(B|A) = 1. Alternatively, A, B could
be unpaired, with P(A|B) = 1, P(B|A) = 0.5 (in this experiment, we held the suspicious
coincidence ratio r = P(A, B)/ (P(A)P(B)) constant at r =~ 8.33). For the paired A, B
the minimum conditional probability minCP = min {P(A|B), P(B|A)} = 1 and the
two characters were perfectly predictable from each other, whereas for the unpaired 4, B
minC P = 0.5, and they were not. In the latter case AB probably should not be represented
as a whole.



As expected, we found the value of SPEED-UP to be strikingly different for composite
probes with minC P = 1 (300 ms) compared to the other three conditions (about 150 ms);
see Figure 3, left. A mixed-effects repeated measures analysis of variance (SAS procedure
MIXED [10]) for SPEED-UP revealed a marginal effect of PTYPE (F(1,13) = 3.80,p <
0.07) and a significant interaction PTYPE xminCP interaction (F(1,13) = 5.78,p <
0.03).

This behavior conforms to the predictions of the minC P principle: SPEEDUP was gener-
ally higher for composite probes, and disproportionately higher for composite probes with
minC P = 1. The subjects in experiment 1 proved to be sensitive to the minC P measure
of independence in learning to associate object fragments together. Note that the suspi-
cious coincidence ratio was the same in both cases, r = P(A, B)/ (P(A)P(B)) = 8.33.
Thus, the visual system is sensitive to minC P over and above the (constant-valued) MDL-
related criterion, according to which the propensity to form a unified representation of two
fragments, A and B, should be determined by r [1, 4].

r=1.13

speedup, ms
speedup, ms

speedup, ms
speedup, ms

0 5 10 0 5 10

Figure 4: Human subjects, experiment 2 (n = 81). The effect of minC P found in experi-
ment 1 was modulated in a complicated fashion by the effect of the suspicious coincidence
ratio r (See text for discussion).

2.2 Experiment 2

In the second experiment, we studied the effects of varying both » and minC P together.
Because these two quantities are related (through the Bayes theorem), they cannot be ma-
nipulated independently. To accommodate this constraint, some subjects saw two sets of
stimuli, with minC'P = 0.5, r = 8.33 and with minCP = 1, r = 1.13, in the first ses-



sion and other two sets, with minCP = 0.5, r = 1.13 and with minCP = 1, r = 8.33,
in the second session; for other subjects, the complementary combinations were used in
each session. Eighty one subjects unfamiliar with the Chinese script participated in this
experiment for course credit.

The results (Figure 4) showed that SPEEDUP was consistently higher for composite probes.
Thus, the association between probe constituents was strengthened by training in each of
the four conditions. SPEEDUP was also generally higher for the high suspicious coinci-
dence ratio case, »r = 8.33, and disproportionately higher for composite probes in the
minCP = 1, r = 1.13 case, indicating a complicated synergy between the two mea-
sures of dependence, minC P and r. A mixed-effects repeated measures analysis of vari-
ance (SAS procedure MIXED [10]) for SPEED-UP revealed significant main effects of
PTYPE (F(1,78) = 8.92,p < 0.004) and r (F(1,78) = 4.41,p < 0.04), as well as
two significant two-way interactions, » x minCP (F(1,23) = 5.09p < 0.03) and rx
PTYPE (F'(1,75) = 5.08,p < 0.03). There was also a marginal three-way interaction,
r X minCPx PTYPE (F'(1,14) = 3.46,p < 0.08).

The findings of these two psychophysical experiments can be summarized as follows: (1)
an individual complex visual shape (a Chinese character) is detected faster than a com-
posite stimulus (a pair of such characters) when embedded in a 3-character scene, but this
advantage is narrowed with practice; (2) a composite attains an “objecthood” status to the
extent that its constituents are predictable from each other, as measured either by the con-
ditional probability, minC P, or by the suspicious coincidence ratio, r; (3) for composites,
the strongest boost towards objecthood (measured by response speedup following unsuper-
vised learning) is obtained when minC'P is high and r is low, or vice versa. The nature of
this latter interaction is unclear, and needs further study.

3 Anunsupervised learning model and a ssimulated experiment

The ability of our subjects to construct representations that reflect the probability of co-
occurrence of complex shapes has been replicated by a pilot version of an unsupervised
learning model, derived from the work of [4]. The model (Figure 5) is based on the fol-
lowing observation: an auto-association network fed with a sequence of composite images
in which some fragment/location combinations are more likely than others develops a non-
uniform spatial distribution of reconstruction errors. Specifically, smaller errors appear in
those locations where the image fragments recur. This information can be used to form a
spatial receptive field for the learning module, while the reconstruction error can signal its
relevance to the current input [11, 12].

In the simplified pilot model, the spatial receptive field (labeled in Figure 5, left, as “rele-
vance mask™) consists of four weights, one per quadrant: w;, ¢ € {1,2,3,4}. During the
unsupervised training, the weights are updated by setting w™ = w!/(1 + e~ (eAx+b)),
where Ax is the reconstruction error in trial ¢, and a and b are learning constants. In a
simulation of experiment 1, a separate module with its own four-weight “receptive field”
was trained for each of the composite stimuli shown to the human subjects.* The Euclidean
distance between probe and target representations at the output of the model served as the
analog of response time, allowing us to compare the model’s performance with that of the
humans. We found the same differential effects of minC P for Fr agment and Conpos-
i t e probes in the real and simulated experiments; compare Figure 3, left (humans) with
Figure 3, right (model).

The full-fledged model, currently under development, will have a more flexible receptive field
structure, and will incorporate competitive learning among the modules.
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Figure 5: Left: the functional architecture of a fragment module. The module consists of
two adaptive components: a reconstruction network, and a relevance mask, which assigns
different weights to different input pixels. The mask modulates the input multiplicatively,
determining the module’s receptive field. Given a sequence of images, several such mod-
ules working in parallel learn to represent different categories of spatially localized patterns
(fragments) that recur in those images. The reconstruction error serves as an estimate of
the module’s ability to deal with the input ([11, 12]; in the error image, shown on the right,
white corresponds to high values). Right: the Chorus of Fragments (CoF) is a bank of
such fragment modules, each tuned to a particular shape category, appearing in a particular
location [13, 4].

4 Discussion

Human subjects have been previously shown to be able to acquire, through unsupervised
learning, sensitivity to transition probabilities between syllables of nonsense words [7] and
between digits [14], and to co-occurrence statistics of simple geometrical figures [9]. Our
results demonstrate that subjects can also learn (presumably without awareness; cf. [14]) to
treat combinations of complex visual patterns differentially, depending on the conditional
probabilities of the various combinations, accumulated during a short unsupervised training
session.

In our first experiment, the criterion of suspicious coincidence between the occurrences
of A and B was met in both P(A|B) = 0.5 and P(A|B) = 1 conditions: in each case, we
hadr = P(A, B)/ (P(A)P(B)) = 8.33. Yet, the subjects’ behavior indicated a significant
holistic bias: the representation they form tends to be monolithic (AB), unless imperfect
mutual predictability of the potential fragments (4 and B) provides support for represent-
ing them separately. We note that a similar holistic bias, operating in a setting where a
single encounter with a stimulus can make a difference, is found in language acquisition:
an infant faced with an unfamiliar word will assume it refers to the entire shape of the most
salient object [15]. In our second experiment, both the conditional probabilities as such,
and the suspicious coincidence ratio » were found to have the predicted effects, yet these
two factors interacted in a complicated manner, which requires a further investigation.



Our current research focuses on (1) the elucidation of the manner in which subjects process
statistically structured data, (2) the development of the model of structure learning outlined
in the preceding section, and (3) an exploration of the implications of this body of work for
wider issues in vision, such as the computational phenomenology of scene perception [16].
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