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Abstract

Proximal mirroring of distal similarities is, at present, the only solution to the Problem of Represen-
tation that is both theoretically sound (for reasons discussed in the target article) and practically feasible
(as attested by the performance of the Chorus model). Augmenting the latter by a capability for referring
selectively to retinotopically defined object fragments should lead to a comprehensive theory of shape
processing.

1 An overview of the commentaries

The relationships among the stances taken by the commentators on the various issues having to do with rep-
resentation and similarity can be visualized with the help of Figure 1. This figure depicts a two-dimensional
embedding of a textually defined “commentary space” in which each commentary is represented by a point
labeled by its author’s initial.

The center of the plot is occupied by commentaries that touch upon relatively few of the 11 issues used
to define conceptual similarity in this visualization exercise. Whereas the units along the two dimensions
are, of course, arbitrary, the locations and the proximities in the plot can be given an interpretation. For
example, the upper right corner contains the minders of computational issues, and, in particular, of top-down
influences; the lower right is occupied by the champions of nonlinear dynamics, and the lower left is where
the proponents of combined metric and structural representations are. All these issues, along with some of
the specific concerns raised by the commentators, are discussed next.

2 Veridicality

The strongest concerns in connection with veridicality are voiced by Hahn and Chater, who contend that the
notion of an objective shape space in which proximity corresponds to similarity is problematic, because, as
pointed out by Goodman and Watanabe, objective similarity is an ill-defined concept. Eisler goes even fur-
ther, stating that he does not use the term “subjective similarity” because there is no such thing as “objective
similarity” in the first place.�
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Figure 1: A 2D rendition of an 11-dimensional “commentary space” derived from the 21 commentaries. Each
commentary was first described by 11 binary predicates, chosen so as to cover the major issues raised in all
21 of them. The issues were defined by the appearance in the text of the following keywords or key concepts:
(1) warped similarity spaces, (2) differences vs. similarities, (3) veridicality, (4) the influence of context
on similarity, (5) computational complexity, (6) compositionality and structural similarity, (7) mention of
nonlinear dynamics, (8) top-down effects, including adaptive resonance theories, (9) holism, (10) invariances,
and (11) neurobiology. If a given key phrase appeared in a particular commentary, the corresponding bit in
the feature vector describing that commentary was set to 1; otherwise, it was set to 0. The ��������� matrix of
pairwise Euclidean distances between the commentaries was then formed, and the 21 points were embedded
into a 2D space by metric multidimensional scaling (MDS). In the plot, the points are labeled by the initials
of the commentators (AM: Andresen and Marsolek, B: Benson, BS: Bonmassar and Schwartz, E: Eisler, EC:
Eklundh and Carlsson, F: Foldiak, Gol: Goldstone, Gre: Gregson, Gro: Grossberg, HC: Hahn and Chater,
I: Intrator, J: Jüttner, La: Latimer, MY: Markman and Yamauchi, Pa: Palm, Po: Postma, van der Herik
and Hudson, S: Sokolov, T: Tovee, vB: van Brakel, vL: van Leeuwen, W: Williamson. The coefficient of
congruence (Borg and Lingoes, 1987) between the distances in the MDS-derived 2D configuration and in the
original 11D one was ���	��
 , signifying that much fewer than 11 dimensions were sufficient to describe the
contextual similarities among the different commentaries.
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A typical argument against the notion of objective similarity can be found in (Murphy and Medin, 1985),
who note that the number of attributes shared by plums and lawn-mowers could be infinite: both weigh less
than 1000 kilograms (and less than 1001 kilograms), both cannot hear well, both have a smell, etc. Watanabe
(1985) formalized this kind of reasoning, by proving that any two objects are as similar to each other as
any other two objects, insofar as the degree of similarity is measured by the number of shared predicates
(provided that the set of predicates is finite and equally applicable to all objects, and that no two objects are
identical with respect to this set).

While being formally impeccable, these arguments leave one with a suspicion of being cheated out of
using a perfectly serviceable concept — similarity — by some kind of definitional sleight of hand (what
Dennett calls an intuition pump). Somehow, the deep intuitive roots of similarity play a part in this show:
without the reader’s utter and absolute conviction that plums are not similar to lawn-mowers, the impact of
Murphy and Medin’s example would be considerably weakened. Quite perversely, this conviction emerges
unscathed even from the formal argument: plums are not perceived as similar to lawn-mowers no matter
what, despite the recruitment of silly features common to both, such as not being able to hear well.

The resolution we are offered for this conundrum consists of bringing into the consideration an observer,
whose system of “values” (Watanabe, 1985) or “prior spacing of qualities” (Quine, 1969) removes the am-
biguity by introducing a bias (Goldstone, 1994). Indeed, in a precursor to the target paper (Edelman, 1995),
I cited Watanabe and Quine in support of a particular kind of bias in the perception of similarities — the
natural bias imposed by the standard machinery of biological vision (receptive fields with smooth graded
profiles, etc.).

A logical continuation of this approach, suggested by Hahn and Chater, is to consider the nature (in
particular, the veridicality) of the mapping between the representational systems of two observers, instead of
the mapping between the world and the observer’s similarity space. It is interesting to note that a straightfor-
ward rephrasing of the relevant passages of the target paper (substituting “another observer’s” for “distal”)
leaves the computational conclusions concerning veridicality, mutatis mutandis, intact. In particular, if the
composition of the mappings of the two observers, ��������� �� , is smooth, and if no dimensions are lost
(projected out) along the way, the two representation spaces will be locally second-order isomorphic.

Establishing the possibility of veridical communication between two observers in the manner suggested
above shifts the focus of discussion away from the possibility of veridical perception. This, however, means
that somewhere along the way the real world of shapes gets lost. Do we have to give up the notion of objective
similarity altogether just to annul the standard philosophical arguments against it? Hahn and Chater answer
in the affirmative, drawing an analogy between the discredited correspondence theory of truth and the second-
order isomorphic representation of objective similarities. I reject this analogy, and contend that, as far as
shape geometry is considered, this amounts to throwing out the baby with the bath water.

Intuitively, the geometry of a plum is very different from that of a lawn-mower, because any shape-
preserving transformation1 applied to the former would leave a residual discrepancy that is large relative to
the size of the smaller of the objects involved in the comparison — and also large relative to the residual that
is left when a plum and a melon are compared. More formally, a survey of the mathematical theory of shape
spaces developed in the last decade (and mentioned briefly in the target article) suggests that shape can be
formalized naturally along these lines, in such a manner that similarity is unique (defined by proximity along
minimal geodesics in the shape space) in all but certain degenerate cases (Kendall, 1984; Carne, 1990; Le,
1991; Le and Kendall, 1993; Bookstein, 1996).

Unfortunately, all the commentators who had had problems with my notion of veridicality ignored the
proposal mentioned above, despite its appearance in the target paper. An exception is van Brakel’s com-
mentary, where the idea of a common parameterization basis for distal similarity is mentioned, only to be
dismissed as “highly disputable.” In support of this dismissal, the reader is given two examples. The first

1Shape-preserving transformations are the rigid motions and uniform scaling; stretching and bending, which could bring a
plasticine plum into congruence with a toy lawn-mower, are disallowed.
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of these deals with color, and is, therefore, irrelevant in the context of shape description and representation
(except as a psychological rather than psychophysical theory; see Sokolov’s commentary). The second ex-
ample is essentially a paraphrase of Quine’s Gavagai-observing situation (Quine, 1960), translated into the
Cheyenne language of two centuries ago: the challenge is to reify a highly ambiguous term, vovetas that may
refer to a black vulture, or to a swarm of dragonflies, or, for all a non-speaker of Cheyenne knows, to the left
hind leg of a rabbit. Van Brakel admits that Chorus would be able to acquire the vovetas concept, but implies
that in doing so, Chorus would not be reflecting anything objective or veridical about the world. My reply
is that this does not preclude Chorus from acquiring a genuinely veridical representation in a more natural
situation: one that has to do with natural kinds. I dare say that van Brakel’s tacit assumption that vovetas is a
natural kind would have been resisted by Quine. Lumping together black vultures and tornadoes may sound
exotically appealing, but is about as useful for prediction — the main reason for having categories in the first
place (Shepard, 1987) — as the classes of animals in the famous excerpt from an ancient encyclopaedia cited
by Jorge Luis Borges.2

3 Compositionality and the representation of structure

Intrator, Foldiak, Goldstone, Markman and Yamauchi, and Postma, van der Herik and Hudson all
point out the lack of explicit representation of structure (or, more generally, of various dimensions of simi-
larity) in the Chorus scheme. Of these commentators, Foldiak is the only one who rejects representation by
similarities to prototypes altogether. The arguments raised by Foldiak are based on the assumption that this
representation scheme is necessarily holistic, and, in particular, that dimensions of shape cannot be separated
from those of texture or color in the processing of complex objects. This assumption is, however, unwar-
ranted: the Chorus scheme described in the target article can be adapted to attend selectively to different
dimensions of variation of the stimuli, in several ways. First, the input space of the prototype modules can
be “skewed” and some of its dimensions stressed, as proposed by Foldiak himself, as well as by Postma, van
der Herik and Hudson (this is, of course, a standard technique in pattern recognition). Second, the imposition
of class labels on a set of stimuli can steer the system towards the formation of a low-dimensional space
in which some of the directions of variation are downplayed and others accentuated. In this manner, the
system can be made to treat different views of the same object or its different parametrically related versions
equivalently, while maintaining discriminability along other dimensions (Intrator and Edelman, 1997). Third,
selective association between prototype modules can make some dimensions more important in certain sit-
uations. The action of such an association mechanism can be illustrated on Foldiak’s example: “there is no
way to know whether . . . a ‘giraffe’ [represented by similarity to a camel and a leopard] is an ungulate with
spots or a predator with a hump.” Indeed, if I see, for the first time, a thing that resembles a spotted camel
or a deformed leopard, I cannot tell whether it is going to try to hunt me down or start grazing. One of these
acts, however, would immediately suggest the strengthening of an association between the representation of
the novel animal and that of its proper class.3

Any of these approaches effectively creates a stimulus bias in the similarity space (Shepard, 1964; Nosof-
sky, 1991), whose action resembles that of assigning a larger weight to some dimensions (i.e., to similarities
to some of the prototypes), at the expense of others. However, such adjustment, which may be task-specific

2Borges quotes, in the essay “The Analytical Language of John Wilkins” (E. R. Monegal and A. Reid, Borges: A Reader
(New York: Dutton, 1981, pp. 141-143) a list, “attributed by Dr. Franz Kuhn to a certain Chinese encyclopaedia entitled ‘Celestial
Emporium of Benevolent Knowledge.’ On those remote pages it is written that animals are divided into: (a) those that belong to the
Emperor, (h) embalmed ones, (c) those that are trained, (d) suckling pigs, (c) mermaids, (f) fabulous ones, (g) stray dogs, (h) those
that are included in this classification, (i) those that tremble as if they were mad, (j) innumerable ones, (k) those drawn with a very
fine camel’s hair brush, (l) others, (m) those that have just broken a flower vase, (n) those that resemble flies from a distance.”

3This is but an echo of the famous discussion of induction, found in (Hume, 1748), 23ff, which starts thus: “Let an object be
presented to a man of ever so strong natural reason and abilities; if that object be entirely new to him, he will not be able, by the
most accurate examination of its sensible qualities, to discover any of its causes or effects.”
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(Schyns et al., 1998), only makes sense if the underlying representation reflects as many as possible stimulus
dimensions, because different subsets of these dimensions will be relevant in different situations. Such a
sparse code, advocated by Barlow (1959) and by others (including Foldiak), can be achieved in two ways:
by a combination of abstract features (such as “red,” an example suggested by Foldiak), or by a combination
of multidimensional concrete prototypes (such as “similar to a cherry,” as in the Chorus scheme). There is
no reason why the former kind of feature should be a priori preferable; in fact, abstract features are a very
poor basis for categorization and generalization (what do we learn about the nature of an object by being
told only that it is red?). In comparison, holistic features such as similarities to prototypes are both useful
for generalization and easy to acquire, by a process which Quine calls learning by ostension (as in “this is a
cherry,” pointing to a cherry). Indeed, infants at the peak of the concept acquisition period around the age 2
exhibit precisely this tendency to attribute labels (words) to shapes of entire objects, rather to their color, or
to the shapes of their parts (Markman, 1989; Smith et al., 1997), and so do perceptual novices in general
(Tanaka and Gauthier, 1997). Only upon receiving a different label for an already encountered object do they
associate it with the object’s color, material, or local features.

G1 G2A B

X X

Figure 2: Left: Chorus of holistic prototypes; the new object X is represented by its similarities to objects A
and B. This representation scheme, which I described in the target paper, can support various recognition-
related tasks, working from gray-level images of real objects (Edelman and Duvdevani-Bar, 1997a; Edelman
and Duvdevani-Bar, 1997c; Duvdevani-Bar et al., 1998). According to Latimer, “it could also provide an
explicit, neurally-plausible mechanism for responding directly and accurately to [objects] and their inter-
relationships”; Jüttner notes that it “transforms images into a rule-based representational format which is
open to propositional reasoning” (cf. Barsalou’s, 1997, notion of perceptual symbol systems). However, as
pointed out by Intrator, Foldiak, Goldstone, Markman and Yamauchi, and Postma et al., this scheme
does not allow structural decomposition and analysis of shapes. Right: Chorus of generic fragments, as
suggested by Postma et al. This scheme is a simplification (involving image-based fragments) of the standard
structural model of representation, such as Biederman’s (1987) Recognition By Components (RBC). Neither
RBC, nor simplified models such as this one (which does not seek to recover 3D parts and their spatial
relationships) has been ever made to work on real images. A compromise approach, which combines the
theoretical and practical appeal of Chorus with a certain ability for explicit representation of structure, is
illustrated in Figure 3.

Holistic representation (Figure 2) is, therefore, a sensible opening strategy, which can serve as the ba-
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sis for the development of more sophisticated analytical approaches. The need for augmenting a holistic
similarity-based model with some capabilities for structure manipulation is stressed by Goldstone and Mark-
man and Yamauchi, who list experimental findings concerning perception and categorization of complex
objects and scenes that are best accommodated by a structural model. I agree with their conclusion (drawn
also by Intrator and by Eklundh and Carlsson) that co-existence of multidimensional feature space and
structural models is desirable. Such co-existence should not, however, become a goal in itself, lest the diffi-
culties inherent in the purely structural approaches (Edelman, 1997) cancel any potential advantage that may
stem from combining structural descriptions with prototype-based shape spaces.

How can one steer a middle way between the holistic feature-space extreme, justly criticized as falling
short of replicating human performance in many tasks, and the structural extreme, which has remained a
piece of science fiction (albeit an intellectually appealing one) since its introduction more than two decades
ago? Postma, van der Herik and Hudson claim that a dozen or so reference shapes are unlikely to suffice
for distinguishing between each pair of the huge number of naturally occurring shapes. This, however, need
not be a problem for a large-scale Chorus-like model. Such a model can have at its disposal hundreds of
prototypes modules, of which only a small subset becomes active in any given discrimination task.4 In com-
parison, the proposal of Postma et al. to use generic “prototypes” such as Biederman’s (1987) “geons” seems
to me counterproductive, given the poor track record of geon-based theories in computational vision (Edel-
man, 1997) and the emerging consensus regarding their shortcomings as models of human object recognition
performance (Kurbat, 1994; Tarr et al., 1997; Jolicoeur and Humphrey, 1998).

Intrator’s suggestion to use prototypical (statistically defined rather than generic) shapes as “parts”
seems to be nearer the mark, if only we can manage to avoid the need for temporal binding of parts — a tradi-
tional handicap of the structural approaches. One possible way to do that is to resort to binding by retinotopy
(Edelman, 1994), a concept illustrated in Figure 3. In this approach, structure is represented explicitly, but
in an image-based rather than object-centered manner. Functionally, this is only a small concession: a full-
blown structural description must in any case be extracted anew for each distinct aspect of the object (if it can
be extracted at all); image-based structure is aspect-specific by its nature. Computationally, however, the lat-
ter is much more tractable, especially if the primitives in terms of which structure is represented are encoded
by Chorus-like modules. The only modification required for that purpose in the holistic Chorus scheme is
the introduction of attention-like control over the location and the size of the retinal receptive field of each
module (which can be done in a hard-wired fashion, as depicted in Figure 3). In other words, the Chorus
of prototypes can be turned into a Chorus of fragments, when necessary. This, however, is at present only a
conjecture; theoretical analysis and computational experiments currently under way in my laboratory should
decide whether or not this approach can endow Chorus with the ability to represent structure without giving
up its practical appeal and its straightforward interpretation in terms of familiar mechanisms of biological
information processing.

4 Specific vs. abstract similarity

Andresen and Marsolek contend that in Chorus the representation of similarity on an abstract level (as
between the words “rage” and “RAGE”) must be preceded by its representation on a more concrete level.
Furthermore, they note that subjects in priming experiments exhibit double dissociation between the levels: in
some conditions, concrete or specific but not abstract visual representations are activated, while in others only
abstract representations are primed. They conclude that a distinct system dedicated to abstract representations
must exist alongside a specific, Chorus-like one. Their first premise is, however, invalid: the activation of a
concrete-level representation does not necessarily precede that of an abstract-level one, if the representations
are distributed. This point is best illustrated not on totally disparate shapes such as “rage” and “RAGE”

4This corresponds to combining Barlow’s idea of a sparse code with Tanaka’s estimate of 1300-2000 object-tuned modules in
the inferotemporal cortex in the monkey.
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A1 A2 B1 B2

A A B B

X

Figure 3: Chorus of prototypical fragments. In this proposed scheme, each object-specific module comes
in several varieties, distinguished by the location of the module’s receptive field (indicated schematically by
the open circle) relative to the fixation point (indicated by the thick dot). For example, module A � responds
optimally when the fixation is just above a stimulus resembling object A. Likewise, module A � prefers the
object to be just below the fixation point. As in the Chorus of prototypes, a new object X is represented
by the pattern of activities across object-specific modules. Here, however, these activities carry additional
information concerning the structure of X. For example, the activities of A � and B � together characterize
the shape of the lower fragment of X, while the activities of A � and B � together determine the shape of its
upper fragment — without recourse either to generic parts, or to any kind of binding mechanisms (beyond
co-activation and retinotopy). This scheme is even closer to Barsalou’s (1997) perceptual symbol system
idea.
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(for which similarity is solely a matter of convention and should be encoded by a “lateral” association link
between two equal-status prototypes), but rather on concepts that are part of a hierarchy, such as giraffe and
quadruped. In Chorus, several modules whose activity patterns normally signify the presence of some kind
of quadruped animal may fire and cause the higher levels to decide that a quadruped is present, without any
of the specific quadrupeds being detected (because the pattern of the module activations does not happen to
coincide with any of the patterns corresponding to the specific quadrupeds). Thus, while a separate “abstract”
representation system suggested by Andresen and Marsolek may exist, its existence remains a conjecture yet
to be proved.

5 Similarity under a prescribed metric

The notion of objective similarity, discussed earlier, presupposes the existence of a unique “natural” metric
on the distal shapes. Hahn and Chater argue that even if such a metric exists, subjects are not necessarily
bound by it, and may judge as similar objects that share arcane features such as “pixel to pixel alternation”
but differ in every corresponding pixel (for example, 010101 and 101010). A related point is made by Palm,
who distinguishes between “external sensory similarity” and “functional similarity” (shared, for example, by
various chairs, all of which can be sat upon, without being visually similar). Postma, van der Herik and
Hudson draw attention to the need for invariance with respect to transformations such as translation and
scaling, which leave shape unchanged, yet affect strongly what the target article calls the measurement-space
appearance of the objects (as illustrated by the same pair of patterns, 010101 and 101010, one of which is
a cyclic translation of the other). I am less concerned about the kind of similarity mentioned by Hahn and
Chater, because I believe that it is of secondary importance in everyday perception, where it is clear what the
natural metric is.5 After all, it requires a certain sophistication on the part of the observer to realize that two
pictures are the same in that they contain the same number of black pixels, or that two character strings are
the same because they spell the same word, or that two sets of particle tracks in a Wilson cloud chamber are
the same because they both correspond to � -decay events. Despite Benson’s comments, who (as far as I can
gather) criticizes the lack of representation of this kind of abstract distinctions and similarities in Chorus and
calls for “linguistic terms” and “additional semantic information,” I prefer to keep this cart behind the horses.

In contradistinction to non-obvious relations (either abstract or concrete), proper representation of sim-
ilarity under common transformations such as translation and scaling is a real concern, which indeed is
mentioned in the target article. This issue, however, is more complicated than Postma, van der Herik and
Hudson would have it, if only because human recognition is not completely invariant either to translation or
to scaling, pace (Biederman and Cooper, 1991). Specifically, recent research shows that the degree of invari-
ance depends on familiarity with the patterns, on global similarity between the objects to be discriminated,
and on their compositional structure (Dill and Edelman, 1997). Thus, a “blanket” approach to invariance via
a global transformation (even a space-variant one, as proposed by Bonmassar and Schwartz) does not seem
to be appropriate in modeling human performance. A more credible approach is suggested by neurophysio-
logical findings (Tovee et al., 1994; Ito et al., 1995), where cell responses, even if invariant under a certain
amount of translation and scaling, only pertain to particular stimuli, refuting the possibility that invariance
arises out of some global and universal mechanism (more on this below).

6 Similarity in context

As noted by Eisler, van Leeuwen and Tovee, similarities depend strongly on the context of the comparison
(what Eisler calls “the pertinent universe” and Jüttner refers to as the choice of the map, which is prior to
the choice of landmarks, a propos my analogy between categorization and navigation in a shape space). A

5Cf. the argument I made above in favor of objective shape spaces.
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similar point has been made by Mumford (as discussed in the target article), by Tversky, and many others. As
in the discussion of abstract similarities, here too I propose to treat the perception of geometric similarities
defined over triplets of shapes as the basic phenomenon, and to use a model of that phenomenon (namely,
the Chorus scheme) as a starting point in the development of more comprehensive and more sophisticated
approaches. Specifically, as suggested in the target article, the modules comprising Chorus can be assigned
salience-related weights, with the salience being determined by the context in which the comparisons are
carried out. At present, it is not known to what extent this approach will be able to replicate psychophysical
data on the perception of similarity; an extensive simulation study designed to address this issue is clearly
required.

7 Top-down effects

Several of the commentaries question the rationale of choosing a basically feedforward architecture, such as
that of Chorus, to model object recognition processes in human vision. Grossberg, in particular, states that
“a major intellectual watershed separates feedforward models from self-organizing feedforward/feedback
models.” I tend to agree, but, important as it may be, the choice of architecture of the model cannot precede
the development of a theory of the problem. This methodological issue is a source of much controversy in
vision research. Marr (1982) argued that implementation of a model should follow (certainly not precede)
the development of the theory. In contrast, connectionist modellers believe that the two should be allowed to
interact. In the present case, the logical order is rather clear: feedback models, such as Grossberg’s Adaptive
Resonance Theory (ART), or Mumford’s (1994) bottom-up / top-down scheme deal with the problem of
categorization, which can be approached in a principled manner only following a resolution of the logically
prior Problem of Representation (Cummins, 1989). This latter problem has to do with the very possibility
of securing a principled relationship between the world and its representation. ART, which attempts to
capture dynamically the categorical structure of a stream of data, is neutral with respect to the nature of this
relationship: the data are (proximal) measurements such as images, and nothing is assumed or deduced about
their distal causes.

The neutrality of ART and of the like models with respect to abstract computational-level issues such as
veridicality and the Problem of Representation may suggest that they are compatible with the idea of second-
order isomorphism and that they can support this mode of representation as well as (and possibly better
than) the Chorus scheme. I assume this is what Grossberg had in mind when he wrote in his commentary
that “ART models self-organize ‘second-order isomorphisms’ using either unsupervised learning, supervised
learning, or both.” There are, however, certain obstacles to be overcome before ART can be used in this
manner. First, the feedback nature of ART makes the analysis of the possible relationship between distal and
proximal entities more difficult than for a purely feedforward model: whereas second-order isomorphism
requires merely that the distal to proximal mapping be smooth, in ART the mapping is iterated, and it is
not clear what requirements it should fulfill, and what is the interaction between iteration and veridicality.
Second, in the context of representing (not yet categorizing) novel stimuli, an ART-based approach such
as that of the system described in (Bradski and Grossberg, 1995) is actually detrimental, because it forces
the attribution of the current stimulus to one of the familiar categories (or the creation of a new category),
whereas it may be preferable to represent it within the existing framework (e.g., in terms of similarities to
existing categories, as it is done in Chorus). Hence my preference for feedforward models for the time being.

The turn of recognition-related tasks such as categorization comes when the Problem of Representation
is solved. Palm doubts the ability of Chorus to perform segmentation and categorization, which, he claims,
can be made much easier by allowing for top-down influences in one’s model. Without such influences,
Palm claims, the feedforward Chorus is essentially limited to interpolation among stored examples. Whereas
Chorus indeed does not deal with the problem of segmentation, it has been shown effective in discrimination
and categorization of objects unfamiliar to it, achieving about ����� correct performance over a database of
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50 such objects (Edelman and Duvdevani-Bar, 1997c).
The power of interpolation among stored examples obviously depends upon the nature of the information

available in each example, and on what the system does with it. In the most recent application of the Chorus
scheme, the examples were entire view-spaces6 of reference objects (Edelman and Duvdevani-Bar, 1997b;
Duvdevani-Bar et al., 1998). Interpolation among these allowed the system to estimate the view-space for a
novel object, and to use that estimate subsequently to carry out a variety of visual tasks (e.g., to recognize a
novel view or to determine the pose of an object previously seen from only one vantage point).7

8 What Chorus really does

Of the commentators who raise computational issues, Bonmassar and Schwartz are the only ones to misun-
derstand thoroughly the target article. The first of their misunderstandings has to do with multidimensional
scaling (MDS), which is not “a particular form of clustering” (Kruskal, 1977), but rather a kind of distance-
preserving dimensionality reduction. Their second misreading of the target article is that Chorus uses MDS
“to effect classification” — in fact, Chorus does not use MDS at all (which is why, incidentally, the remark
that the target article does not specify a neurally plausible implementation for MDS is irrelevant). The infor-
mation concerning the shape-space location of the stimulus is present in the activities of the reference-shape
modules, insofar as these covary monotonically with the appropriate distal similarities. An experimenter
studying the model (or the brain) can use MDS to extract that information and to embed it into a 2D space;
the model itself need not do that. If there are 1000-2000 reference-object modules (of which only a very small
proportion fires for any given stimulus), these can be mapped directly onto a similar number of “output lines”
(leading to association or action modules), for example, by a linear matrix switch of the kind described in
(Willshaw et al., 1969). One may hypothesize that the CA1 and CA3 circuits in the hippocampus (Hasselmo,
1995) constitute a “crossbar” matrix switch of this type. Note that straightforward input-output association
is impossible if the dimensionality of the signal is on the order of 1000000 (as it is in the primary visual
cortex, or V1) rather than 1000 (as in the inferotemporal, or IT, cortex). Thus, Bonmassar and Schwartz’s
statement that “there is a basic mathematical equivalence between clustering based on ‘similarities’ and clus-
tering based on direct feature vector representation” is mistaken: neither clustering nor other processing (e.g.,
association) of the raw feature vectors would work, because of the high dimensionality, and because of the
predominance of irrelevant dimensions (as noted in the target article, section 3.2).

The third misunderstanding by Bonmassar and Schwartz, which crops up repeatedly in their commen-
tary, is centered on a mistaken characterization of Chorus as relying on “simple linear ‘interpolation’ between
shifted versions of a prototype.” Bonmassar and Schwartz conflate here two issues: that of multiple-view
interpolation by the prototype modules, and that of translation invariance. The former is certainly not a linear
phenomenon (Poggio and Edelman, 1990; Bülthoff and Edelman, 1992). In fact, the main assumption behind
the use of radial basis functions (RBFs) in the implementation of the prototype modules is that of a smooth
relationship between the effect of the variables over which the module must generalize (i.e., the viewpoint)
and its required output (a constant, for a given object). As a result, the RBF mechanism can dampen the
effects of any smooth transformation or deformation of the input, including the “space-variant nature of V-1
representation” stressed by Bonmassar and Schwartz, given enough exemplars to work with. Furthermore,
if the visual system is capable of foveation (fixating the object to be recognized), only a limited form of
translation invariance is required. Specifically, invariance has to hold over an area equal to the apparent size
of the object (to support recognition when different parts of the object are fixated), rather than over the entire

6A view-space of an object is the low-dimensional trajectory ascribed in the measurement space by the point corresponding to
a view of that object, as it undergoes a parametric transformation such as rotation in depth. The dimensionality of the view-space
manifold is determined by the number of parameters in the transformation.

7The setting of interpolation weights in this example is, strictly speaking, a top-down operation, albeit of a different kind than
the top-down processing stream in models such as ART.
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visual field. This invalidates Bonmassar and Schwartz’s claim that “[Chorus] would require storage of a large
number of eye-position prototypes.”

How can this translation invariance be achieved? At the time of writing of the target article, I believed
that a space-variant mapping proposed by Schwartz and Cavanagh and developed further by Bonmassar and
Schwartz may actually be part of the solution, not part of the problem. Specifically, foveation, followed
by the complex logarithm mapping, followed again by a covert shift of attention (McCulloch, 1965) to
the centroid of the resulting signal can result in approximate size invariance. This approach would also
keep the problem of translation invariance within manageable limits, to be dealt with by mechanisms such
as interpolation (Bradski and Grossberg, 1995). However, a review of the neurobiological literature (see
chapter 6 in Edelman 1999), and the results of recent studies on the sensitivity of human object recognition
to translation, convinced me that a global mapping (even a space-variant one) is not a good model of the
primate visual system insofar as translation invariance is concerned. On the one hand, translation invariance
exhibited by cells in the IT cortex is limited to receptive fields that can be rather small and is specific to the
class of shapes to which the cell is tuned (Tovee et al., 1994; Ito et al., 1995). On the other hand, in human
subjects the transfer of shape discrimination across just a few degrees in the parafovea is imperfect if the
shapes are defined by the spatial configuration of several common parts, but is nearly perfect if the objects
share the part structure and differ only parametrically (Dill and Edelman, 1997). In comparison, if translation
and other invariances were the result of a global mapping, the same degree of invariance would be expected
for any shape — in contradiction to the neurobiological and the psychophysical data. The upshot from this
discussion is that Bonmassar and Schwartz’s commentary is rather tangential to the issue at hand, and that
the problem of size/translation invariance must still be considered as open.

9 Complexity and scalability

The commentary by Eklundh and Carlsson raises the important question of computational complexity
that is not adequately treated in the target article. How many prototypes are necessary for representing the
shapes of objects corresponding to the 30000 or so count nouns (Biederman, 1987) presumably known to
an adult speaker of English? Eklundh and Carlsson state that “with an increasing number of categories the
number of similarities to be represented grows combinatorially.” This observation is true but irrelevant to the
complexity of representation: Chorus aims at (1) representing the objects in terms of their similarities to a
fixed number of reference shapes, while (2) preserving the similarities among objects to the largest possible
extent. Because the dimensionality of the representation space is fixed, the real concern is whether it suffices
to deal with the increasing number of objects (a problem whose size is obviously linear in the number of
objects), rather than with the number of object relations such as similarities (whose number grows much
faster). Experiments with an implementation of Chorus (Edelman and Duvdevani-Bar, 1997a; Edelman and
Duvdevani-Bar, 1997c) indicate that the number of prototypes (reference shapes) necessary for supporting a
certain level of recognition performance grows slower than the number of objects. These results, however,
were obtained with only about 50 objects; further and more extensive experiments are necessary to determine
whether computational complexity is a real concern here.

10 Learnability

Another computational concern — that of learnability — is raised by Williamson. He argues that despite
a certain biological and computational appeal of the radial basis function (RBF) network used in Chorus,
the standard algorithms used for training RBF networks are biologically implausible. Williamson proposes
an alternative implementation for an object-specific module of the kind required by Chorus; his Gaussian
ARTMAP network is related to Grossberg’s ART, and is endowed with an online learning algorithm. Now,
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because the Chorus model is motivated by functional considerations (derived from the second-order isomor-
phism theory), the object-specific modules that serve as its building blocks can be implemented by a variety
of architectures, as demonstrated in a related study on the extraction of veridical low-dimensional repre-
sentations from image data (Intrator and Edelman, 1997). Thus, because on the algorithmic level Chorus
is a generic model, the introduction of any additional architecture capable of fulfilling the required func-
tion broadens the support for the model as a whole. On the more abstract computational level and on the
level of biological implementation, the situation is, however, not as simple. First, a mixture model such as
Williamson’s Gaussian ARTMAP inherits from ART the predisposition for single-cause explanations for the
input, at the expense of impartial representation (which would let the input belong neither to this nor to that
category); I have already mentioned this characteristic of ART in my reply to Grossberg’s commentary. Sec-
ond, as Williamson notes, Gaussian ARTMAP, being a probability mixture model, does not automatically
enforce as much smoothness as may be required by the second-order isomorphism theory (unlike the RBF
model, where smoothness is a major goal in the learning procedure). Furthermore, from the standpoint of
biological implementation, the RBF learning algorithm is not as implausible as suggested by Williamson, es-
pecially if learning is limited to the estimation of the linear weights between the hidden layer and the output
(Edelman and Weinshall, 1991). An in-depth comparison between the biological plausibility and other merits
of certain versions of RBF networks on the one hand, and of versions of ART such as Gaussian ARTMAP
and its EM (Expectation-Maximization) learning algorithm is beyond the scope of this paper.

11 Neurobiology

Only a few of the commentators bring lessons from neurobiology to bear on the discussion. Some of these
are highly disputable, as exemplified by Foldiak’s statement that sensory processing in the brain involves
dimensionality expansion, not reduction, presumably because “V1 contains about 100 times as many neu-
rons as the optic nerve does, and higher visual areas maintain similar numbers.” The mistake here is the
assignment of one neuron per dimension. On the one hand, this must be the strategy of the visual system at
the level of the visual input to the brain (i.e., in the optic nerve), simply because at that level there is no way
in which the system can “know better” than to assume that each input line corresponds to an independent di-
mension. On the other hand, in the rest of the visual system the issue becomes that of effective, not nominal,
dimensionality. For example, if all the input lines are perfectly correlated, then the effective dimensionality
is equal to one. If the correlations between neuronal responses in the higher areas were as “surprisingly low”
as described by Foldiak, it would be impossible to recover the category of the visual stimulus from mass-
response data such as the fMRI signal, the optical signal measured using voltage-sensitive dyes, or the more
old-fashioned evoked potential field: all these would resemble high-dimensional noise. Just as in V1 the
most important dimensional characterization of the representation is in terms of the functional architecture
(i.e., the columnar structure, the cytochrome oxidase blobs, etc., as defined by Hubel, Wiesel, Livingstone
and others), so in IT the dimensionality of the representation is more likely to correspond to the number of
column-like modules discovered by Tanaka et al. (Fujita et al., 1992; Tanaka, 1996), and not to the number
of neurons there. The notion of functional architecture and Tanaka’s findings (not cited by Foldiak) are also
relevant in qualifying Foldiak’s statement that the metaphor of a visual alphabet, which suggests a small set
of symbols, is implausible because “sensory neurons have a huge variety of response properties.” Already in
V1, only a few of the possible dimensions of the image (namely, oriented energy at a subset of locations) are
represented; in IT, the code is at least as low-dimensional.

Not all theoretical neurobiologists are as happy as they should be about the dimensionality reduction that
occurs in the visual processing stream. In particular, Bonmassar and Schwartz argue (contra Foldiak) that
vision cannot be veridical because “V1 discards more than � � �	� ��� of the information available at the level
of retinal (optical) image.” This argument, however, is based on a further and rather unwarranted assumption
that all 1000000 or so dimensions are required for describing the various distinctions among distal stimuli
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that must be veridically represented in the first place. In addition to being pessimistic about the possibility of
veridical representations, Bonmassar and Schwartz are rather conservative in their description of the current
understanding of the process of recognition in the brain (they write that “we know very little about any aspect
of trigger feature representation in IT at the present time”). I attribute this gloomy outlook to their somewhat
outdated view of the psychophysics and the neurophysiology of object recognition. Regarding the function
of IT cortex, Bonmassar and Schwartz choose to refer only to Schwartz et al., 1983, and neglect to mention
the data amassed in the last decade and a half (cited in the target article). The psychophysical findings of
veridical representation of shape spaces, from (Shepard and Cermak, 1973) to (Cutzu and Edelman, 1996),
are ignored by them altogether. Against this background, the target article’s account of the function of IT
cortex may indeed appear as “deus ex machina.”

Whereas much more is now known about the IT cortex than a decade or so ago, some of the crucial
issues concerning the function of this area are the subject of an intense controversy. One of these is the
question of the grain of the representation there: do IT cells prefer entire objects or frequently occurring
object fragments in their response patterns (Tanaka, 1993)? In his commentary, Tovee calls the latter the
“visual alphabet” hypothesis, claiming that the target article adopts it as the neural basis for the Chorus
model. In fact, in the target article I adopted an opposite, holistic stance (see, e.g., section 9.3.2), with the
purpose of finding out whether this route, which is computationally much more convenient than the compo-
sitional one, can lead to sufficiently powerful representations. My conclusion, supported by computational
experiments (Edelman and Duvdevani-Bar, 1997a; Edelman and Duvdevani-Bar, 1997c), is that the holistic
approach to representation advocated by Tovee is feasible. Additional considerations, such as the need for
an explicit representation of structure in some tasks (discussed above), suggest, however, that the holistic
approach should be supplemented by another one, based on object fragments or a “visual alphabet.” Future
experiments should determine whether an extension of Chorus along these lines (as sketched in Figure 3) is
computationally feasible and biologically relevant.

12 Methodological and meta-theoretical issues

The combination of theoretical considerations with results of computational experiments and neurobiological
evidence, as attempted in the target article, is especially important in connection with two issues raised by
Jüttner. The first of these is the equivalent performance of quite different models of similarity perception in
the experiments of Unzicker et al., in press. As stated in the target article (and reiterated elsewhere in this
response), the computational requirements of the second-order isomorphism theory are generic, and cannot
be used for specifying a particular model architecture. The reasons for preferring the Chorus scheme, and, in
particular, a Chorus of RBF modules, have to do with concrete issues such as implementational parsimony,
learnability, and, ultimately, biological evidence (the latter is decisive as far as the relevance of second-
order isomorphism as a model of visual representation in the brain is concerned). The second remark made
by Jüttner refers to Anderson’s (1978) plea for “indeterminacy concerning the representations as long as
the processes operating on them remain unspecified.” Again, bringing to bear considerations from all the
relevant disciplines, including neurobiology, reduces this indeterminacy: the presently available biological
data certainly constrain the processes of vision, if not yet determine them unequivocally (in disembodied
theorizing, in comparison, anything goes).

Latimer’s commentary provides a crucial philosophical angle on the ideas expressed in the target article.
Nevertheless, two of the meta-theoretical questions he poses along the way seem to me to obscure rather
than clarify things. The first of these is the purported irrelevance of representation, which Latimer describes
as a ternary relation, involving the thing represented (A), the thing representing (B), and an observer, to
whom B represents A. It has been fashionable for some time to argue from this definition that talking about

13



representations is the same as postulating a homunculus.8 The homunculus, however, need not be brought
into consideration at all: B represents A to the rest of the system, if representation is functionally justified
in Millikan’s (1984) sense, and, even better, if an external intervention at the presumed locus (or “causal
nexus”) of representation (such as the injection of current in the appropriate place in the cortex; cf. Salzman
et al., 1990) affects the situation in the manner compatible with the representational account.

My second remark on Latimer’s commentary concerns his questioning of the holistic nature of Chorus.
For better or for worse, Chorus acquires and uses images of prototypical or reference objects without ana-
lyzing them into parts. Latimer seems to claim that this still does not mean that Chorus is holistic, because
the images are ultimately composed of pixels which later play a role in computations of similarity. I see
this argument (stated at much greater length in Latimer and Stevens, 1997) as a quibble because it leaves
the most important thing unsaid: exactly how do pixels play a role in subsequent processing makes all the
difference. In the case of Chorus, values of hundreds of pixels are conflated and the information in them
is redistributed and transformed each time the activity of a receptive field at the measurement-space level is
computed; further on, even more extensive convergence takes place. If this still qualifies Chorus as a model
based on (pixel-level) parts, then something is wrong with Latimer’s nomenclature.

13 And now, something completely different

The remaining two commentaries yet to be discussed come from a theoretical fringe, defined by an adher-
ence to the arsenal of arguments from nonlinear dynamics (Gregson) and, in particular, from chaos theory
(van Leeuwen). The word “fringe” here is not a facetious epithet, but a description of the relationship
between nonlinear phenomena and their local approximations: the very status of the former as a generaliza-
tion of the latter implies conceptual priority of the latter in the normal progress of scientific understanding.
Gregson himself admits that “spaces which are metric only in a local neighborhood, but have no global prop-
erties implying constraints on monotone distance-separation relations, can be defined” (paragraph 4) and that
“element-wise matchings between corresponding partitioned subsets of stimulus attributes . . . can sometimes
be locally reconciled with metric space mappings” (paragraph 5). Chorus, which aims at representing the
local metric structure of distal similarities (see appendix B of the target article), suits these two descriptions
well. It also happens to be mathematically tractable, applicable in practice, and capable of explaining a long
list of results in the psychophysics and physiology of the representation of real 3D shapes.9 Consequently,
I believe that both its possible deficiencies in modeling the perception of “geometrical patterns” (Gregson’s
euphemism for a handful of dots or lines), and its inadequacies in solving structural analogy problems or
modeling creative design (pointed out by van Leeuwen) can be safely classified as higher-order effects, to be
taken care of in the next revision.

14 Conclusions

In summary of this response, I propose to distinguish between concerns grounded in technical issues such as
scalability, computational complexity or compositionality, and criticism of the stance of the target paper on
matters of principle, such as veridicality.

I consider the issues of compositionality and the representation of structure as technical for a simple
reason: whereas the capability to represent novel objects was traditionally the prerogative of structural models
based on the principle of compositionality, it is now demonstrably within reach of alternative approaches such

8This argument is especially popular with the neobehaviorists who wish to equate intelligence with a bundle of reflexes (Brooks,
1991).

9These have been cited and discussed in the target article, and will not be repeated here. In comparison, I could not discern
the relevance of Gregson’s only reference from neurophysiology — an fMRI study (Cohen et al., 1996) which lists cortical areas
activated in a mental rotation task — to the issues he raises elsewhere in his commentary.
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as Chorus. This capability thereby became a matter of technology, not principle. Admittedly, Chorus does
not represent structure explicitly. This, however, seems to have been a small price to pay for a provably
working scheme (Edelman and Duvdevani-Bar, 1997a), in a field where structural approaches such as that of
(Marr and Nishihara, 1978) remained a disembodied inspiration to psychologists (Biederman, 1987), never
shown to work on more than a dozen hand-labeled line drawings of stylized two-part shapes (Hummel and
Biederman, 1992). Moreover, there appears to be a way to extend Chorus to deal with structure explicitly,
as proposed in Figure 3. The viability of this proposal is, too, a technical issue, which should and will be
resolved by computational experiments; there is no point in trying to settle it by philosophical arguments.

The issue of veridicality of representation is a harder nut to crack (which should not, perhaps, be surpris-
ing, considering that it has been around since before Plato). I believe, however, that some headway is possible
even here, at least as far as the representation of shape is concerned. A full discussion of the mathematical
underpinnings of this belief, centered on the concepts of natural and unique parameterization of shapes, is
beyond the scope of the present paper. Suffice it to say here that philosophers would be well-advised to
team up with mathematicians in dealing with these issues — unless they are satisfied with the psychologists’
workaround for the problem of distal similarity, namely, the imposition of an observer bias.
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