Pseudocode for Edelman & Solan (2009)

The present document contains the pseudocode that did not fit into the eight pages allotted to our paper, *Machine Translation Using Automatically Inferred Construction-based Correspondence and Language Models*, in the Proceedings of the 23rd Pacific Asia Conference on Language, Information, and Computation (PACLIC-23), Hong Kong, December 2009. The paper itself can be found in S.E.'s online archive.

> Shimon Edelman and Zach Solan September 2009

- 1. Learn the source and target languages:
 - (a) Learn a grammar G^A for the source language (A).
 - (b) Estimate a structural statistical language model $SSLM^A$ for (A). Given a grammar (consisting of terminals and nonterminals) and a partial sentence (sequence of terminals $(t_1 \dots t_i)$), an SSLM assigns probabilities to the possible choices of the next terminal t_{i+1} .
 - (c) Learn a grammar G^B for the target language (B).
 - (d) Estimate a structural statistical language model $SSLM^B$ for (B).
- 2. Learn (automatically or manually) a one-to-many *translation candidate* mapping \mathcal{T} from (A) to (B). This is an association function $\mathcal{T} : a_{s_j} \to b_{s_j}$ that for each sentence s_j in a training corpus maps sets of symbols (terminals and nonterminals) $A_{s_j} \subset G^A$ evoked by s_j to the corresponding sets of symbols $B_{s_j} \subset G^B$.

Figure 1: Algorithm LearnMT (outline; the full pseudocode appears below).

- 1. Given a sentence from (A), parse it to obtain a set of symbols L^A that covers it.
- 2. Use L^A , the association function \mathcal{T} , and any other available priors P to obtain the set of translation candidates L^B .
- 3. Use L^B and $SSLM^B$ to generate a grammatical sentence in (B) that is the most probable translation of the original sentence in (A).

Figure 2: Algorithm UseMT (outline; the full pseudocode appears below).

Algorithm 1: LearnMT

Require: Two CFGs: $G^A = \{a_i\}, G^B = \{b_k\}.$ {Each grammar (set of terminals and nonterminals, along with the rules and their probabilities) is acquired by the ADIOS algorithm (Solan et al., 2005).

Require: Two parallel matched corpora A, B; |A| = |B| = n.

Ensure: Translation candidate map $\mathcal{T} : \{a_i\} \to \{b_i\}$, for $\{a_i\} \subset G^A$, $\{b_i\} \subset G^B$. {First, initialize T using a bilingual machine-readable dictionary; next, modify T iteratively using two probability ("distance") matrices, $P(a_{j_1}, a_{j_2})$ for $a_{j_{1,2}} \in G^A$ and $P(b_{k_1}, b_{k_2})$, for $b_{k_{1,2}} \in G^B$ (see text

{PASS 1 — update $\mathcal{T}(a, b)$ with parallel-corpus data (optional); update $P(a_{j_1}, a_{j_2})$ and $P(b_{k_1}, b_{k_2})$:

- for explanations) } 1: initialize \mathcal{T} from the MRD; 2: for $s_i^A \in A$ and $s_i^B \in B$; $i = 1 \dots n$ do 3: $L_i^A \Leftarrow \text{parse}(s_i^A) \{L_i^A \subset G^A \text{ such that covers}(L_i^A, s_i^A)\}$ 4: $L_i^B \Leftarrow \text{parse}(s_i^B) \{L_i^B \subset G^B \text{ such that covers}(L_i^B, s_i^B)\}$ for all $a_i \in L_i^A$ do 5: for all $b_k \in L_i^B$ do 6: update $\mathcal{T}(a_i) \to b_k$; 7: end for 8: end for 9: for all $a_{j_1} \in L_i^A$ do 10: for all $a_{j_2} \in L_i^B$ do 11: update $P(a_{j_1}, a_{j_2});$ 12: end for 13: end for 14: for all $b_{k_1} \in L_i^B$ do 15: for all $b_{k_2} \in L_i^B$ do 16: update $P(b_{k_1}, b_{k_2});$ 17: 18: end for end for 19: 20: end for {PASS 2 — update $\mathcal{T}(a, b)$ using $P(a_{j_1}, a_{j_2})$ and $P(b_{k_1}, b_{k_2})$:} 21: for $s_i^A \in A$ and $s_i^B \in B$; $i = 1 \dots n$ do $\begin{array}{l} L_i^{A} \Leftarrow \operatorname{parse}(s_i^{A}) \; \{ \operatorname{Reuse} \; L_i^{A} \; \operatorname{from} \; \operatorname{Pass} \; 1. \} \\ L_i^{B} \Leftarrow \operatorname{parse}(s_i^{B}) \; \{ \operatorname{Reuse} \; L_i^{B} \; \operatorname{from} \; \operatorname{Pass} \; 1. \} \end{array}$ 22: 23: for all $a_j \in L_i^A$ do 24: for all $b_k \in L_i^B$ do 25: update $\mathcal{T}(a_j, b_k)$ using distance spectrum relaxation, with $P(a_{j_1}, a_{j_2})$ and $P(b_{k_1}, b_{k_2})$ as the 26: corresponding "distance" matrices. end for 27: end for 28:
- 29: end for

Algorithm 2: UseMT

Require: Two CFGs: $G^A = \{a_j\}, G^B = \{b_k\}$. {Both learned by ADIOS.}

Require: T(a, b). {Estimated by Algorithm 1.}

Require: A target sentence $s^A \in \mathcal{L}(G^A)$.

Ensure: The most probable sentence $s^B \in \mathcal{L}(G^A)$, given s^A .

{Use the structured language model over G^B , SSLM^B, to generate the most probable translation of s^A , taking into account prior probabilities dictated by \mathcal{T} and possibly extra sources P(b|D), where $b \in G^B$ and D is the discourse context.}

1: $L^A \Leftarrow \operatorname{parse}(s^A)$;

{The information sources used to determine the discourse context D may include textual and extralinguistic settings of s^A .}

2: determine D from $L^{\hat{A}}$ and any other relevant information sources;

{Map the list L^A into its counterpart L^B using the translation candidate mapping \mathcal{T} :}

3: $L^B \Leftarrow \mathcal{T}(L^A);$

- 4: for all $b_j \in L^B$ do
- 5: initialize the prior attached to b_j in the SSLM^B language model;
- 6: **end for**
- 7: for all $b_i \in G^B$ do
- 8: update the prior of b_i using $P(b_i|D)$;
- 9: end for
- 10: run SSLM^B starting with the priors computed above, to generate a list S of possible translations ranked by likelihood;

{Post-process (re-rank) S using any additional criteria such as thematic fit:}

11: for all $s_m = (t_1, \dots, t_i) \in S$ do 12: $P(s_m) \leftarrow \prod_{n=1:i} P(t_n)$ 13: $C(s_m, s^A) \leftarrow \text{corresp}\left(\text{parse}\left(s_m\right), \text{parse}\left(s^A\right), \mathcal{T}\right)$ {Goodness of thematic correspondence.} 14: end for

15:
$$s^B = \arg \max_{s_m} \left(\beta P(s_m) + (1-\beta) C(s_m, s^A) \right);$$

References

Solan, Z., Horn, D., Ruppin, E., and Edelman, S. (2005). Unsupervised learning of natural languages. *Proceedings of the National Academy of Science*, 102:11629–11634.