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Abstract

Although computational considerations suggest that a
resource-limited memory system may have to trade off
capacity for generalization ability, such a trade-off has
not been demonstrated in the past. We describe a sim-
ple model of memory that exhibits this trade-off and
describe its performance in a variety of tasks.
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Introduction
Because the probability of a cognitive agent encounter-
ing precisely the same stimulus twice is infinitesimally
small, memories of past experiences are only useful for
guiding future behavior insofar as they can be general-
ized so as to apply to new variations on familiar themes.
Intuitively, it would seem that in a memory system bet-
ter generalization would have to come at the expense of
reduced capacity. Indeed, the famous mnemonist patient
studied by Luria (1968), whose memory capacity seemed
practically unlimited, was oblivious even to simple pat-
terns in the memorized items.

From the functional standpoint, this intuition can be
related to the distinction commonly made between “sim-
ple” or episodic memory (pertaining to statistically rare
but important events, such as who did what to whom),
where capacity is the key goal, and conceptual memory
(pertaining to statistically redundant patterns of events
in the environment), where generalization between “sim-
ilar” items is crucial (Merker, 2004). Because these
memory functions, along with the many others in the
human brain (Rolls, 2000), are subject to certain con-
straints on the available resources, one expects memory
systems to exhibit a trade-off between capacity and gen-
eralization.

Surprisingly little computational work has been de-
voted to testing this prediction. Does the expected
trade-off arise generically, in any resource-limited mem-
ory system? Despite important early insights into the
computational underpinnings both of simple and of con-
ceptual memory (Brindley, 1969; Marr, 1969, 1970), sub-
sequent “connectionist” memory models, such as those
of Hopfield (1982) or Kanerva (1988), did not consider
this question, in part because they had not been intended
to provide generalization capabilities. At the same time,
the more comprehensive theoretical frameworks for the

understanding of memory, such as that of Minsky (1985),
have typically been only partially implemented (Hearn,
2001). An explicit computational model designed to pro-
vide both storage and generalization has been recently
developed by Mueller and Shiffrin, but its reported eval-
uation (Mueller, 2006; Mueller & Shiffrin, 2006) seems
to be qualitative rather than quantitative.

Our goal in the present study has been to investigate
the emergence of a trade-off between capacity and gen-
eralization under conditions that are as general as pos-
sible. To that end, we chose to focus on implementing
a functional (rather than neuromorphic) computational
model of pattern storage and generalization, which ex-
tends that of Moll and Miikkulainen (1997). This allows
us to relate our results to existing methods and findings
regarding memory capacity.

The computational framework

Our model operates on vectors of positive integers. Its
building blocks are “neurons” with real-valued activa-
tion, connected via real-valued synaptic weights. Perfor-
mance is measured as a function of the resources avail-
able to the system, and of how they are allocated be-
tween the different aspects of each task.

Capacity
We measure memory capacity by assessing the model’s
ability to recognize previously encountered patterns.
Given a query pattern, the model returns the probability
of having encountered it before. The results are plotted
in the form of a receiver operating characteristic (ROC).
Capacity is then defined as the number of patterns that
the model can memorize while maintaining a given area
under the ROC curve. This metric has a natural psy-
chological interpretation: human memory is often faced
with the task of deciding whether or not a pattern has
been seen before (Koriat, Goldsmith, & Pansky, 2000).
Alternatively, capacity can be defined in terms of com-
pletion of partial patterns (Moll & Miikkulainen, 1997).

Generalization
Capturing an artificial hierarchical taxonomy. A
basic task that involves generalization is similarity esti-
mation: the memory representation of some structured
collection of objects, such as items drawn from a taxo-



nomic tree, should capture the various relative similari-
ties of these objects. We presented the model with pat-
terns representing items taken from a three-level strictly
hierarchical taxonomy (objects within sub-classes within
classes) and compared the pairwise similarities between
their memory traces to the true similarities, defined by
the shortest paths between the corresponding nodes in
the tree (Tenenbaum, Griffiths, & Kemp, 2006).

Capturing a lexical taxonomy. To obtain another
perspective on its generalization ability, we used the
model to derive a hierarchical clustering of lexical items
from a natural language text corpus (Finch & Chater,
1991). This procedure begins by enumerating the unique
words in the corpus. The model is then presented with
patterns formed by sliding a window along the text, each
pattern consisting of the list of word tags in the window.
Finally, model’s representations of words are clustered
according to their pairwise similarities (for this, it must
be possible to assess similarity between partially speci-
fied inputs).

The model

The convergence-zone episodic memory of Moll and Mi-
ikkulainen (1997), of which the present model is an ex-
tension, consists of two layers of real-valued units (the
feature map layer and the binding layer) and bidirec-
tional binary connections between the layers. Initially
all connections between the binding layer and feature
map layer are inactive and have the value of zero. A
pattern is stored in the memory in three steps: (i) those
units that represent the appropriate feature values of the
pattern are activated; (ii) a subset of m binding units are
randomly selected in the binding layer to to encode this
pattern; (iii) the weights of all the connections between
the active units in the feature maps and the active units
in the binding layer are set to 1.

To complete a partial pattern, the corresponding fea-
ture maps units are activated. The activation propa-
gates to the binding layer through all connections that
have been turned on so far. At this stage units in the
binding layer can have different activity levels. The ac-
tivity level of all the units connected to all the active
feature units is the number of the active feature units.
Other binding layer units are connected only to a sub-
set of the active feature units, and will therefore have a
lower activity level. Only those binding layer units with
the maximal activity level are retained, and the others
are turned off. The activation of the remaining binding
units is then propagated back to the feature maps. A
number of units are activated at various levels in each
feature map, and again, only the most active unit in each
feature map is retained, resulting in a complete unam-
biguous pattern.

Figure 1: The architecture of the memory model. The
feature maps layer, the binding layer, and the connec-
tions between them encode information regarding which
unique patterns have been encountered by the model.
The classificatory units layer and its connections to the
binding layer and global output unit encode the number
of times a particular pattern has been encountered. The
model in this illustration has encountered two instances
of the pattern {1, 1, 2} and one instance of {3, 3, 2}.

Handling input statistics
Our version of the model adds three new functions: han-
dling repeating input patterns, answering old/new recog-
nition queries, and maintaining and reporting the statis-
tics of the encountered patterns. In particular, when
queried with a full pattern, our model simply returns
the frequency with which this pattern has been encoun-
tered; when queried with a partial pattern, the model
returns the marginal frequency with which such partial
pattern had occurred in the input (e.g., the response to
{3, 4, ∗, 7, ∗} is the frequency of encountering a pattern
in which the first, second, and fourth feature maps have
the values of 3, 4 and 7, and the two remaining ones
are “don’t cares”). The ability to handle queries about
the statistics of encountered patterns can be useful, for
example, when dealing with patterns representing loca-
tion, food availability, and the year’s season: the present
model can directly support decision making about op-
timal foraging strategies. In addition, handling input
statistics can help the model achieve generalization, as
explained shortly.

The architecture of the model
Compared to that of Moll and Miikkulainen (1997), the
present model has two new layers (see Figure 1). The
first is the classificatory layer, each of whose units repre-
sents a different pattern; its connections to the binding
layer are binary. A classificatory unit becomes active
only when all the binding layer nodes it is connected
to are activated. The second new layer has a single
global output unit, whose connections to the classifica-
tory units are real-valued. Its output is set to the sum
of all the strengths of the connections to the currently



active classificatory units, normalized by the sum of all
the strengths of the connections to all the classificatory
units. Initially, all the connections between the binding
and classificatory units and between the classificatory
units and the global output unit are inactive.

Storing patterns
When a pattern is presented to the model to be stored,
the activity propagates from the feature map layer on-
wards. In the binding layer, only those units with maxi-
mal activity remain active. The activity than propagates
to the classificatory layer, where a unit is activated only
if all the binding units it is connected to are. Finally,
the activity reaches the global output unit which sums
the strengths of all its incoming connections.

If the output unit is not activated at this stage, the
pattern is considered novel. A random set of m binding
units and one new classificatory unit are allocated for
representing it. The global output unit is connected to
the new classificatory unit with an initial strength of 1
(Figure 2).

If, on the contrary, the global output unit is activated
by the initial feedforward sweep, the pattern is consid-
ered familiar. The strength of the connections between
the global output unit and any active classificatory units
is increased by 1. Unless the model is overloaded, there
is only one such active classificatory unit: the one al-
located when the present pattern was first encountered
(Figure 3).

Answering queries
When the query is a complete pattern, and if an identi-
cal pattern has been stored, a unique classificatory unit
will be activated and the activity of the global output
unit will be proportional to the frequency of this pattern
(out of all the patterns presented). If no such pattern
has been stored, no classificatory unit will be activated,
and the output strength will be 0 (unless the model is
overloaded, which may lead to errors).

When the query is a partial pattern, the binding nodes
that become active are the ones that participate in rep-
resenting patterns in which the specified features have
the given values. Similarly, among the classificatory
units, which respond only when all the relevant bind-
ing nodes are, only the nodes representing patterns in
which the relevant features have the given values are
activated. Summing the connections strengths of these
units to the global output unit has the effect of calcu-
lating the marginal distribution of the specified feature
values.

Old/new queries are processed by first allowing the
activity to propagate to the global output node. If it re-
mains inactive, the model responds with 0 (meaning that
the pattern has definitely not been seen before). If the
global output node is active, the response to the query
is output = 1− ((ba−m)/bt), where ba is the number of

Figure 2: (a) The model, which has stored the pattern
{1, 1, 2}, is presented with the pattern {3, 3, 2}. (b) Ac-
tivity propagates to the binding layer. (c) Because none
of the nodes have activity level of three (the number of
specified values in the input), none of them remain ac-
tive, and the classificatory nodes and global output node
remain inactive. (d) Three random binding nodes and
a new classificatory node are recruited for representing
this pattern.

active binding nodes, m is the number of binding nodes
recruited when storing a new pattern, and bt is the to-
tal number of binding nodes. The rationale behind this
response is that the more binding nodes are currently
active, the more likely it is that the m binding nodes rep-
resenting some random pattern will be activated. As the
load on the model increases, so does the number of bind-
ing layer to feature layer connections, resulting in lower
certainty when answering this type of query. This calcu-
lation can also be used for estimating when the model is
about to become overloaded and should not be used for
storing more patterns.

Resources

The present model implements more functions, but also
uses more resources (nodes and connections), than the
original convergence zone model (it needs one classifica-
tory node per unique pattern, making the capacity less
than the total number of nodes). It may be instruc-
tive to compare the model to one in which there is no
binding layer and the feature maps are connected di-
rectly to the classificatory units. Such a model would
use fewer nodes, and would not suffer from the errors
generated due to the probabilistic process of recruiting



Figure 3: (a) The model, which has previously stored the
patterns {1, 1, 2} and {3, 3, 2}, is presented with {1, 1, 2}
for the second time. (b) Activation propagates to the
binding layer. (c) Only those binding layer nodes with
an activity level of three remain active. (d) Activation
propagates to the classificatory layer and the global out-
put unit and the strength of the connection between the
active classificatory node and the global output node is
increased.

binding nodes. However, when considering the number
of connections required by these models, its disadvantage
becomes clear. In our version of the model, the number
of connections is c1 = f × b + b× c + c = b× (f + c) + c,
where f is the number of feature layer nodes, b the num-
ber of binding nodes, and c the number of classificatory
nodes. In comparison, in the model without the binding
layer, the number of connections would be c2 = f×c+c.
Therefore, when the number of binding nodes is smaller
than half of both the number of feature nodes and the
number of classificatory nodes (a reasonable constraint),
the total number of connections in our version of the
model is smaller. In effect, manipulating the size of the
binding layer allows controlling the number of connec-
tions needed by the model, at the expense of tolerating
more errors.

Comparing patterns

Algorithm 1 (see next page) is used for calculating the
similarity between two patterns. The co-occurrence
statistics needed for calculating the surprise factor in
line 9 of the algorithm are estimated by querying the
model with the corresponding partial patterns (i.e., let
n = 5, i = 1, k = 2, vj

i = 4, vk = 5; the frequencies

of the following partial patterns would then be queried:
{4, 5, ∗, ∗, ∗}, {4, ∗, ∗, ∗, ∗}, {∗, 5, ∗, ∗, ∗}.)

A straightforward neuronal implementation of this al-
gorithm can be based on maintaining multiple copies of
the model which all learn the same patterns. Each of
these can be hardwired to output one of the required
co-occurrence statistics when answering a pattern com-
parison query. As we show later, not all the possible co-
occurrence statistics are required to achieve reasonable
performance. Using a randomly selected subset of the
co-occurrence statistics is likely to provide good perfor-
mance, as long as the subset is large enough.1 This ap-
proach leads to a trade-off between the number of copies
of the model (which limits the number of co-occurrence
statistics used for similarity judgments) and the amount
of resources per copy (which limits the capacity). If using
more the statistical information results in better gener-
alization (which happens to be the case, up to a point;
see Figure 6), then this trade-off leads in turn to the
generalization vs. capacity dilemma.2
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Figure 4: Memory capacity vs. the number of binding
nodes (10 feature maps of size 50, averaged over 3 runs).
Capacity is defined as the maximum number of patterns
that can be stored while still maintaining a given area
under the ROC curve.

Simulation results

Basic performance characteristics. The model’s ca-
pacity and performance under increasing load are plotted
in Figures 4 and 5. The model is assessed on two differ-
ent tasks: differentiating between old and new patterns
and recalling the pattern frequencies. Up to a certain

1In this case line 7 of algorithm 1 needs to be changed
to only traverse some subset of all the possible feature map
values.

2One of the many issues not addressed in this work is
the effect of projecting the pattern space into a feature space
which can support better similarity judgements between pairs
of patterns. The trade-off identified above is expected to arise
regardless of the feature selection and similarity judgment
generation methods used, as long as increasing the amount
of resources at their disposal leads to better performance.



Algorithm 1 Calculating the similarity between a pair of patterns
1: Input: a pair of patterns p1 = {v1

1 , v1
2 , ...v1

n} and p2 = {v2
1 , v2

2 , ...v2
n}

2: Output: the similarity between the pair of patterns s
3: for i = 1 : n do {n is the number of feature maps}
4: for j = 1 : 2 do
5: for k = 1 : n do
6: if k 6= i then
7: for all feature map values m = 1 : M do {M is the number of feature map values}
8: Calculate the surprise factor f of encountering a pattern in which vi = vj

i and vk = m.

9: f ← Prob(vi=vj
i
∧vk=m)

Prob(vi=vj
i
)×Prob(vk=m)

10: end for
11: end if
12: end for
13: Concatenate the results of these computations to form a vector dj with the length of M × (n− 1)
14: end for
15: ci ← correlation between d1 and d2.
16: end for
17: s← mean(ci) {The correlation scores could instead be weighted by variance, as in the Mahalanobis metric.}

load, performance in both tasks remains good and the
error is almost constant. After this point, performance
degrades rapidly. Figure 6 shows generalization perfor-
mance as a function of the resources allocated to this
task.
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Figure 5: (◦), performance (the area under the ROC
curve) vs. load (stored number of patterns). The model
was given an increasing number of patterns to store,
while being tested on differentiating between stored and
unseen patterns. (+), normalized mean error in report-
ing pattern frequency vs. the load.

Trade-off between capacity and generalization.
Designing a memory system with multiple instances of
the model (as suggested earlier) while keeping the total
number of binding nodes constant necessitates a deci-
sion: how to allocate the nodes among the instances of
the model. Having a small number of copies would allow
each one to have a large binding layer and therefore high
capacity, but at the cost of being forced to use fewer co-
occurrence statistics when comparing feature map val-
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Figure 6: Generalization vs. the size of the random sub-
set of the co-occurrence statistics used for calculating
pattern similarity (4 feature maps of size 400; 100 bind-
ing nodes; averaged over 10 runs). (�), Spearman rank
correlation between true tree distances and the similar-
ities between stored patters. (×), same, for pairs con-
taining one stored and one new pattern. (◦), same, for
pairs of new patterns. See Algorithm 1 for details.

ues, leading in turn to degraded generalization perfor-
mance. Figure 7 depicts the resulting trade-off between
capacity and generalization. It combines the data used
to generate Figures 4 and 6. The abscissa values covary
with the resource trade-off: the same 300, 000 binding
nodes are divided into 300 instances on the left, and into
only 10 on the right.

Lexical taxonomy. The dendrogram in Figure 8 de-
picts the contextual similarities among the 500 most fre-
quent words in Lewis Carroll’s Alice in Wonderland, as
distilled by our model. The results are similar to those
reported by Finch and Chater (1991).
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Figure 7: Trade-off between memory capacity and gen-
eralization (see text for explanation).
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Figure 8: Hierarchical clustering of words from Alice
in Wonderland. A memory model with 20, 000 binding
nodes was presented with patterns generated by mov-
ing a sliding window of length 5 over the text. The
model was then queried for similarities between all pairs
of words. Clustering was performed according to these
similarities.

Summary
Human memory is characterized by high capacity, con-
text sensitivity, and access flexibility. Computational
models of memory need to quantify these properties and
explicate the relationships between them. The present
work explored one such relationship: between the ca-
pacity of a memory system and its ability to general-
ize among similar items. The trade-off that we had ex-
pected and were able to demonstrate in a simple, almost
generic memory model provides a useful perspective on
how memory works.

The computational model presented here lacks sophis-
tication and neurobiological realism, yet it is a step in the
right direction, because it is capable not only of storing
and recalling patterns, but also of making certain gener-
alizations about the stored items. Future work in this di-
rection would have to address the need for a well-founded
approach to statistical inference on the part of the model,
ideally thus bringing it in line with the modern Bayesian

framework for cognition (Chater, Tenenbaum, & Yuille,
2006), and also the need to test it against the body of be-
havioral and neurobiological findings concerning human
memory.

References
Brindley, G. (1969). Nerve net models of plausible size

that perform many simple learning tasks. Proc R Soc
Lond B Biol Sci., 174(35), 173-191.

Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Prob-
abilistic models of cognition: Conceptual foundations.
Trends in Cognitive Sciences, 10, 287-291.

Finch, S., & Chater, N. (1991). A hybrid approach to
the automatic learning of linguistic categories. Artif.
Intell. and Simul. Behav. Qtrly., 78, 16-24.

Hearn, R. (2001). Building grounded abstractions for
artificial intelligence programming. Msc thesis, Mas-
sachusetts Institute of Technology.

Hopfield, J. J. (1982). Neural networks and physical sys-
tems with emergent collective computational abilities.
Proc. Natl. Acad. Sci., 79, 2554-2558.

Kanerva, P. (1988). Sparse distributed memory. Cam-
bridge, MA: MIT Press.

Koriat, A., Goldsmith, M., & Pansky, A. (2000). Toward
a psychology of memory accuracy. Annual Review of
Psychology, 51, 483-539.

Luria, A. (1968). The mind of a mnemonist. Cambridge,
MA: Harvard University Press.

Marr, D. (1969). A theory of cerebellar cortex. J. Phys-
iol., 202, 437-470.

Marr, D. (1970). A theory for cerebral neocortex. Pro-
ceedings of the Royal Society of London B, 176, 161-
234.

Merker, B. (2004). Cortex, countercurrent context, and
dimensional integration of lifetime memory. Cortex,
40, 559-576.

Minsky, M. (1985). The Society of Mind. New York:
Simon and Schuster.

Moll, M., & Miikkulainen, R. (1997). Convergence-zone
episodic memory: Analysis and simulations. Neural
Networks, 10, 1017-1036.

Mueller, S. T. (2006). REM-II: A Bayesian model of
the organization of semantic and episodic memory sys-
tems. In Proc. Cognitive Neuroscience Society Meet-
ing.

Mueller, S. T., & Shiffrin, R. M. (2006). REM II: A
model of the developmental co-evolution of episodic
memory and semantic knowledge. In Proc. Intl. Con-
ference on Learning and Development (ICDL).

Rolls, E. T. (2000). Memory systems in the brain. An-
nual Review of Psychology, 51, 599-630.

Tenenbaum, J. B., Griffiths, T. L., & Kemp, C. (2006).
Theory-based Bayesian models of inductive learning
and reasoning. Trends in Cognitive Sciences, 10, 309-
318.


