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Abstract. Idealized models of receptive fields (RFs) can 
be used as building blocks for the creation of powerful 
distributed computation systems. The present report 
concentrates on investigating the utility of collections of 
RFs in representing three-dimensional objects under 
changing viewing conditions. The main requirement in 
this task is that the pattern of activity of RFs vary as little 
as possible when the object and the camera move relative 
to each other. I propose a method for representing ob- 
jects by RF activities, based on the observation that, in 
the case of rotation around a fixed axis, differences of 
activities of RFs that are properly situated with respect to 
that axis remain invariant. Results of computational ex- 
periments suggest that a representation scheme based on 
this algorithm for the choice of stable pairs of RFs would 
perform consistently better than a scheme involving ran- 
dom sets of RFs. The proposed scheme may be useful 
under object or camera rotation, both for ideal lamber- 
tian objects, and for real-world objects such as human 
faces. 

1 Introduction 

Many of the lower-level areas in the primate visual 
system are organized retinotopically, that is, as maps 
which preserve to a certain degree the topography of the 
retina. A unit that is a part of such a retinotopic map 
normally responds selectively to stimulation in a well- 
localized part of the visual field, referred to as its recep- 
tive field (RF). Different regions within the RF may 
contribute differently to the activity of the unit, according 
to the profile or the weighting function of the RF. The 
activity of the unit is frequently modeled by a (possibly 
nonlinear) function of the convolution of the activity 
distribution over the input area with the RF profile 1. 

Idealized models of receptive fields can be used as 
building blocks for the creation of powerful distributed 
computation systems. For  example, it has been pointed 

1 This requires that the time dimension be ignored, and the RF profile 
be assumed shift-invariant (Mallot et al. 1990) 

out recently that networks of units with gaussian RF 
profiles constitute a universal tool for approximating 
smooth functions in multidimensional spaces (Poggio 
1990; Poggio and Girosi 1990). In another example, RFs 
with a plastic profile obeying a dynamic weight and 
threshold modification rule were shown to be capable of 
carrying out unsupervised dimensionality reduction 
(Intrator 1992; Intrator and Cooper 1992). 

The present report concentrates on investigating the 
utility of collections of RFs in representing three-dimen 
sional objects. The main requirement in this task is that 
of invariance: the representation, expressed as a pattern 
of activity of RFs, should vary as little as possible when 
the object that is represented undergoes rigid transforma- 
tions in space 2. The RFs are assumed here to be of fixed 
gaussian radially symmetric or elongated profile, and 
their placement over the image of the object is assumed 
to be random. 

Representing an object by a pattern of activities of 
RFs can be considered a form of feature extraction. The 
utility of the resulting feature vector in view of the pos- 
sible transformations of the input has been considered by 
Amari, who showed that linear feature extraction by the 
computation of moments or of Fourier components com- 
mutes with the euclidean transformations of the object in 
three dimensions (Amari 1968; Amari 1978). This ap- 
proach has recently led to the formulation of nonlinear 
equations that link the three-dimensional orientation of 
a moving planar textured surface patch to moment-like 
features measured on its two-dimensional image [Amari 
and Maruyama 1987; see also Nishihara and Poggio 
(1984) and Aloimonos and Shulman (1989)]. 

Producing a new image by convolving an input with 
a set of RFs of finite spatial support results in a sub- 
sampled and blurred version of the original image. 
Nevertheless, a collection of activities of RFs in general 
carries information that allows precise location of spatial 
details in the input (Snippe and Koenderink 1992). 

2 Note that the extensive body of results on invariance in computer 
vision [see, e.g., Mundy and Zisserman (1992) for a recent survey] is not 
directly relevant to the present work, which is based on the assumption 
of representation by receptive fields, and is mainly motivated by bio- 
logical considerations 
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Computer  simulations have shown that simple models 
based on representation by RFs are capable of replicat- 
ing human-like hyperacuity-level performance in spatial 
discrimination tasks (Poggio et al. 1992) and, to some 
extent, in the higher-level task of recognizing three-di- 
mensional objects (Edelman 1992). In the latter work, 
each three-dimensional object was represented by a few 
of its views, encoded as vectors of activities of a large 
number  of RFs, randomly placed over the input image. 
New views of an object were recognized by interpolation 
among the representations of the stored views: no explicit 
reconstruction of the three-dimensional shape of the 
object was attempted. 

Recent psychophysical evidence indicates that a 
similar strategy may be employed by the human 
visual system in some recognition tasks (Biilthoff and 
Edelman 1992). In particular, the performance of human 
subjects was found to depend on the stimulus attitude. 
This dependence was more moderate when shaded im- 
ages of animal-like three-dimensional shapes, such as the 
one depicted in Fig. 1, were used as stimuli (Edelman 
1992). For  these stimuli, the recognition rate remained 
well above chance for a wide range of stimulus orienta- 
tions relative to a familiar attitude. In comparison, the 
performance of the view interpolation model that repres- 
ented individual views of the stimulus by collections of 
locally averaged intensity values dropped to chance at 
a misorientation of 60 ~ with respect to the nearest stored 
view. 

The task of a model that relies on view interpolation 
in replicating human performance can be facilitated by 
making representations of individual views invariant 
with respect to viewpoint. Toward that end, I propose to 
choose from a large set of RFs a subset that satisfies two 
constraints: 

�9 Direct  use. To be directly useful for memory-based 
recognition, simple functions defined on the chosen 
ensemble of RF activities are to vary as little as possible 
under reasonable transformations of the viewpoint. 

�9 Mul t i local i ty .  The individual RF profiles are to be of 
limited spatial extent, in line with the known functional 
architecture of the early stages of the primate visual 
system. At the same time, at the ensemble level, the RFs 
must represent nonlocal features of the input. 

The existing approaches to representation by RFs rely on 
varieties of linear features such as moments  or Fourier 
components, are designed to support the recovery of 
three-dimensional characteristics of the input, and are 
mostly applicable to isolated textured surface patches of 
simple shape (usually planar or quadric). In contrast, the 
new method proposed below is based on the observation 
that activities of RFs properly located over the image of 
an object covary when the observed object rotates 
around a fixed axis. 

2 RF representation of objects undergoing rotation 
in depth 

2.1 Lamber t ian  shadin# 

Consider the situation depicted in Fig. 2, which shows 
a rigid object undergoing arbitrary rotation in depth. 
Pick at random two patches, Pl and P2, on the object's 
surface, and let p2 and p~ be the corresponding patches 
after a small rotation around the specified axis. Assume 
that there is a distant point light source in the direction L, 
that the object's surface is lambertian, and that the mean 
albedo at Pl and P2 is, respectively, pl and P2. Then the 

ozeis o$ rotation 

L 

~tt~inats 
! 

Fig. 2. Two patches, Pl and P2, with normals nl and n2 on the surface 
of a rigid object undergoing a rotation around a fixed axis. The albedo 
coefficients at the two patches are p ~ and p 2. Following a finite rotation 
step, the patches are at p~ and p~ 
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Fig. 1. Left An image of a three-dimensional 
object (from Edelman 1992); right representing 
the object shown at the left by a set of activities 
of 150 receptive fields (the image of the object 
superimposed on the map of receptive fields 
has been subjected to edge detection for clarity 
of presentation 



intensi t ies  at  the two patches  before ro t a t i on  are  

11 = L ' ( p l n : )  (1) 

I2 ~- L ' (p2n2)  (2) 

where  nl  and  II 2 are  the surface no rma l s  at  p:  and  PE- 
Fo l lowing  the ro ta t ion ,  the intensi t ies  are  

1'1 = L'(p111'~) (3) 

I~ = L ' (p2n~)  (4) 

where I have used the a s sumpt ion  of  a d i s tan t  l ight 
source to equate  L '  with L. Tak ing  the difference be tween 
intensi t ies  of  the two patches,  one ob ta ins  

A I  = 12 -- 11 

= ILl IpEn2 - p l n i  [cos 0 (5) 

A I ' =  I'2 -- I'~ 

= ILl IpEn~ - pln '~lcos 0' (6) 

where  0 (0') is the angle  between L and  p 2 n 2 -  pin1 
before (after) the ro ta t ion .  Because the object  was as- 
sumed rigid, we have 

IAn[ = Ip2n2 --  P ln l l - - -  IAn'l = 1P211~ - p ln ' l l  (7) 

This  means  tha t  the magn i tude  of  the vector  p2n2 - P111~ 
tha t  expresses the difference of  o r i en ta t ion  between 
pa tches  p l  and  P2 is invar ian t  under  the  ro ta t ion .  Thus,  if 
the quan t i t y  A I  changes  fol lowing ro t a t i on  ( that  is, if 
AI  4= AI ') ,  this could  be only  due to a change  in the 
orientation of the vec tor  p2n2 - -  pin1 with  respect  to the 
d i rec t ion  of  the i l lumina t ion  L. 

In  the special  case when the vector  P2112- p~n~ is 
para l le l  to the axis of  ro ta t ion ,  the angle  0 will no t  
change,  and,  consequent ly ,  the difference in in tensi ty  
between the two patches ,  AI,  will r emain  invar ian t  under  
ro ta t ion .  Cons ide r  now a set of local ly  averaged  measure -  
ments  of  in tensi ty  such as the one p rov ided  by  the set of 
recept ive fields in Fig. 1. To  ob ta in  an  invar ian t  repres-  
en ta t ion  of  an object  by  a subset  of those  measurements ,  
one should  p ick  pairs  of  R F s  for which the difference in 
act ivi ty  is s table  over  small  ro t a t ions  of  the object .  F o r  
any such pa i r  of  RFs ,  and  for a fixed axis of ro ta t ion ,  A I  
will then remain  s table  3. A snapsho t  of  activit ies of  the 
chosen set of  R F  pairs  can be used to represent  the object.  
F o r  a different object ,  ano the r  set of  R F  pairs  will have to 
be picked.  

To  get  a clearer  idea  of  the cond i t ions  for the  invar i -  
ance of AI  for two RFs ,  let us recall  Euler ' s  t heorem 
s ta t ing tha t  in a r igid ro t a t ion  of  a th ree -d imens iona l  
object  in space,  all po in ts  move  a r o u n d  a c o m m o n  fixed 

d 
3 This can be expressed as -AI  = 0, bringing to mind the definition of 

dt , 4  

optic flow in terms of the intensity gradient: UVI = 0 (Poggio et al. 
dt 

1989). If the gradient of ! can be approximated from a number of 
measurements of AI in a given neighborhood, the computational rela- 
tionship between the issues of representation by RFs and the estimation 
of optic flow would be worth further exploration 
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axis*. The  no rma l s  to a surface pa tch  before and  after 
ro t a t ion  a r o u n d  a unit  vec tor  a, t h rough  an  angle  a, are  
therefore  re la ted  by  the Rodr igues  fo rmula  (e.g., 
K a n a t a n i  1990, p. 204). F o r  clari ty,  and  wi thou t  loss of  
general i ty ,  the a lbedos  Pl,2 are omi t t ed  f rom the expres-  
s ions below: 

n'l = nl  cos :t + (a x n l ) s in  ~ + (1 - c o s , ) ( a - n : ) a  (8) 

n~ = n2 cos ct + (a x n2) sin :t + (1 --  cos z)(a"  n2)a (9) 

By sub t rac t ing  (8) from (9), one ob ta ins  the  fol lowing 
express ion re la t ing the difference between the no rma l s  
before and  after ro ta t ion:  

An' = Ancos  ~ + (a x An)sin ~ 

+ (1 - cosc0(a" An)a (10) 

F r o m  (10) it is obvious  tha t  the ro t a t ion  leaves the 
o r i en ta t ion  of  An unchanged  if a x An = 0 ( that  is, if the 
difference between the no rma l s  is para l le l  to the axis of  
ro ta t ion) ,  or, t r ivial ly,  if An = 0 ( that  is, if the two nor -  
mals  coincide) 5. 

Recall  now tha t  we are  real ly in teres ted in the invar i -  
ance of  the p roduc t  A I  = L .  An, and  no t  of  An on its own. 
This  br ings  up ano the r  special  case of interest :  when the 
d i rec t ion  of  i l lumina t ion  coincides  with the axis of  ro ta -  
t ion (L = a), we have 

AI '  = L" An' 

= L" Ancos  c~ + L ' ( L  • An) sin ct 

+ L "(1 --  cos~ ) (L"  An)L 

= L - A n  

= A I  (11) 

This s i tua t ion  occurs,  e.g., when the i l l umina t ion  is by  
a un i fo rmly  lit hemispher ica l  sky, and  the object  ro ta tes  
a r o u n d  the vert ical  axis. 

2.2 Torrance -Sparrow shading 

If  the l amber t i an  a p p r o x i m a t i o n  is not  val id  (e.g., if 
the reflectance depends  on the emergent  angle,  and  not  

4 According to Chasles' theorem, any rigid motion in space can be 
decomposed into a combination of rotation around an axis and a trans- 
lation along the same axis [see, e.g., Koenderink and van Doorn 
(1986)]. Here I assume that the translation component vanishes. This 
would happen, e.g., if the object is actively tracked. For a discussion of 
the advantages of tracking and other active modes of visual processing, 
see Aloimonos et al. (1988) 
5 As pointed out by a reviewer, the quantity An carries in it information 
related to the gaussian curvature of the surface. However, this informa- 
tion can only be extracted (1) if An is measured for a sufficient number of 
points around the locus of interest and (2) if inferences about each An 
can be made based on the measurement of the corresponding AI. As we 
have seen, the latter condition is only satisfied in special cases. Thus, 
there seems to be no straightforward way in which the proposed 
method can be extended to deal with the recovery of representations 
based on the gaussian map of the surface 
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only on the incident angle, at the surface), the condi- 
tions under which representations by activities of RFs 
are invariant become more restrictive. Consider the 
Torrance-Sparrow reflectance model, which includes, 
in addition to the diffuse or lambertian component,  a 
specular component:  

I = Idiff + lspec 

DGF 
= cl (L" n) + C 2 (V ~ n) (12) 

where D is the distribution function of the directions of 
microfacets on the surface, G is the amount  by which 
facets shadow and mask each other, and F is the Fresnel 
reflection formula that gives the fraction of light incident 
on a facet that is reflected, as opposed to being absorbed 
(Torrance and Sparrow 1966). The coefficients Cl and c 2 
express the relative contributions of diffuse and specular 
reflection. The denominator  of the specular term in (12), 
which is equal to the angle of slant of the surface with 
respect to the viewing direction V, arises because the 
observer sees more of the surface area when the surface is 
slanted. 

The facet distribution function D is a negative ex- 
ponential in the angle between the surface normal and 
the so-called direction of maximum highlights 
H = (L + V)/I(L + V)[: 

D = e -sOl'n) (13) 

where s is a measure of shininess of the surface 6. 
Because I now has two additive components, one of 

which depends exponentially on the product of n with H, 
we can use neither the difference nor the ratio of Is at two 
patches to form an entity that would be invariant under 
object rotation. However, we can still look for pairs of 
patches with similar orientations (n~ = n 2 )  , which will 
yield AI equal to 0, and be assured that for such pairs AI' 
will also vanish. 

Alternatively, if the specular component  dominates 
the diffuse one in Eq. 12 (e.g., if Cl ~ c2), then the differ- 
ence of the logarithms of Is at two patches will be 

= log [e -stn'"~-n"2)-] 

= ( -  s l o g e ) ( H .  An) (14) 

where I have assumed that G, and F at the two patches, 
are the same, and that [ l o g ( V - n 0 - 1 0 g ( V ' n 2 ) l , ~  
I ( -  s log e)(H" An)l 7. In this case, the log intensity ratio 
behaves similarly to the AI of(11), and a sufficient condi- 
tion for invariance across object rotation is again that An 
be parallel to the axis of rotation. 

3 Representation of objects under fixed-aim camera 
rotation 

Consider now an object at rest with respect to the 
illuminant, circumnavigated by a camera whose aim 
remains fixed at some point on the object. Obviously, if 
the object's surface is lambertian, the representation by 
RF activities will remain invariant (as long as the RFs 
continue to see the same patches of surface in the con- 
secutive frames). Unlike in object rotation, in this case it 
does not even matter  what is the relative orientation of 
the surface normals and the axis of rotation: the entire 
pattern of RF activities will be fixed. 

Under Torrance-Sparrow shading, the same two 
cases as in object rotation (Sect. 2.2) can be discerned. If 
the diffuse component  is nonnegligible, we will have to 
pick patches with An = 0, for which the change in the 
vector H = k (L + V), caused by rotation of the camera 
direction V, will have no effect on AI. If the specular 
component  predominates, then the log intensity ratios 
before and after camera rotation will be 

R (I) = log(11/12) = - -  sloge(H" An) 

R(I ) '  = log(I'1/I'2) = - s l o g e ( H " A n )  (15) 

Note that under camera rotation it is H that changes 
(because of the change in the viewer direction V), and An 
stays constant. Thus, under camera rotation the log 
intensity ratio will not be invariant (unless it is equal to 
1), and will change along with the relative orientation of 
the camera and the object. 

4 Simulations 

To assess the viability of RF-based representation, I have 
conducted four computational experiments that involved 
synthetically rendered images of computer-generated 
monkey-like and dog-like objects, as well as real 
human face images from a database taken under control- 
led orientation, illumination, and expression conditions 
(Moses Y, Edelman S, Ullman S, 1993). In all cases, the 
8-bit gray-scale images were of size 512 • 352 pixels. 

6 In the original Torrance-Sparrow model, the exponent in (13) was 
squared. It has been observed, however, that the exact form of the 
dependence of D on H" n is not critical, as long as it satisfies some basic 
requirements, such as having a maximum at H �9 n = 0, and a fast falloff 
rate for H 'n  > 0 (Blinn 1988) 

7 It should be noted that the assumptions made in the preceding 
analysis are only of interest insofar as the proposed representation 
scheme withstands an empirical test on real-world images. If such a test 
succeeds, we will have learned something about the possible form of the 
reflectance function of the surfaces involved in the test 



4.1 Experiment 1: rotating synthetic objects, 
static camera 

The animal shapes whose images were used in the first 
experiment were created and rendered on a Silicon 
Graphics 4D35 /TG workstation. The material reflec- 
tance model of the object surface included ambient and 
diffuse components of equal strength, and no specular 
component (thus, the lambertian model applies in this 
case). There was a single infinitely distant point of light, 
situated behind the simulated camera. To create the 
sequence of test images (Fig. 3), the objects were rotated 
around the vertical axis by increments of 15 ~ . 

The first two frames in a sequence were always used 
to identify the most stable pair of RFs (that is, the pair for 
which the difference dI changed the least from the first 
frame to the second one). The set of RFs from which the 
pairs were picked was chosen at random at the beginning 
of each trial. In most of the results reported below, the 
confidence limits for the various measurements were pro- 
vided by computing the standard errors of the dependent 
variables over ten trials, in each of which the number of 
RFs was constant, but their placing on the image varied. 

The utility of the most stable pair of RFs chosen as an 
invariant feature of the object was then assessed by 
computing several indices of invariance over the entire 
sequence of frames. The degree of invariance of A I for the 
most stable pair was compared with a similarly defined 
measure computed over ten randomly picked pairs of 
RFs. The measure of invariance (or, rather, of variability) 
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I used was the standard deviation of AI, denoted below 
by STD. Plots of STD vs the number of randomly placed 
RFs, and vs the size of each RF, appear in Fig. 4. From 
these plots, it appears that, for size of RF ~ 2 pixels, 
using pairs of RFs chosen according to the proposed 
scheme has a clear advantage over using random pairs of 
RFs to represent the rotating object. 

4.2 Experiment 2: static human faces, rotating camera 

Experiment 2 involved images of three persons, taken 
from a sequence of viewpoints, under a constant frontal 
illumination. The four successive views were obtained by 
rotating the camera with its aim fixed at the center of the 
person's head. The rotation step was equal to 17 ~ so that 
the total rotation in depth between the first and the last 
view in the sequence was 51 ~ (see Fig. 5; images produced 
under even larger rotations, available in the database, 
were not used because at large rotations self-occlusion 
limits the applicability of the method). 

The results of the experiment with face image se- 
quences (see Fig. 6) suggest that a representation scheme 
based on choosing stable pairs of RFs would perform 
consistently better than a scheme involving random sets 
of RFs. Together with the results of the previous experi- 
ment, this indicates that the proposed scheme may be 
useful under object or camera rotation, both for ideal 
lambertian objects, and for real-world objects such as 
human faces. 

Fig. 3. A sequence of images of one of the two animal-like 
shapes used in experiment 1. The images were of size 
512 x 352 pixels and are shown here reduced by a factor of 
two. The successive images were obtained by rotating the 
simulated camera in 15 ~ steps around the vertical axis. In 
addition, the objects were allowed to undergo limited de- 
formation, such as changes in the angles of the limbs and in 
the parameters that determined the shape of the body [see 
Edelman (1992) for details] 
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Fig. 4. Experiment 1: behavior of the 
s tandard deviation STD of AI, for ran- 
dom choices of RF pairs (upper curves) 
and for pairs that yield min imum 
change of AI between the first and the 
second frames in a sequence. The plots 
represent means  computed over 10 
runs per condition, using the monkey 
image sequence. The set of RFs was 
chosen randomly in the beginning of 
each run. STD is plotted vs the number  
of RFs, and vs the size of each RF 
(defined as the s tandard deviation of its 
gaussian profile, measured in pixels). 
Error bars denote s tandard error of the 
mean  over the 10 runs 
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Fig. 5. A sequence of face images of one of the three 
persons used in experiment 2. The images were of size 
512 x 352 pixels and are shown here reduced by a factor of 
two. All images in this figure were manually warped so that 
the locations of the eyes and the corners of the mouth  
remained the same as in the first image [an automatic 
scheme for such normalization is described in Edelman 
et al. (1992)]. 
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Fig. 6. Experiment 2: behavior of the 
standard deviation S T D  of A I  for ran- 
dom choices of RF pairs (upper  curves)  
and for pairs that yield min imum change 
of A I  between the first and the second 
frames in a sequence. S T D  is plotted vs 
warp, a binary variable indicating 
whether the face images were normalized 
prior to processing, using the procedure 
explained in Fig. 5. The plots represent 
means  computed over 10 runs per condi- 
tion, one of the three available image 
sequences. The set of RFs was chosen 
randomly in the beginning of each run. 
Two sizes of RFs were tested, as in- 
dicated in the legends. Error bars denote 
s tandard error of the mean over the l0 
runs 

4.3 Experiment 3. stable RF pairs as a signature of the 
object 

Objects that have patches of similar inclination with 
respect to the illuminant direction in the same retinal 
locations will be indistinguishable under representation 
by stable RF pairs. This scheme, therefore, should not be 
used on its own for object classes prone to such con- 
fusion. The next experiment was designed to estimate the 
degree to which the set of  locations of the stable RF pairs 
could serve as a distinctive feature or a signature of 
a given face. The experiment consisted of ten trials, each 
of which started with the generation of a random set of  30 
RFs (Fig. 7). Two most  stable RF pairs were then picked 
for each of the three face image sequences. The six result- 
ing pairs turned out to be distinct in eight of ten trials. In 
the other two trials, the same RF came out as the first 
choice for one individual, and as the second choice for 
another individual. Thus, even for objects such as faces, 
whose three-dimensional structure is fairly similar across 
individuals, the location of the stable RF pairs has the 
potential of  serving as a distinctive feature in recognition. 

4.4 Experiment 4." relative frequency of appearance of 
stable and unstable RF  pairs 

The last experiment addressed the question of the place 
of the STD characteristic of a stable pair of RFs in the 
distribution of the STD values for all pairs of RFs in 
a given population. Histograms of STD of all pairs of 

Fig. 7. An example of a stable pair of RFs found by processing a se- 
quence of face images. The S T D  of this pair was 3.1, compared with 24.8 
for an average of 10 randomly picked pairs of RFs for the same 
sequence of images. The total number  of RFs in this example was 30. 
The RFs were circularly symmetric, gaussian, with a uniformly distrib- 
uted between 0.5 and 1.5 pixels 
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Fig. 9. A sketch of the vectors relevant to the determination of relative 
intensities at points Pl and P2. The invariance of the difference of 
intensities with respect to rotation around an axis a depends on the 
orientation of An, not  d, relative to a 
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Fig. 8. Top Histogram of the variation of the difference between RF 
activities (STD), for all possible RF pairs. The histogram is averaged 
over 100 runs; each run involved a newly created set of 60 RFs. The 
STD values (also averaged over the 100 runs) for the stable pair of RFs 
and for a randomly chosen pair are shown by vertical dashed lines (the 
left and the right lines, respectively). Even though on the average the 
value of STD for the best RF pair is considerable, it is still much  smaller 
than the mean STD for a random pair of RFs. In this experiment, the 
objects, which underwent rotation in depth, were animal-like shapes. 
Bottom A similar histogram, computed for the face images (camera 
rotation) 

RFs for a population of size 60 appear in Fig. 8 for 
animal-like objects under object rotation (top) and for 
faces under camera rotation (bottom). The values of STD 
for a stable RF pair and for a randomly chosen pair are 
indicated by vertical lines in the histograms. This figure 
shows that for a sizable proportion of RF pairs the STD 
variation is significantly smaller than that of a randomly 
picked pair, and that stable pairs can be reliably identi- 
fied by the proposed method. 

5 Discussion 

tions invariant with respect to any axis of rotation, as 
long as it is fixed in space, and the coverage of the input 
by the ensemble of RFs is dense enough. Restricting the 
space of allowed rotations would, however, increase the 
likelihood of a successful choice of RFs. This may be 
possible, if one considers ecological constraints on the 
transformations likely to be encountered in normal situ- 
ations. Notably, at first glance, it appears that most 
rotations in depth are around the vertical axis 8, some are 
around the horizontal axis, and rather few are around 
oblique axes. It would be interesting to verify the validity 
of this assumption by computing appropriate statistics 
of natural scene sequences seen by an active observer 
subject to kinematic constraints imposed by primate 
anatomy. 

The assumption of the predominance of rotations 
around, say, the vertical axis does not, unfortunately, 
help much in deciding which pairs of RFs should be 
wired together in advance of learning to represent ob- 
jects. One may reason that the predominance of rotations 
around the vertical axis calls for connecting preferentially 
to each other those RFs that are situated along the 
retinal vertical meridians. This suggestion, however, is 
wrong, because what matters in determining whether AI 
for a pair of RFs will be invariant is the orientation of An, 
and not of d = (PlPz) alone, with respect to the illumina- 
tion vector L (see Fig. 9). Nevertheless, psychophysical 
evidence on lateral masking/facilitation indicates that 
receptive fields situated along vertical and horizontal 
meridians may interact more strongly than those located 
in random locations relative to each other (Polat and 
Sagi 1992). 

A possible computational rationale for this pattern of 
connections may have to do with the issue of nonuniform 
foreshortening of different patches of nonplanar objects 
under rotation in depth. Recall that a basic condition for 
the use of representation by RFs is that each RF be 
situated over roughly the same surface patch in the 
successive images of a rotating object. This problem, 

5.1 Ecological and computational considerations 

The proposed method of picking stable pairs of RFs is 
applicable, in principle, to the construction of representa- 

8 For the purpose of the present analysis, any translation of the 
observer with respect to a static scene - a very common  natural  mot ion 
- has the same effect as rotation in depth 
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which is an instance of  the correspondence problem for 
mot ion  (Ullman 1979), can be partially alleviated by 
tracking a point  on the object's surface, say, one of  the 
two RFs  in a pair. In  that  case, however,  the other RF  
may  still get out  of  range of its corresponding patch, 
unless the line connect ing the two patches (the vector d 
in Fig. 9) is parallel to the axis of rotation. Requiring 
that  the two patches be foreshortened by similar 
amounts  leads to the same constraint  on the direction 
of d. 

5.2 Biological considerations 

In the above discussion, I have assumed that the indi- 
vidual RFs are excitatory and that pairwise differences 
between R F  activities, realized via "lateral" connections,  
serve as a basis for the choice of  a stable representation. 
In mammals ,  already at the level of  the input to the 
pr imary visual cortex, the RFs  possess an internal struc- 
ture in which excitatory and inhibitory regions can be 
discerned (e.g., Hubel  and Wiesel 1959). Such RFs can 
support  the computa t ions  necessary for implementing 
the proposed  representat ion scheme, provided that  their 
excitatory and inhibi tory subfields are spatially distinct, 
at least to some degree 9. Indeed, in the so-called circu- 
larly symmetr ic  RFs  the center and the surround are 
frequently displaced with respect to each other  (Kuffler 
1953; Dawis et al. 1984). In the simple cells in striate 
cortex [e.g., in the bimodal  cells described by Bishop 
et al. (1973)] as well as in the complex cells (Spitzer and 
Hochstein 1988) a spatial asymmetry  between excitatory 
and inhibi tory componen t s  can also be observed ~~ It 
should be noted that  other  computa t iona l  roles of oppo-  
nent RFs require that  the excitatory and the inhibitory 
regions coincide rather  than be apart  from each other  
[e.g., as in the lightness computa t ion  model  of  (Hurlbert  
and Poggio  1988)]. Thus, the observed values of  spatial 
asymmetry  in opponen t  RFs may  be the result of a com- 
promise between conflicting requirements such as those 
of representat ional  invariance with respect to rotat ion 
and of  the ability to extract lightness. 

9 Temporal aspects of biological RFs may also be relevant to the 
present analysis, as suggested in Sect. 2.1. The investigation of those is 
left for future work 
1 o The existence of RFs with spatially distinct excitatory and inhibitory 
regions has been invoked by Harris and Gibson (1968) as an explana- 
tion of the McCollough effect (a contingency aftereffect, in which 
adaptation to a vertical red grating shown in alternation with a hori- 
zontal green grating causes similarly oriented black and white gratings 
to be perceived in colors complementary to the adapted ones; see 
McCollough 1965). In this connection, Harris (1980, p. 125) comments 
that, while purely local adaptation cannot account fully for the McCol- 
lough effect, one need not postulate the involvement of nonlocal mech- 
anisms as specialized as edge detectors: simple "dipoles" or differences 
of RFs, of an unspecified main purpose, would do. The proposed 
method for object representation hints at a possible computational 
reason for the existence of such dipoles in the visual system 

5.3 Utility of the method 

Even a partially invariant representation of three-dimen- 
sional objects could be of a considerable use to a visual 
system, especially if the latter relies on multiple stored 
views in the process of recognition. Systems based on 
multiple-view interpolation (e.g., Poggio  and Edelman 
1990) perform poorly  on radically unfamiliar views of  
three-dimensional objects. As ment ioned in the intro- 
duction, for some classes of  stimuli a similarly poor  
performance is exhibited by human  subjects (Biilthoff 
and Edelman 1992). In other  cases humans  successfully 
generalize recognition across large changes in object 
orientation relative to a single familiar view, while a 
view-interpolation model performs at a chance level for 
large misorientations (Edelman 1992). In these cases, 
endowing the representation of each familiar view of an 
object with partial invariance with respect to viewpoint 
could help the computa t ional  model  approach  human  
performance. 

6 Conclusion 

I have outlined a method that, given a three-dimensional 
object allowed to rotate in space, constructs its repres- 
entat ion in terms of activit ies of  a small number  of 
receptive fields. This representation remains relatively 
stable over a range of object orientations and may be 
useful as an input to a memory-based  recognition 
scheme, such as the one recently shown to replicate 
certain features of  human  performance in three-dimen- 
sional object recognition and classification tasks 
(Bfilthoff and Edelman 1992; Edelman 1992). The pro- 
posed representation method  may  be extended computa-  
tionally, to take advantage of  the effects of  tracking and 
size normalization, and may  serve as a basis for three- 
dimensional object representation in computer  vision 
systems. Future work will also consider a psychophysical  
investigation of this method and the possible inter- 
pretat ion it offers for recent neurobiological (Katz and 
Callaway 1992; Malach et al. 1992) and psychophysical  
(Polat  and Sagi 1992) findings on lateral connections in 
the pr imary visual cortex of  primates. 
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