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Line tracing, which has been conjectured to play an important role in the visual perception 
of connectivity relations, is examined in this paper from the computational point of view. The 
problem is formulated in terms of pixel connectivity, with thin black lines on a white 
background serving as input. The complexity of line tracing is discussed relative to several 
computation models. Two algorithms for a MIMD pyramid with running time better than 
linear in the line length are presented and analyzed. Their performance is discussed in view of 
the available psychophysical results, and compared to that of several previously published 
algorithms. �9 1987 Academic Press, Inc. 

1. INTRODUCTION 

Perception of image connectivity relations by the human visual system is both fast 
and accurate for most cases of everyday life. On the other hand, when given 
convoluted or dense line drawings, the connectivity perception mechanism performs 
poorly. This paper suggests a computational model of human performance in line 
connectivity related problems, by formulating and analyzing two distributed line 
tracing algorithms. The new algorithms run on a MIMD pyramid. For thin 
line connectivity computations they are faster than the previously published pyra- 
mid algorithms. More important, their performance agrees with the intuitive proper- 
ties of human perception, as well as with the available psychophysical data. 

Consider a binary image containing a number of curves, one of which is 
distinguished (e.g., one of its points is marked). The task is to mark all the points 
(pixels) of the distinguished curve. One way to do it is by "coloring" the curve: start 
from the given pixel and spread the paint recursively to all the neighboring pixels 
that are not yet colored. When this process terminates, all the pixels connected to 
the start point will have been colored. 

Line tracing can be applied to various real-fife tasks. For example, in character 
recognition making explicit the connectivity information by coloring may help the 
higher level recognition process to discern between adjacent letters and to extract 
the salient features of the individual letters (e.g., the presence of self-crossings and 
their position along the contour). Another example is the visual inspection of 
printed circuit (PC) boards or integrated circuits (ICs). A violation of minimum fine 
spacing rules in an IC layout may be judged insignificant if both offending lines are 
found to be connected to the same bonding pad. 

Coloring (activation spread in a neural network) may be one of the methods 
employed by biological visual systems in the perception process. Ullman [1] includes 
line tracing by coloring in the proposed small set of visual routines involved in the 
perception of spatial relations such as connectivity. These routines operate on the 
base representation of the visual input. The base representations, corresponding to 
Marr 's  primal sketch [2], are computed in a fast, highly parallel, bottom-up fashion. 
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The visual routines are then applied in order to extract the necessary task-specific 
information. 

Recent psychophysical experiments by Jolicoeur et al. [3] seem to confirm the 
relevance of line coloring to connectivity perception. The subjects in these experi- 
ments were presented with a series of images, each containing several curves and 
two marks. Their task was to tell whether the marks lay on the same connected 
curve. These were the main features that characterized the measured human 
performance: 

�9 The response time grew monotonically with the length of the line between the 
marks. The relevant distance involved was the length of the curve and not the 
angular separation between the marks in the visual field, which has been kept 
constant. This suggests that some kind of line tracing mechanism is responsible for 
the line connectivity perception. 

�9 The relatively small absolute values of the response time rule out the 
possibility that the problem is solved by an activation spread in a single retinotopic 
layer of neurons [4]. 

The acceptability of line tracing as a candidate visual routine strongly depends on 
its computational properties. The objective of this paper is to show that it can be 
done (i) rapidly (in number of steps smaller than the number of pixels along the 
line) and (ii) assuming a hardware model that parallels to a reasonable extent what 
one may find in the human brain. The next section formulates the line connectivity 
problem and reviews its known computational properties. Sections 3 and 4 then 
present the new algorithms and the simulation results, respectively. Finally, Section 
5 summarizes the work and proposes directions for future research. 

2. THE LINE CONNECTIVITY PROBLEM 

The following assumptions hold for the rest of the paper: 

1. The input to all algorithms is represented as a square array of N • N pixels, 
which implies a rectangular tessellation of the input image. 

2. A pixel may be white, black, colored_white and coloredblack. The white 
and coloredwhite pixels constitute the background. 

3. The figures in the image are 4-connected (i.e., each black pixel has 4 
immediate neighbors, in the directions S, N, E, and W). The pixels which are 
situated on the array borders consider their missing neighbors to be white. 

4. The input is restricted to single-pixel-wide fines, i.e., at no place in the image 
there are four black or coloredblack pixels with a common corner. 

The line connectivity problem is now stated and analyzed in terms of the curve 
tracing approach described above. 

PROBLEM. Given an image consisting of one or more lines and a mark on one of 
them, color the marked line. 

Sequential Complexity 

The first hardware model considered is the yon Neumann machine. Provided that 
there is enough room in memory for the entire input image, the complexity of a 
sequential algorithm may be defined as the number of memory accesses it requires. 
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An example of a line whose length is comparable to the total number of image pixe]s. 
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Consider the pattern of Fig. 1, for which the line length is comparable to the total 
number of pixels in the flame. Suppose there exists a correct algorithm Z that solves 
the problem for such an image and choose any point X inside the array. Algorithm 
Z cannot consistently (i.e., for all inputs) ignore the color of X and terminate 
without accessing it, because the "snake" that is being colored may include X as an 
intermediate point (i.e., the inspection of X is crucial for a correct answer to be 
given). For example, A and B in Fig. 1 are connected if and only if the point X is 
black. Since this argument applies to O(L) points of the array, it follows that any 
correct algorithm must examine O(L) points, where L - N 2. Sequential algorithms 
will therefore have running time which is linear in the line length. 

Parallel Complexity 

A good representative parallel (shared memory) architecture is the PRAM [5], in 
which a number of processors work synchronously and communicate via a common 
random access memory. The fastest parallel connectivity algorithm in the literature 
(due to Shiloach and Vishkin [6]) uses a version of PRAM in which simultaneous 
reading from the same location is allowed, as well as simultaneous writing. In case 
of a write conflict only one of the processors actually completes its write operation. 
The algorithm of Shiloach and Vishkin solves the connectivity problem for an 
undirected graph G = (V, E) in O(log n) time (here and below all logarithms are to 
the base 2), using 2m + n processors, where n = IV[ and m = [El. The line 
connectivity problem belongs therefore to the parallel complexity class NC [7]: its 
complexity is poly-log (a polynomial in the logarithm of the problem size), for a 
feasible (i.e., polynomial) number of processors. 

Distributed Complexity 

Within the distributed paradigm, the computation is performed by multiple 
concurrent processes, which may carry out private internal operations or communi- 
cate with other processes via message transfer (using communication channels) [4]. 
The number of the message-passing steps is used as the time complexity measure. 

The properties of the distributed computation model seem plausible when com- 
pared to these of the biological visual system [22]. For a coloring-like visual task a 
processor may be put into a rough equivalence with a patch of a cellular membrane, 
or with a single neuron, or with a group of neurons acting in a correlated manner. In 
all these cases a useful insight into the manner by which the computation may be 
implemented emerges from the analogy. The computation results depend on the 
interprocess communications and topology no less than on the local intraprocess 
events. 
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Since the processor network topology determines to a large extent the perfor- 
mance of a distributed algorithm, it must be carefully matched to the problem at 
hand. To color a line in less than linear time, the network should be more compact 
than the rectangular planar array which represents the input image, whose diameter 
is 2f~-p, where Np = N 2 is the number of image pixels. 

Various architectures whose diameter is logarithmic in Np have been investigated 
lately, with the pyramid being the most widely used in image processing [8, 9, 18, 
19, 21]. The configuration adopted here is the quad T-pyramid of Tanimoto [21], 
with a processor at each p-node and 5 communication channels per processor. The 
base layer of the pyramid corresponds to the entire image and has one processor per 
input pixel. A base processor has communication links to each of its four immediate 
neighbors and to its father in the second layer. In this manner, a pyramid based on 
a N X N array has log N layers and a total number of -4(N2 - 1) + 1 processors. 3 

The pyramidal network structure permits coloring an M x M square region of 
the input in O(log M) time. Previously published algorithms used this feature to 
achieve fast solutions for certain connectivity-related problems [19, 23]. Algorithm 
Pyramid-Color (designed for a SIMD pyramid) by Tanimoto "can color a relatively 
convex blob in O(log D) steps.. ,  where D is the diameter of the blob in pixels" [19]. 
For thin lines Pyramid-Color takes time proportional to the line length, since the 
size of the chunk colored at any step is determined by an AND rule (it is permitted 
to color a p-node only if all of its descendants are l's). 

The solutions to the line connectivity problem offered by the existing algorithms 
fall short of the main objective of this paper, namely, the achievement of anthropo- 
morphic performance through the use of a biologically plausible architecture. Such 
an architecture is available in the form of a MIMD pyramid. New algorithms, 
however, must be designed to make the most of it. The key to a better utilization 
of the pyramid architecture for solving the line connectivity problem lies in 
improving the coloring decision rule of Tanimoto's algorithms. This is the approach 
taken by the coloring algorithms of the next section. 

3. THE NEW COLORING ALGORITHMS 

In order to decide whether coloring a given region would affect the original image 
connectivity, a special "safety" test is incorporated into the algorithm. The safety 
test uses a simple, local, connectivity-related image characteristic--its Euler number. 
The Euler number of a two-dimensional figure with C connected components and H 
holes (white regions contained within black ones) is defined as 

N = C - H. (1) 

For a discrete binary image, it is possible to compute the Euler number N using 
information local to each pixel--the number of its black neighbors [10]. If the 
binary image consists of single-pixel-wide lines, it may be considered the pictorial 
representation of a planar graph. Its Euler number is then easily computed, given 
the number of edges meeting at each vertex of the graph. 

The coloring safety test checks that in the given region the Euler number N is 
equal to 1. If in addition to that the number of holes (closed loops) H in the region 
is 0, then the number of connected components is, according to (1), also equal to 1, 
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and the region may be safely colored as a whole. The properties of the safety test are 
as follows: 

�9 It is local in nature, staying conceptually close to the distributed model of 
computation, where any action at a distance is compiled into a series of local 
operations. 

�9 It makes good use of the pyramid network architecture by exploiting the 
log-diameter feature of the pyramid to acquire the necessary information about the 
region being tested. 

�9 It may be performed on the 
(i.e., no downward information flow 

�9 The test is based on simple 
preattentive, thus paralleling human 

entire image in a parallel, bottom-up fashion 
in the pyramid is required). 

image features whose perception is easy and 
performance [2, 13]. 

The following lemma is used in the Euler number computation. 

LEMMA. Let P denote the set of vertices for some forest, and let val(p) be the 
valency of a point p ~ P. Define the set of junctions Js and the set of endpoints Es as 
follows: 

Js = ( p ~ P{val(p) > 2}, 

Es = ( p ~ elval(p)  = 1). 

Let IEs{ = E. Then the number of trees in the forest is: 

E -  Y'~ ( v a l ( p ) - 2 )  
N = pEJs 

2 
(2) 

Various proofs of (2) may be found in [4, 11, 12]. The coloring safety test uses the 
following 

COROLLARY. If the right-hand side of (2) in a region that does not contain closed 
loops yields N = 1, then this region may be safely colored as a whole (without 
descending to the single-pixel level). 

The only limitation to the use of this corollary for region checking in real images 
is posed by the demand that the figure should be acyclic (a forest). This causes a test 
for loops to be added to the coloring safety criteria. 

The first coloring algorithm to be presented is MAC-1 (for maximum square 
coloring). The algorithm has two phases which may partially overlap in time. In the 
first phase each intermediate node in the pyramid is assigned status as a result of a 
bottom-up computation. The status is OK on two conditions: first, all four of the 
node's sons must be OK; second, the basis of the subpyramid that has the node as 
its apex must contain at most one connected component. If the conditions (which 
constitute the coloring safety check) are not fulfilled, the status is bad. The status of 
any black processor in the bottom layer is always OK. 

The test for one connected component (OK-check) is carried out by counting the 
number of terminators, junctions and Ll-points (defined as the intersections be- 
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tween the figure lines and the two straight segments connecting the midpoints of the 
region's opposite sides, see Fig. 3). Counting the LI-points serves to detect cycles in 
the figure. Effectively, it permits using the Euler number as the basis for the 
OK-check. 

As soon as a processor has computed its status, it is ready to participate in the 
second phase of MAC-1. In this phase the marked pixel at the bottom initiates the 
activation by sending a message upwards. The message continues to ascend while 
the status of the nodes it encounters is OK. At the first bad one it turns back down 
and descends one level, returning to the last (highest) node that is OK. All the pixels 
in the base of that node's subpyramid are then colored. On the borders of the 
colored region new black pixels are activated by their neighbors and the activation 
spreads concurrently from each of them. 

The detailed description of Algorithm MAC-1 uses the following naming conven- 
tions: a processor is called a node if it is in the bottom layer of the pyralnid and a 
pnode otherwise. The pyramid's apex is linked to a special processor, the root. The 
algorithm uses three kinds of messages (compute status, white, pt) for the OK-check, 
and two more kinds (request_to_color, color) for the activation. In addition, 
special message-passing is done for termination detection. Some of the messages 
(e.g., pt) serve as "envelopes" for several parameters, which are values passed 
together with the message name (see [4, Appendix B] for the full Concurrent Prolog 
program). 

The clauses of Algorithm MAC-1 in the following description are grouped by the 
logical order of the activation process, rather than by process name (which would 
probably look more formal, at the expense of presentation clarity). 

ALGORITHM MAC-1. 

1. The root of the pyramid commands the bottom nodes to start the status 
computation by sending down a compute_status message. This message is replicat- 
ed at each pnode and relayed down, until a copy of it reaches every node. 

2. Once a black node gets compute_status, it computes the number of its 
black neighbors (by performing a neighbor poll) and sends up a p t  message, 
carrying that number and the node's  coordinates. White nodes respond to com- 
pute s ta tu s  by sending up a white message. 

3. The pnodes wait until responses are available on all four "down" links, 
then compute their status, using the following three criteria. A pnode is OK iff 

(a) All its children are OK. 
(b) The Euler number N = (E - S ) / 2  of the image in the base of the 

subpyramid whose root is the pnode in question is equal to 0 or 1. 
(c) The number of LI-points in the subpyramid base is less than or equal 

to 1. 

4. As soon as the marked node replies to computestatus (this event signifies 
the end of its role in the first phase), it starts the activation by sending up a 
request_ to_color. The color spreads therefore concurrently with the status compu- 
tation, lagging behind it by at least one step; this guarantees that the two phases are 
spatially disjoint and that any pnode that receives the request_tocolor, will have 
completed by then its status computation. 
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5. The reques t to_color  ascends until it arrives at a bad pnode. There it is 
returned one level down, finding thus the highest pnode on its path that is OK. 
That pnode  then responds by telling all its subordinate nodes  to color themselves 
(by sending down the color message, which is replicated and relayed down at each 
level, until it reaches the base). 

6. The root keeps track of the activation progress in order to detect its 
termination (the algorithm for termination detection will be described separately 
below). When it decides to terminate the run, the root broadcasts down a message 
to that effect. 

7. When a node receives a color message, it colors itself and informs its 
neighbors. Each one of the neighbors that has not been colored yet initiates a new 
activation as if it is the first marked node, by sending up a reques t to_color  (refer 
to step 5 above to follow the progress of the new request_to_color). 

8. Any pnode or node that receives the termination command relayed from 
the root goes to sleep. If another image is to be processed, then the termination 
command should clear the pnodes '  status and make each node input a new pixel. 

MA C-1 - -  Correctness 

Claim. Given an instance of the line connectivity problem, MAC-1 will have, 
upon termination, colored (i) all the pixels connected to the marked one and (it) 
none of the others. 

Part (it) of the correctness claim stems from the validity of the coloring safety test 
(region OK-ness) incorporated in the algorithm. Consider this part first. Let Q be a 
square region of the image, which is a result of a quadtree-like recursive subdivision 
[16], and pnode(Q)--the process at the apex of the subpyramid whose base is Q. 
Let Q1 through Q4 be the four quadrants of Q. It is shown first that if Q is OK then 
it contains at most one connected set of pixels. 

If Q is wholly white, the claim is trivial. Otherwise, suppose, in contradiction to 
the claim, that Q is OK and the number of connected components in it is more than 
one. Then, since by requirement (b) of the safety test the Euler number of Q is 
equal to 1, there must be a closed loop present somewhere in Q. 

By requirement (c), the loop cannot be shared between any two of Q's quadrants 
Q1-Q4,  otherwise the number of LI-points counted by pnode(Q) would be greater 
than 1 (see Fig. 2). Therefore the loop is wholly contained in one of the quadrants. 

c2 c a  
v <y 

L-J 

FIG. 2. All possible loop positions with respect to a region's quadrants. 
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FIO. 3. A region with one connected component which is rejected by the loop check of Algorithm 
MAC-1. 

Now, divide that quadrant recursively into four, stopping when the number of 
LI-points for the subdivision exceeds 1. This is bound to happen, since the finest 
possible division is dictated by the pixel size, and any loop's dimensions are at least 
3 x 3 pixels. The region for which L I  > 1 is, by requirement (c), bad, and so must 
be the original Q, by the recursive requirement (a), a contradiction. The validity of 
the OK-check is therefore established. 

Note that the other direction of the validity claim, saying that pnode(Q) is OK if 
Q contains at most one connected component, is false. The reason for this is that 
requirement (c) rules out declaring regions like in Fig. 3 as OK, despite there being 
only one connected component in these regions. This is the price of correctness of 
the OK-check. As will be shown below, this is also the part of the check that may be 
sacrificed in order to trade a nonzero error probability for speed. 

Now that it is established that no region with two disconnected components will 
ever be OK (and therefore that only the pixels connected to the marked one will 
become colored), part (i) of the correctness claim remains to be shown (i.e., that all 
of the marked figure will be colored upon termination). This may fail to happen 
only if a black pixel which has a colored (or for that purpose, marked) neighbor 
does not get colored itself. But this situation is excluded by step 7 of the algorithm. 
This completes the correctness argument for Algorithm MAC-1. 

A Psychological Aside 

It is interesting to consider the psychophysical aspect of the use of Euler number 
to characterize image connectivity. It is computed by counting perceptually "con- 
spicuous" points of the image, like line terminators and junctions. Choosing these 
points to represent the image in a connectivity-related sense looks particularly good 
in light of Julesz' empirical results on the role of terminators in preattentive 
perception of line textures [13]. Experiments by Julesz have shown that textures with 
different number of terminators in the micropattern are easily discriminable. On the 
other hand, textures with identical number of terminators and different number of 
connected components are indistinguishable (in spite of their different power 
spectra). This result suggests that a simple terminator counting (and not a connect- 
ed-components algorithm) is applied in this case by the human visual system, in 
parallel over a large area. Consequently, a simpler version of Algorithm MAC-1 
may be devised, which does not incorporate the loop check. 

ALGORITHM MAC-2. If one is prepared to take the risk that the algorithm will 
err once in a while, a faster algorithm, MAC-2, may be obtained to solve the line 
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connectivity problem, simply by modifying the OK-check to skip counting the 
LI-points. The new algorithm differs from MAC-1 in its Step 3 (pnode status 
computation): 

3. A pnodo is OK iff 
(a) All four of its children are OK; 
(b) Either the Euler number of the image in the base of the subpyramid, 

N = (E - S ) /2 ,  is equal to 1, or the base is wholly white and N = 0. 

Note that condition (b) above differs from the corresponding one in Algorithm 
MAC-l, where N = 0 is acceptable without any reservations. The purpose of this 
change is to reduce the number of input configurations which cause MAC-2 to err, 
by compromising between the strict OK-check of MAC-1 and the "liberal" ap- 
proach of just giving up the LI-count. MAC-2 achieves a considerably improved 
average running time by changing the pattern of maximal OK-regions, with the 
general tendency of increasing these regions' average size. 

MA C-1 and MA C-2-- Complexity 

It is difficult to characterize a universe of inputs to the coloring algorithms that is 
well justified statistically, therefore only the most general formulas are derived 
below. The level of the analysis is such that there is no need to distinguish between 
Algorithms MAC-1 and MAC-2 (that distinction is meaningful when the statistics 
of the input are known and one may compute the size of the average OK-region for 
the two algorithms). This section estimates the running time of the algorithms and 
identifies the parameters influencing it. 

The time is divided into two overlapping periods, the first being the strictly 
bottom-up OK-check and the second--the activation itself. The first period, Tok, 
cannot last longer than log N units, where N is the side length of the pyramid base. 
The second period is a sum of one or more intervals, in each of which a sub-pyramid 
is found OK by the advancing activation, and is colored. Each such interval lasts 
the time it takes a message to ascend from the bottom to the highest pnode that is 
OK and to come back down. If the entire pyramid is OK, there is only one 
activation interval, and the activation time Tac t is 2 log N. The total time is in this 
case max{ Tok, Tac t }, which is 2 log N. This is the best possible performance, dictated 
by the pyramid diameter. 

Generally, Tok will always be smaller than Tac t and the latter will be equal (for 
nonbranching segments) to 

Zact(Pa ) = ~ (21ogM/+ 1), (3) 
i=1 

where { 54i } is the bag (multiset) of the sizes of maximal square regions that have 
been found OK and colored. The constant contribution of 1 time unit in (3) is due 
to the communication between a newly colored node and its neighbors to find 
potential continuation nodes (step 7 in the algorithm). 

Several definitions are due before a similar formula is derived for branching 
curves. Define a A-path as a path which starts from a bottom node, strictly ascends, 
then strictly descends to another bottom node. The highest point of a A-path is 
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called its apex. The length of the concatenation of two A-paths is defined as the sum 
of the path lengths plus one. Let OK-path designate a concatenation of A-paths that 
pass through OK-pnodes only (at most once through any given pnode), and whose 
apices are always on the highest OK-pnodes in the sense of Algorithm MAC-1. 
Finally, define the function splok(Pi, pj) as the length of the shortest OK-path 
between the nodes  Pi andpj, splok: P • P -0 N, where P is the set of image pixels, 
and IN is the set of natural numbers. For a pyramid with base size N • N whose 
root is OK, Vi, j .splok(pi,  py ) = 21ogN. Generally, the running time of the 
algorithms is 

Va~t(pg ) = max splok(Pi, pj). (4) 
Pj~P-{Pi} 

Note that while in the best case the performance of the algorithms is logarithmic in 
the line length, the worst case  is linear. This happens when the maximal OK-square 
size is smaller than 4 everywhere in the image (as in Fig. 1, for example). 

MA C-1 and MA C-2-- Termination 

This section describes the algorithm used by MAC-1 and MAC-2 to detect 
termination of the coloring process. The technique is similar to that of [14] (other 
possible termination detection methods, more suitable for a biological network, are 
also discussed below). According to this technique, the pyramid root keeps count of 
the continuation points that arise after each new square is colored. Having decided 
that no new continuation points will ever report for the current image, the root 
sends down a message informing all the pnodes  and nodes  that the computation 
may be started for the next image frame. The termination detection algorithm has 
the following properties: 

1. For any input image, the root will decide eventually to terminate the 
computation (deadlock freedom); 

2. no activation will ever be  terminated while there is still at least one black 
node which has a colored neighbor (safety). 

Here is a more detailed description of the termination detection algorithm: 

ALGORITI-IM TD. 

1. root's program: 
(a) At the beginning of a new image coloring, root holds the number 2 in a 

register named " P o i n t s t o g o . "  
(b) Each time a notify_root(v) message is received, the (possibly negative) 

parameter value v is added to Points_to_go. 
(c) As soon as the contents of this register become equal to 0, termination is 

declared and an appropriate message, end, is sent down. 
2. pnode 's  program: 

(a) Each pnode receives and stores the number of potential continuation 
points, cp, associated with its subpyramid's base, as a by-product of the 
OK-check computation (see [4, Appendix B] for details). 

(b) If a pnode Q turns out to be thehighest OK one in an activation process, 
it sends up a message notify_root(cp(Q) - 2). 



LINE CONNECTIVITY 179 

(c) If that number is 0, there is no need to send any notification at all. 
(d) If two activation fronts meet at a p n o d e  (quenching), that p n o d e  sends up 

the message noti fyroot(-1),  to inform the root that one endpoint less 
should be counted. 

3. node ' s  program: 
(a) If a n o d e  turns out to be the highest OK one in an activation, it behaves 

exactly like a pnode  in such situation. 

The termination proof uses the common method of showing that each basic program 
step causes a strict descent of a chosen variable in a well-founded domain. In 
addition, it relies on the input image property described by (2). Proof details may be 
found in [4]. 

A termination detection method that involves precise arithmetic (like the one 
described above) does not fit well in the context of biological networks. Other 
methods are available, if one is willing to pay the price in hardware complexity. 
Consider, for example, a pyramid augmented with a direct link from each node to 
the root.  A n o d e  sends a message on its root-link each time it performs any action. 
The root  listens on all the links, and declares termination if no message has been 
received on any of them for a given period of time At. Such a scheme demands a 
maximum root  valency of 106 for a 1000 x 1000 image. This number is too high at 
least by an order of magnitude even for a neuron. Introducing a layer of intermediate 
processors between the root  and the bottom n o d e s  makes the termination detection 
network more plausible. Each of these processors is connected to a thousand n o d e s  
below, and to the root above. As a trade-off, the wait period At becomes longer. 

4. SIMULATION RESULTS 

This section contains an overview of the statistical performance data of three 
coloring algorithms, MAC-l,  MAC-2, and PC. The last one is a naive pixel-by-pixel 
coloring algorithm which runs on a planar array of processors instead of a pyramid 
(algorithm Flat-Color of [19]). The source of the data is a simulation program 
written in Lisp for a Symbolics Lisp Machine (see [4, Appendix C]). 

Six different tests have been made in order to clarify the dependence of running 
times of MAC-1 and MAC-2 on the relevant image parameters. In each test except 
the last a single parameter was varied while all the rest were kept constant. In the 
last test the program was run on a series of uppercase letters from the Latin 
alphabet (see Fig. 4). 

The test figures were produced by a line-drawing algorithm which accepted as its 
input the values of several relevant shape parameters. The lines consisted of a 
number of straight segments, and the drawing proceeded by deciding at the end of 
each segment in which direction to advance and whether to branch; in case of a 
branch, the algorithm was applied recursively with a smaller maximum length value. 
Input  image size was 128 X 128 pixels. 

The drawing algorithm permitted the top-level program to create a variety of test 
patterns to the specifications of the main parameters. Here are the most important 
performance features (the details are in [4, Chap. 5]): 

1. The speedup per given line length of the MAC algorithms relative to PC 
increases with line spacing, and decreases with growing turn /branch  probabilities. 
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FIG. 4. 
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The six test patterns for which the performance statistics were computed. 

For  lines which are about 120 pixels long and not too convoluted a speedup factor 
of = 10 is common. 

2. Algorithm MAC-2 is always faster than MAC-l,  sometimes by as much as a 
factor of 10. 

3. The performance of MAC-2 is roughly invariant under image scaling (see 
Fig. 5). 

This last property of MAC-2 may be derived theoretically as follows. Consider a 
rectangular spiral pattern P1, on a certain scale. Denote by M x the average 
OK-square size of P1, and by L1 its length in pixels. Then the running time T 1 of 
MAC-2 for P1 is on the order of (L1/M1)log M 1. For a second spiral P2, related to 
P1 by a factor of similarity k, the numbers for MAC-2 are M 2 = kM1, L 2 = k L x ,  

and T 2 = (L2/M2)log M 2 = (L1/M1)log k M  v Note that it is incorrect to assume 
for MAC-/  a simple scaling of M under a similarity transformation, because of the 
LI-check. The running time ratio of MAC-2 for two similar spirals is therefore 

T 2 log k M  1 log k 
- - -  1 + - - .  (5) 

T t log M 1 log M 1 

For  example, if M 1 = 32 and k = 2 then T2/T  1 = 1.2. The growth of the running 
time of MAC-2 with the scale factor, as exhibited in Eq. (5), is logarithmic, which is 
indeed slow compared to the linear dependency of the running time of Algorithm 
PC on scale. 

5O0 
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50 I00 
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Running Times 
O-MACI, o-MAC2, o-PC 

O3 
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Speedup vs. PC 
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FIG. 5. Running time vs scale for a spiral figure. 
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TABLE 1 
Running Times of the Coloring Algorithms for a Selection of Character Shapes 
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Letter MAC-2 MAC-1 PC 

F 14.0 94.4 170.2 
A 52.0 159.8 287.7 
H 14.0 92.8 170.2 
O 52.0 203.9 397.2 
L 14.0 74.2 167.2 
I 14.0 14.0 120.0 

l i T  I-IF 

(a) (b) 

FIG. 6. Two similar letter configurations, one of which, (a), causes Algorithm MAC-2 to fail. 

In the letter-coloring test, several Latin characters, drawn as combinations of 
straight line segments (because of the 4-neighborhood convention of the imple- 
mented algorithms), were subjected to coloring by MAC-l ,  MAC-2, and PC. The 
motivat ion for this test pattern came from the possible application of the curve 
tracing process to character recognition. 

The results appear in Table 1. Note that MAC-2 achieved the fastest possible 
running time (21og128 - 14) in most cases. The letters "A"  and "O , "  b o t h w i t h  
Euler number  equal to 0, were the exceptions which had to be colored in four 
chunks, as expected from the OK-check of MAC-2. 

The figures whose Euler number is 0 sometimes cause Algorithms MAC-2 to fail. 
Consider the letters "AI ,"  juxtaposed like in Fig. 6a. Clearly, the entire frame is OK 
since its Euler number is 1. MAC-2 would therefore color the two letters together, as 
if they were connected. On the other hand, were the letters situated like in Fig. 6b, 
they would be discerned correctly. This example shows the sensitivity of the error 
probabil i ty  of MAC-2 to figure position within the image frame. 

5. DISCUSSION AND SUMMARY 

Extension to Thick Line Coloring 

The techniques developed so far in this paper can be applied to the more general 
case of thick lines. The problem with the straightforward application of Euler 
number  based algorithms to images where the maximum line thickness is some 
W > 1 lies in finding a method for identifying efficiently the endpoints and 

junctions. 
Two complementary approaches to making the line width uniform suggest 

themselves. The first is to perform some kind of parallel thinning of the image, as a 
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preprocessing step. Although connectivity-preserving parallel thinning algorithms 
exist [15], they are mostly good in applications where the main consideration is the 
number of connected components, rather than their spatial relationships. This is 
because the (desired) result of thinning a complex blob is often a single point. The 
second approach (thickening) counts the number of black pixels in neighborhoods 
of fixed size and replaces each region having a black majority by a wholly black 
one. This method is inappropriate, since it will almost surely cause changes in image 
connectivity. 

To facilitate endpoint and junction detection in a thick-line image, its quadtree 
representation [16] may be constructed as a preprocessing step. The idea is to build 
a quadtree over the image and to consider the graph G whose vertices are the black 
leaves, and whose edges are defined by the leaf neighborhood relation within the image 
plane as the input to the coloring algorithms. Although MAC-1 would be too slow 
given such an input, MAC-2 may be used without any modification. The advantages 
of building G on top of a quadtree are: 

1. Neither the set of black pixels comprising the image, nor its white background 
are altered. The connectivity of the image, as well as its natural endpoints and 
junctions, may be preserved by careful consideration of all black leaf neighbor 
configurations possible in a quadtree. 

2. Distributed quadtree building on a pyramid machine is easy. It may be done 
by a bottom-up preprocessing in logarithmic time. 

3. The subsequent algorithms may deal with "pixels" of different sizes in a 
uniform way. The atomic image pixels which are incorporated into the quadtree 
(because they are the maximal uniform-color squares in their neighborhood) continue 
to be represented by bottom-layer nodes. Square black regions of larger size, on the 
other hand, are assigned to intermediate pnodes. 

A distributed algorithm that finds pairs of neighboring black leaves in a quadtree 
appears in [14]. Once the black neighbor pairs are computed, the problem remains 
to find a convention that will disambiguate situations such as Fig. 7, where there are 
several small leaves adjacent to a bigger one. Small cycles introduced into G by such 
adjacencies tend to slow down the subsequent coloring and to distort the natural 

(a) (b 
~ . ~  ~ ~de le te  

{c) (d) 

FIG. 7. (a, b) Possible adjacent black leaf configurations in a quadtree. (c,d) Action of Algorithm 
Quad on the black leaves. 
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placing of terminators and junctions of the image. It is important therefore that 
these cycles are eliminated. A possible solution is: 

1. For case of Fig. 7a, where the sizes of the small blocks decrease strictly with 
the traversal of the big block's side--the largest and the smallest blocks are assigned 
one neighbor each, while the intermediate sequence blocks are thought of as having 
two neighbors each (all these in addition to whatever out-of-the-sequence neighbors 
the blocks may possess). 

2. For case of Fig. 7b, where the smallest sequence members are adjacent to 
each other--the count is as above, except that the smallest blocks' mutual adjacency 
is ignored. 

The emerging preprocessing algorithm is outlined below: 

ALGORITHM QUAD. 

1. Build the quadtree. 

2. For each quadtree node: 
(a) Link to the smallest neighbor greater than itself. 
(b) Link to all equals to the South and East. 

3. Remove the northernmost side of each triangular or quadrilateral cycle of 
unit size (i.e., a cycle whose vertices are immediate neighbors in the image plane). 
This decreases the number of cycles, while preserving the original graph vertices and 
connectivity. 

4. Optionally, unit length "dead ends" may be discarded to reduce branching. 

The time overhead introduced by Algorithm Quad is shown in [4] to be O(log N). 
Algorithm Quad succeeds in substituting a sparse graph for the original image in 

a fast connectivity-preserving fashion; its quadtree-building stage, however, is 
complicated. The same preprocessing objective may be achieved in a simpler 
manner. Consider the thick line image, overlaid with a grid whose cell size is 
equivalent to a pixel. Define a grid skeleton to be the graph whose vertices are the 
black pixel "centers," and which has an edge between any two vertices that are 
4-neighbors. 

Clearly, the grid skeleton G of any binary blob is its connectivity-preserving 
representation. In order to color a grid skeleton efficiently, one must first get rid of 
all the pixel-sized "local" cycles (see Fig. 8). This may be done by removing the 
northern edge from every unit cycle ("collapsing" southwards), to obtain the grid 
skeleton's comb tree set C. To see that collapsing preserves connectivity, consider 
the set E of G's southernmost edges (i.e., the edges that are not the northern 
component of any unit cycle). Since the set E, as well as the vertex set of the grid 
skeleton, is invariant under collapsing, it is clear that if there existed a path between 
v 1 and v 2 for any vl, v 2 ~ G, there still would be a path between v I and v 2 in C. 

Collapsing may be performed in an asynchronous distributed way, provided that 
a horizontal edge is removed iff both its endpoints have southward edges (see Fig. 
8). Because of this possibility, the overhead introduced as the result of comb 
tree-growing is constant (independent of the image parameters). 

Algorithm MAC-2 may now be applied to the resulting comb tree C, with a slight 
modification Of the OK-check, to prevent rejecting regions because of the dense 
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FIG. 8. 

Ca) 

It, 
(b} 

A grid skeleton and its spanmng comb tree. 

parallel lines present in C. This may be done conveniently by starting the check on a 
sufficiently large scale (= W), since on the small scale the Euler number would 
reflect the fine structure of the line, instead of the local connectivity of the figure. 
Alternatively, on the southern border of any square under consideration, the 
number of runs of E-points should be counted instead of the number of individual 
E-points. The runs must be separated by at least twice the pixel size, and every run 
of size R should be counted as an (R - 2)-ply J-point (junction). 

Comparing M A  C-1 with M A  C-2 

The difference between the two candidate coloring algorithms lies in the check for 
loops in the image, which is performed by MAC-1 but not by MAC-2. Algorithm 
MAC-2 can make occasional mistakes, but it is difficult to estimate the percentage 
of images for which the errors occur. Instead, the heuristic arguments in favor of 
MAC-2 are recapitulated below. 

1. Processing the image with respect to several partially overlapping grids 
concurrently and marking a region O K  only if in all the checks the Euler number 
satisfies N = ( E  - S ) / 2  ~ {0, 1} may reduce the error probability of MAC-2. 

2. The slowdown of MAC-1 at almost any bend in the boundary being 
activated runs contrary to the intuition that in human vision the line spacing that 
affects activation speed should be measured in the direction locally normal to the 
line itself. 

3. The LI-check that distinguishes the two algorithms is different in its nature 
from the rest of OK-hess criteria. It involves more than a simple terminator 
counting, and, although being easy to perform on a general-purpose processor, the 
LI-check seems less appropriate in human perception. 

Speed  

The speedup of the MAC algorithms in comparison with the naive Algorithm PC 
achieves the goal of a better-than-linear performance for thin lines. With the letter 
coloring test (Table 1) as an example, it may be seen that even the slower MAC-1 is 
about twice as fast as PC. The speedup of MAC-2 ranges between -- 5 and = 30. 
This is the order-of-magnitude speedup that is needed if one wishes to approach (in 
a qualitative way) the human performance. 
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Computation Model Aspects 

The coloring algorithms rely on a distributed MIMD pyramid machine architec- 
ture. This architecture should be much more appealing for vision than both the 
sequential and the parallel (shared memory) ones. 

Any intraprocessor operation in the MAC algorithms (arithmetics and basic- 
list-processing) may be performed by a handful of hard-wired logic gates. The 
interprocessor messages need a small number of bits that encode the message name 
and the point count, and in addition to that an O(log N)-bit number that encodes 
the coordinates of the points communicated by the message. This relatively high 
message bandwidth may be accounted for, if one permits here a trade-off between 
the bit complexity of the messages and the huge number ( -  105) of afferent signals 
possible for a neuron. 

An important property by which a distributed algorithm may be judged is the 
extent of its dependence on processor identity. All the parallel connectivity al- 
gorithms and many distributed ones demand that every processor in the system 
should have a unique identity, coming from a totally ordered set. An example of 
relying on processor identity in a distributed connectivity algorithm may be found 
in [17], where messages are sent to distant addresses, specified by their coordinates. 

The MAC algorithms use message-passing between the immediate neighbors only. 
Of all the processors in the pyramid, only the nodes in its basis have numerical I 
IDs, and the sole purpose of these is to facilitate computing the neighbor relations 
at the higher levels. Alternate neighbor-detection schemes may be thought of. For 
example, the nodes  may generate and exchange random tokens before the bottom-up 
computation is started, to be used by the pnodes  in neighbor detection. This 
scheme would result in an algorithm which is probabilistic in the sense that an 
arbitrarily small error probability may be achieved by increasing the number of bits 
in the random tokens. 

A conceptually different alternative [20] becomes possible if the trade-off between 
processor identification needs and its number of connections is realized. A pnode 
may be directly connected to all its base-level descendants (nodes), in addition to 
the four immediate sons. The direct connections to the base enable the pnodes  to 
compute their OK-status by summing the endpoint and junction node contributions 
over all the relevant base area. The node neighborhood relation computation 
becomes therefore unnecessary. The number of connections for a pnode with a 
Q x Q base area is proportional to Q2. This number is too big for the upper-level 
pnodes,  but then intermediate connection stages may be introduced in a manner 
similar to the alternative termination detection network suggested in Section 3. 

CONCLUSIONS 

The main motive behind the search for fast feasible boundary activation al- 
gorithms has been the attempt to parallel in some sense the human performance at 
solving the line connectivity problem. The resulting algorithms are indeed faster 
than linear in line length, thus conforming to the known psychophysics of the 
problem. Several new psychophysical questions, suggesting further experimentation 
directions, are raised by the MAC algorithms. These are listed at the end of this 
section. 
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The method of connectivity test by terminator counting employed by the MAC 
algorithms seems to be relevant to areas in vision other than line coloring. Work by 
Julesz on fast texture discrimination [13] supports this claim. While analyzing the 
results of his experiments, Julesz suggested the existence of a link between the 
connectivity of a texture micropattern and its number of terminators. The relevance 
of terminator counting to connectivity, as it appears from this paper and related 
work, is therefore summarized as follows: 

HYPOTHESIS. The computational basis of human perception of connectivity in thin 
figures is some kind of terminator counting. 

SUMMARY 

Two algorithms have been put forward whose performance varies considerably 
for different image types. In contrast with the previously available distributed 
connectivity algorithms [8, 18, 19, 23], their important features conform with what is 
known about the psychophysics of the problem (e.g., the average performance is 
better than linear in line length). Other features of the algorithms suggest further 
psychophysical experimentation. These are some of the possible experiments: 

�9 Test the dependence of human response time on various image parameters 
(length of a single straight line, spacing, convolutedness, branching). 

�9 Check whether the activation process spreads concurrently into all the 
branches of a line junction (it does in the MAC algorithms). 

�9 Find out how the response time depends on the scale factor (it is effectively 
scale-independent in case of MAC-2). 
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