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ABSTRACT Does the human brain represent objects for
recognition by storing a series of two-dimensional snapshots, or
are the object models, in some sense, three-dimensional analogs
of the objects they represent? One way to address this question
is to explore the ability of the human visual system to generalize
recognition from familiar to unfamiliar views of three-
dimensional objects. Three recently proposed theories of object
recognition-viewpoint normalization or alignment of three-
dimensional models [Ullman, S. (1989) Cognition 32, 193-254],
linear combination of two-dimensional views [Ullman, S. &
Basri, R. (1990) Recognition by Linear Combinations ofModels
(Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge), A. I. Memo No. 1152], and view
approximation [Poggio, T. & Edehnan, S. (1990) Nature (Lon-
don) 343, 263-2661-predict different patterns of generalization
to unfamiliar views. We have exploited the conflicting predic-
tions to test the three theories directly in a psychophysical
experiment involving computer-generated three-dimensional
objects. Our results-suggest that the human visual system is
better described as recognizing these objects by two-dimensional
view interpolation than by alignment or other methods that rely
on object-centered three-dimensional models.

How does the human visual system represent objects for
recognition? The experiments we describe address this ques-
tion by testing the ability of human subjects (and ofcomputer
models instantiating particular theories of recognition) to
generalize from familiar to unfamiliar views of visually novel
objects. Because different theories predict different patterns
of generalization according to the experimental conditions,
this approach yields concrete evidence in favor of some ofthe
theories and contradicts others.

Theories That Rely on Three-Dimensional Object-Centered
Representations
The first class of theories we have considered (1-3) repre-
sents objects by three dimensional (3D) models, encoded in
a viewpoint-independent fashion. One such approach, rec-
ognition by alignment (1), compares the input image with the
projection of a stored model after the two are brought into
register. The transformation necessary to achieve this regis-
tration is computed by matching a small number of features
in the image with the corresponding features in the model.
The aligning transformation is computed separately for each
of the models stored in the system. Recognition is declared
for the model that fits the input most closely after the two are
aligned, if the residual dissimilarity between them is small
enough. The decision criterion for recognition in this case can
be stated in the following simplified form:

11PTx(3D) - x(2D)I < , [1]

where T is the aligning transformation, P is a 3D two-
dimensional (2D) projection operator, and the norm IIu11 mea-
sures the dissimilarity between the projection of the trans-
formed 3D model X(3D) and the input image X(2D). Recogni-
tion decision is then made based on a comparison between
the measured dissimilarity and a threshold 6.
One may make a further distinction between full alignment

that uses 3D models and attempts to compensate for 3D
transformations of objects (such as rotation in depth), and the
alignment of pictorial descriptions that uses multiple views
rather than a single object-centered representation. Specifi-
cally (1, p. 228), the multiple-view version of alignment
involves representation that is "view-dependent because a
number of different models of the same object from different
viewing positions will be used," but at the same time "view-
insensitive, because the differences between views are par-
tially compensated by the alignment process." Conse-
quently, view-independent performance (e.g., low error rate
for unfamiliar views) can be considered the central distin-
guishing feature of both versions of this theory. Visual
systems that rely on alignment and other 3D approaches can,
in principle, achieve near-perfect recognition performance,
provided that (i) the 3D models of the input objects are
available, and (ii) the information needed to access the
correct model is present in the image. We note that a similar
behavior is predicted by those recognition theories that
represent objects by 3D structural relationships between
generic volumetric primitives. Theories belonging to this
class (e.g., refs. 4 and 5) tend to focus on basic-level
classification of objects rather than on the recognition of
specific object instances§ and will not be given further
consideration in this paper.

Theories That Rely on Two-Dimensional Viewer-Centered
Representations

Two recently proposed approaches to recognition dispense
with the need for storing 3D models. The first of these,
recognition by linear combination of views (6), is built on the
mathematical observation that, under orthographic projec-
tion, the 2D coordinates ofan object point can be represented
by a linear combination of the coordinates of the correspond-
ing points in a small number of fixed 2D views of the same
object. The required number ofviews depends on the allowed
3D transformations of the objects and on the representation

Abbreviations: 2D, two-dimensional; 3D, three-dimensional.
tTo whom reprint requests should be addressed.
§Numerous studies in cognitive science (for review, see ref. 7) reveal
that in the hierarchical structure of object categories there exists a
certain level, called basic level, which is the most salient according
to a variety of criteria (such as the ease and preference of access).
Taking as an example the hierarchy "quadruped, mammal, cat,
Siamese," the basic level is that of cat. Objects for which recog-
nition implies more detailed distinctions than those required for
basic-level categorization are said to belong to a subordinate level.

60

The publication costs of this article were defrayed in part by page charge
payment. This article must therefore be hereby marked "advertisement"
in accordance with 18 U.S.C. §1734 solely to indicate this fact.



Proc. Natl. Acad. Sci. USA 89 (1992) 61

of an individual view. A polyhedral object that can undergo
a general linear transformation requires three views if sepa-
rate linear bases are used to represent the x and the y
coordinates of another view; two views suffice if a mixed x,
y basis is used (6, 8). The recognition criterion under one
possible version of the linear combination approach (9) can
be formulated schematically as

IIE a1X(2lD -X(2D)II < 6, [21

where the stored views X)2D) comprise the linear vector basis
that represents an object model (i.e., spans the space of the
object's views), X(2D) is the input image, and a; are the
coefficients estimated for the given model/image pair. A
recognition system that is perfectly linear and relies exclu-
sively on the above approach should achieve uniformly high
performance on those views that fall within the space
spanned by the stored set of model views and should perform
poorly on views that belong to an orthogonal space.
Another approach that represents objects by sets of 2D

views is view approximation by regularization networks (10,
11), which includes as a special case approximation by radial
basis functions (RBFs) (12, 13). In this approach, generali-
zation from familiar to unfamiliar views is regarded as a
problem ofapproximating a smooth hypersurface in the space
of all possible views, with the "height" of the surface known
only at a sparse set of points corresponding to the familiar
views. The approximation can be performed by a two-stage
network (see ref. 8 for details). In the first stage, intermediate
responses are formed by a collection of nonlinear "receptive
fields" (shaped, e.g., as multidimensional Gaussian distribu-
tions), centered at the familiar views. The output of the
second stage is a linear combination of the intermediate
receptive-field responses. If the regularization network is
trained to output the value 1 for various views of a given
object, the decision criterion for recognition can be stated as

1 CkG(W(2D) - X(2D)II) _ 11 <6 [3]

where X(2D) is the input image, X(2D) are the familiar or
prototypical views stored in the system, Ck are the linear
coefficients, and the function G(-) represents the shape of the
receptive field. A recognition system based on this method is
expected to perform well when the unfamiliar view is close to
the stored ones (that is, when most features ofthe input image
fall close to their counterparts, at least in some of the stored
views; cf. ref. 14). The performance should become progres-
sively worse on views far from the familiar ones.

Methods

To distinguish between the theories outlined above, we have
developed an experimental paradigm based on a two-
alternative forced-choice (2AFC) task. Our experiments con-
sist of two phases: training and testing. In the training phase,
subjects are shown a visually novel object (see Fig. 1) defined
as the target, usually as a motion sequence of 2D views that
leads to an impression of solid shape through the kinetic
depth effect. In the testing phase, the subjects are presented
with single static views ofeither the target or a distractor (one
of a relatively large set of similar objects). Target test views
were situated either on the equator (on the 0°-75° or on the
75°-360° portion of the great circle, called INTER and EXTRA
conditions), or on the meridian passing through one of the
training views (ORTHO condition) (see Fig. 2). The subject's
task was to press a "yes-button" when the displayed object
was the current target and a "no-button" otherwise, and to
do it as quickly and as accurately as possible. These instruc-
tions usually resulted in mean response times around 1 sec,

FIG. 1. Wires and amoebae. The appearance of a 3D object can
depend strongly on viewpoint. The image in the center represents
one view of a computer graphics object (wire- or amoeba-like). The
other images are derived from the same object by ±750 rotation
around the vertical or horizontal axis. The difference between the
images illustrates the difficulties encountered by any straightforward
template-matching approach to 3D object recognition. The experi-
ments reported here have used the paper-clip (wire-like) objects. The
basic experimental findings have been replicated recently with the
amoeba-like stimuli.

and in mean miss rates around 30%; miss rate is defined as the
error rate computed over trials in which the target, and not
one of the distractors, is shown. The general error rate
(including both miss and false alarm errors) was in the same
range as the miss rate-that is, the subjects did not seem to
be biased toward either yes or no answer. The fast response
times indicate that the subjects did not apply conscious
problem-solving techniques or reason explicitly about the
stimuli. In all our experiments, the subjects received no
feedback as to the correctness of their response.
The main features of our experimental approach are as

follows: (i) We can control precisely the subject's prior
exposure to the targets, by using visually novel computer-
generated three-dimensional objects, similar to those shown
in Fig. 1. (ii) We can generate an unlimited number of novel
objects with controlled complexity and surface appearance.
(iii) Because the stimuli are produced by computer graphics,
we can conduct identical experiments with human subjects
and with computational models.
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FIG. 2. Viewing sphere. Illustration of INTER, EXTRA, and ORTHO
conditions. The imaginary viewing sphere is centered around the
recognition target. Different training and testing views are distin-
guished by various symbols. During training, subjects were shown
the target computed for two viewpoints on a great circle of the
viewing sphere, 750 apart, oscillating (±15°) around a fixed axis.
Recognition was then tested in a two-alternative forced-choice task
that involved static views of either target or distractor objects (15).
Target test views were situated on the shorter part of the same great
circle (INTER condition), on its longer portion (EXTRA condition), or
on a great circle orthogonal to the training one (ORTHO condition).
Seven different distractors were associated with each ofthe six target
objects. Each test view, both ofthe targets and ofthe distractors, was
shown five times.

Results

The experimental setup satisfied both requirements of the
alignment theory for perfect recognition: the subjects, all of
whom reported perfect perception of 3D structure from
motion during training, had the opportunity to form 3D
models of the stimuli, and all potential alignment features
were visible at all times. Near-perfect recognition is also
predicted by the mixed-basis version of the linear combina-
tion scheme. In comparison, the separate-basis linear com-
bination scheme predicts uniform low error rates in INTER
and EXTRA conditions, and uniform high error rate (essen-
tially, chance performance) in the ORTHO condition, because
no view is available to span the vertical dimension ofthe view
space (which is orthogonal to the space spanned by the
training views). Finally, it can be shown that the view
approximation scheme predicts the best, intermediate, and
the worst performance for the INTER, EXTRA, and ORTHO
conditions, respectively, provided that the "receptive fields"
that serve as the approximation basis functions are of the
right shape (namely, elongated in the horizontal plane; see
below).
The experimental results fit most closely the prediction of

the theories of the nonuniform 2D interpolation variety and
contradict theories that involve 3D models. Both pairwise and
pooled comparisons of the mean error rates in the three

conditions revealed significant differences, with the INTER
error rate being the lowest and the ORTHO error rate the highest
(see Fig. 3; cf. refs. 16 and 17). A subsequent experiment
established this finding for a different set of wire objects, for
each of which the three principal second moments of inertia
agreed to within 10%o (balanced objects; see Fig. 4a). The
likelihood that the human visual system uses either alignment
or the strict linear combination scheme seems particularly low
given the outcome of another experiment, which used the
same balanced stimuli and in which the INTER/EXTRA plane
was vertical and the ORTHO plane was horizontal (Fig. 5a).
Apparently, the subjects found it easier to generalize from a
single familiar view in the horizontal plane than from an entire
motion sequence within the vertical plane. We remark that the
bias in favor of the horizontal plane is ecologically justified
because it is probably more useful to generalize recognition to
a side view than to the top or the bottom views.

Similar results were generated by a recognition model
based on view approximation (10, 18) in a simulated exper-
iment that used the same views of the same wire stimuli
shown to the human subjects (Fig. 4b). The relative perfor-
mance under the INTER, EXTRA, and ORTHO conditions, as
well as the horizontal/vertical asymmetry, was replicated by
making the weights w, of the horizontal components of the
input to prototype distance (10, 11) smaller by a factor of -3
than the weights wy of the vertical components [Fig. 5b; in
Eqs. 1-3 this would correspond to the use ofa weighted norm
liX - XkJI' = (X - Xk)TWTW(X - Xk), whereW is the weight
matrix]. This difference in weights is equivalent to having a
larger tolerance to viewpoint shifts in the horizontal than in
the vertical direction and can be learned automatically (11).
The predictions of the linear combination approach out-

lined in the introduction appear at first glance incompatible
with the experimental results. Specifically, recognition by
linear combination should be near perfect both for the INTER
and the EXTRA conditions and poor for all views in the ORTHO
plane. Such a claim, however, ignores the likelihood of
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FIG. 3. Unbalanced objects. Error rate (type I errors only) vs.
great-circle distance (D) from the reference view-0 (four subjects;
error bars denote ± SEM). A three-way (subject x condition x D)
general linear model analysis showed highly significant effects of
condition [F(2, 524) = 23.84, P < 0.0001] and D [F(6, 524) = 6.75,
P < 0.0001]. The mean error rates in the INTER, EXTRA, and ORTHO
conditions were 9.4%, 17.8%, and 26.9%, respectively. Subjects
tended to perform slightly worse on one of the training views (INTER
condition, 750) than on the other (0°), possibly because this view
always appeared as the second one in the training phase. A repeated
experiment involving the same subjects and stimuli yielded shorter
and more uniform response times but an identical pattern of error
rates. deg, Degrees.
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FIG. 4. Horizontal training. (a) Same experi-
ment, balanced objects (second moments of inertia
equal to within 10%), four subjects. A two-way
(condition x D) general linear model analysis
showed highly significant effects of condition [F(2,
581) = 82.11, P < 0.0001] and D [F(6, 581) = 15.26,
P < 0.0001] and a significant interaction [F(10, 581)
= 3.01, P < 0.001]. The mean error rates in the
INTER, EXTRA, and ORTHO conditions were 13.3%,
22.0%, and 48.3%, respectively. (b) Error rate
(arbitrary logarithmic units) vs. D in a simulated
experiment that involved a prototype view approx-
imation model and the same stimuli and conditions
as the experiment with human subjects described in
a. Each view was encoded as a vector (x1, Yi,.* ,
Xn, Yn, 119 .... In-1)T of vertex coordinates xi, yi,
and segment lengths Ii. Different weights were used
for x and y axes in computing the input to prototype
distance: w2 = 0.1, w2 = 1.0 (10, 11) (see Eq. 3).
Using between 2 and 24 prototype views, unbal-
anced objects and different view encodings yielded
similar results. deg, Degrees; arb., arbitrary.

implementation-dictated deviations from linearity, the nu-
merical instability of extrapolation as opposed to interpola-
tion (9), and the possible availability of other routes to
recognition, based, e.g., on certain distinctive and relatively
viewpoint-invariant features such as parallel or coterminating
segments (2). It should be noted that allowing for these
factors would render the linear combination scheme rather
similar to view approximation and would make the distinction
between the two approaches, based on the present data,
difficult. The two approaches can be distinguished experi-
mentally, by comparing generalization to unfamiliar views
obtained, on the one hand, by rigid rotation ofthe object, and,
on the other hand, by nonrigid deformation (19).

Discussion

The performance pattern of our subjects in recognizing
unfamiliar views seems incompatible with predictions of
alignment and other theories that use 3D representations. It
is possible that the subjects could not form the 3D represen-
tations required by the alignment theory, given the motion
information in the training stage. However, a different study
(20) in which the training views were shown in motion and
stereo yielded similar poor recognition of radically unfamiliar
views. Thus, even when given every opportunity to form 3D

a

representations, the subjects performed as if they had not
done so. Furthermore, the performance remained essentially
unchanged when the subjects were effectively precluded
from acquiring 3D representations by substituting a single
static monocular view for each of the two training sequences
(Fig. 6a).
The experiments described in this paper were done with

many different object sets, all of which belonged to the same
basic category ofthin wire-like structures. This type of object
is well-suited for studying the basics of recognition because
it allows one to isolate "pure" 3D shape processing from
other factors such as self-occlusion [and the associated
aspect structure (21)] and large-area surface phenomena.
Although this restriction necessarily limits the scope of our
conclusions, a series of experiments that involve spheroidal
amoeba-like objects has confirmed our earlier main finding-
anisotropic generalization to unfamiliar views-that counters
the predictions of theories based on 3D representations
(unpublished work). Specifically, the amoebae stimuli
yielded a significantly higher miss rate for ORTHO views
compared with the other two conditions (the INTER/EXTRA
difference was generally less pronounced). In summary, it
appears that under a variety of conditions the visual system
represents and recognizes objects through simple, but im-
perfect, 2D view approximation that does not involve 3D
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FIG. 5. Vertical training. (a) Same experiment
as in Fig. 4 but with vertical instead of horizontal
training plane, two subjects. The means in the
INTER, EXTRA, and ORTHO conditions were 17.9o,
35.1%, and 21.7%, respectively. The effects of
condition and D were still significant [F(2, 281) =
5.50, P < 0.0045 and F(6, 281) = 3.77, P < 0.0013],
but note that errors in ORTHO condition were much
lower. (b) Reversal in the order of the means, as
replicated by the view approximation model (same
parameters as in Fig. 4b). deg, Degrees; arb.,
arbitrary.
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FIG. 6. Static training. Same experiment as in
Fig. 4a, with two different subjects, identical ob-
jects and test views, but with static training (a single
view substituted for each of the two training se-

quences). General linear model analysis showed
highly significant effects of condition [F(2, 281) =

27.53, P < 0.0001] and D [F(6, 281) = 3.86, P <
0.001]. The mean error rates in the INTER, EXTRA,
and ORTHO conditions were 6.9%, 27.3%, and
39.3%, respectively. (b) A similar behavior could
be simulated with the view approximation scheme
using only two centers. deg, Degrees; arb.,
arbitrary.

object models or explicit and precise compensation for view-
point variability.
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