
Boosting Unsupervised Grammar Induction by Splitting
Complex Sentences on Function Words

Jonathan Berant1, Yaron Gross1, Matan Mussel1, Ben Sandbank1, Eytan
Ruppin,1 and Shimon Edelman2

1Tel Aviv University and 2Cornell University

1 Introduction
The statistical-structural algorithm for unsupervised language acquisition, ADIOS
(for Automatic DIstillation Of Structure), developed by Solan et al. (2005), has
been shown capable of learning precise and productive grammars from realistic,
raw and unannotated corpus data, including transcribed children-directed speech
from the CHILDES corpora, in languages as diverse as English and Mandarin.
This algorithm, however, does not deal well with grammatically complex texts:
the patterns it detects in complex sentences often combine parts of different clauses,
negatively affecting performance. We address this problem by employing a two-
stage learning technique. First, complex sentences are split into simple ones
around function words, and the resulting corpus is used to train an ADIOS learner.
Second, the original complex corpus is used to complete the training. We also
show how the function words themselves can be learned from the corpus using
unsupervised distributional clustering.

2 The ADIOS algorithm
ADIOS (Solan et al., 2005) is a statistical-structural algorithm for unsupervised
language acquisition, which takes a corpus (a set of sentences) from some lan-
guage as an input, and outputs an estimate for the grammar of that language.

2.1 The data structure
The first step in the ADIOS algorithm is to load the corpus into its data structure,
which is a directed pseudograph. Every unique word in the corpus is represented
in the graph by a node. Every sentence in the corpus is represented in the graph
by a path, defined as an ordered set of graph edges. A path starts at a special node
called the begin node, follows the graph edges to traverse the nodes corresponding
to the words in the order of their appearance in the sentence, and finally reaches a
second special node called the end node (see Figure 1). The graph is non-simple
and may contain both loops and multiple edges between any pair of nodes.



Figure 1: The ADIOS grammar learning algorithm (Solan et al., 2005) represents
the training corpus as a pseudograph. The simple example depicted here repre-
sents the following four-sentence corpus: (1) is that a cat? (2) is that a dog? (3)
where is the dog? (4) and is that a horse?

The loading procedure ensures that the number of paths in the graph is equal to
the number of sentences in the corpus. We define the language that the algorithm
has learned at any given moment as the set of sentences that can be produced
by traversing any path and generating a string by accruing the nodes it passes
through. At initialization, every path generates exactly one sentence, because no
generalization has taken place yet.

Unsupervised grammar induction algorithms seek to infer hierarchical tree
representations for the corpus sentences, making explicit the constituents that are
interchangeable in various contexts. The ADIOS algorithm constructs the hierar-
chical representations in a bottom-up fashion, simultaneously carrying out sen-
tence segmentation and constituent generalization.

2.2 Segmentation criterion
Segmentation of the input sentences is performed using a statistical segmentation
criterion, MEX (Motif EXtraction), which scans the graph for patterns. Intu-
itively, a sequence of nodes is a pattern if there is a statistically significant bundle
of paths that traverses it (for details see Solan et al., 2005). The advantage of the
pseudograph data structure is that sentences are automatically aligned along nodes
at which they overlap, and thus patterns are easily identified (see Figure 2).

The ADIOS algorithm iterates the MEX procedure along the paths of the graph,
searching for patterns. For every path, the best pattern (if any) is chosen and
rewired onto the graph: a new node P is created for the pattern, and for every
instance of the pattern in the graph, the nodes of the pattern are replaced by the
new node P. This leads to a reduction in the size of the graph. By performing this
process on all of the paths iteratively, hierarchical structures are rapidly created.



Figure 2: Pattern detection in the pseudograph: (A) The data structure allows for
the easy identification of aligned sentences. (B) A set of nodes is identified as a
pattern when a bundle of paths traverse it. (C) The pattern is rewired onto all of
the paths that traverse the nodes of the pattern.

The algorithm stops when no new patterns are found in the graph.

2.3 Generalization
As mentioned, the segmentation procedure alone is capable of parsing the input
sentences into a hierarchical structure. However, the size of the language remains
unchanged by this procedure. To achieve generalization, ADIOS augments the
MEX procedure with a search for elements that are in complementary distribution
in the context of a given pattern.

The search for complementary-distribution elements is performed by sliding a
context window of size L along a candidate path, seeking other paths that coincide
with it within this window in all places but one. Suppose the paths diverge in the
i’th place; the element in slot i in the candidate path is then temporarily replaced
by an Equivalence Class (EC) that comprises all the nodes found in this slot in the
partially aligned paths (see Figure 3), forming the generalized path. Thereafter,
the usual MEX procedure is performed on the generalized path, which may lead to
the creation of a pattern that contains an equivalence class. This is done for every
possible position of the window on the path, and for every possible slot inside the
window. The best pattern found is rewired into the graph. If a generalized pattern
is thus rewired, the grammar of the learner becomes capable of generalization.



Figure 3: Generalization: looking at the paths that coincide with the search path
along the context window, except for slot i+2, leads to the creation of a temporary
equivalence class (EC) node at that slot. If a pattern that contains the generalized
node is rewired onto the graph, the EC node becomes permanent.

ATIS version Language model Perplexity
2 ADIOS 11.5
2 Trigram Kneser-Ney Back-Off smoothing 14
2 PFA Inference (ALERGIA) + trigram 20
3 ADIOS 13.5
3 SLM-wsj + trigram 1.E+05 15.8 [10] 15.8
3 NLPwin + trigram 15.9
3 SLM-atis + trigram 15.9

Table 1: The lower perplexity achieved by ADIOS-derived language models com-
paring to standard benchmarks on the ATIS-2 and ATIS-3 corpora.

Applying this process on all of the paths iteratively leads to a rapid growth in
the size of the language that has been learned. A sentence is in the language if
there exists a path that can generate it (a pattern node generates the concatenation
of the strings generated by its children; an EC node generates a string generated
by one of its children).

The ADIOS algorithm has been subjected to extensive testing on a variety of
corpora (Solan et al., 2005). Its performance generally exceeded that of other
unsupervised grammar induction algorithms capable of dealing with raw corpus
data, on various measures, such as precision and recall. In particular, in the lan-
guage modeling task the perplexity levels achieved by ADIOS-derived models on
the ATIS-2 and ATIS-3 corpora were lower than the standard benchmarks (Ta-
ble 1).



Corpus Word types #sentences Average sentence length
CHILDES 14,401 320,000 6 words
ATIS-N 1,153 12,700 10 words
Children’s literature 52,180 41,129 52 words

Table 2: The average length of a sentence in simple corpora such as CHILDES
and ATIS-N is much lower than in complex corpora such as children’s literature

3 The problem and motivation for solution
Although ADIOS attains good performance when applied to corpora such as ATIS,
CHILDES and artificial context-free grammars, it encounters difficulties when
faced with more complex corpora such as texts from the Wall Street Journal or
from children’s literature. Specifically, executing the ADIOS algorithm on com-
plex corpora results in a grammar with few patterns and poor generalization. The
complexity of the WSJ and the literature corpora is manifested in two ways. First,
the average length of a sentence in ATIS and CHILDES is much smaller than in
more complex corpora (see Table 2). Second, ATIS and CHILDES are charac-
terized by a relatively restricted number of grammatical structures: most of the
sentences are simple questions or imperatives. In comparison, complex corpora
contain multi-clause sentences that have a much more diverse and sophisticated
grammatical structure.

Because complex sentences across languages are usually formed by joining
together a few simple sentences according to some grammatical construction, a
possible way of dealing with grammatical complexity may be to decompose the
complex sentences into simple ones, and to allow ADIOS to learn on a simpler
corpus, where one may expect better performance. This idea is related to what
Elman (1990) called “the importance of starting small” (in that study, training a
neural network progressively on a sequence of corpora of increasing complexity
led to better learning).

Our method for dealing with complex sentences by decomposing them into
simpler ones, which will be described in the next section, highlights the impor-
tance of the distinction between closed- and open-class words. Across languages,
lexical items can be divided into two categories: content, or open-class words,
and function, or closed-class words. Words in these two categories have distinct
distributions in natural languages. Function words, which form a small, closed
class (you cannot invent a new preposition, say, and expect to be understood) are
very frequent in natural discourse. In comparison, content words form a much
larger class, each of whose members, however, occurs much more rarely. A seri-
ous limitation of the ADIOS algorithm is its blindness to the distinction between
closed- and open-class words. This results in a tendency for function words to
appear at the edges of patterns early in the learning process (see Figure 4). This
happens because many paths pass through a node of a frequent function word and



then branch out to different content words.

4 The Algorithm
Our solution uses a subset of function words, which tend to mark clause bound-
aries, as cues for decomposing complex sentences into simpler ones. Lexical items
that are markers for the edge of a clause will be referred to as conjunctions. The
algorithm consists of four steps (see Figure 5):

A Every sentence in the corpus is decomposed into a set of simple sentences
by splitting on the conjunctions. The conjunctions themselves are omitted
altogether from the sentences.

B The simpler corpus is loaded onto the graph and the ADIOS algorithm is
executed.

C When learning concludes, the simple sentences are recomposed in their new
generalized form.

D The ADIOS algorithm is applied again to the recomposed corpus.

The algorithm draws on the principles described in the previous section. Training
is done in two phases. During the first phase, the learning procedure is restricted
to deriving patterns from simple sentences only. When this stage concludes, the
original complex sentences are made visible to the algorithm and learning con-
tinues. Conjunctions are used to split complex sentences to simpler ones. This

Figure 4: In the ADIOS procedure, function words are often a dispersion point for
many paths, due to their peculiar statistical distribution. Because of this property,
“bad” patterns that cross clause and phrase boundaries are created.



Figure 5: The algorithm for learning complex syntax. (A) One path in the graph
is shown; conjunctions are highlighted. (B) The path is split on its conjunction
nodes into several paths. (C) Learning is carried out on the simple paths, using the
ADIOS algorithm. (D) Conjunctions are reinstated and training is repeated.

prevents the algorithm from creating patterns that cross clause boundaries early in
the learning procedure.

5 Experiments and results
To test our algorithm, we constructed an artificial context-free grammar (jym1)
that generates sentences of three types of complexity (Diessel, 2004):

(a) Complementation — “he believes that John runs.”

(b) Relativization — “I like the books that you buy.”

(c) Coordination — “After I run, I drink.”

The grammar contains 155 lexical items and 240 derivation rules. The grammar
divides the verbs in the lexicon into six classes according to their theta-grid and



Figure 6: A fragment from the jym1 context-free grammar, used to generate the
corpus that tests the algorithm. The fragment demonstrates some of the complexi-
ties in the grammar, such as the distinctions made between verbs that take different
types of arguments.

subcategorization frame. It distinguishes between human and non-human argu-
ments, between external and internal arguments, and between noun phrases and
sentences as internal arguments. Figure 6 presents a small fragment of the gram-
mar. A corpus was generated from the jym1 grammar and divided into a training
and testing parts. The training corpus consists of 8, 500 sentences and the testing
corpus consists of 923 sentences. Our algorithm was trained and tested on these
corpora.

To test the performance of ADIOS we used the measures of recall and pre-
cision. Recall was defined as the proportion of sentences from the test set that
were accepted by the learner at the end of the training. This measures the cover-
age of the target language that the learner achieved. Precision was defined as the
proportion of sentences generated by the learner that were accepted by the jym1
context-free grammar. This measures the accuracy of the learner.

Ten ADIOS learners were presented with the jym1 corpus (learners vary with
respect to the order of sentences in the corpus). The mean recall and precision are
shown in Figure 7. The splitting procedure resulted in a significantly improved
recall: from 0.81 to 0.9 (p < 0.01); the precision did not change significantly
(p = 0.14).

Although precision decreased from 0.2 to 0.14 (n.s.) when we split on con-
junctions, a manual comparison between the corpora generated in the two different
configurations gave the impression that the sentences generated when splitting on
conjunctions were as good as in the normal setting. To test that we decided to
measure our accuracy using edit distance. The edit distance between a sentence
generated by a learner and the grammar is defined as the minimal number of ele-
mentary edit operations performed on the sentence that would turn it grammatical
(Lyon, 1974). An edit operation is either the insertion of a lexical item to the
sentence, the deletion of a lexical item from the sentence, or the substitution of a



lexical item in the sentence for another. The edit distance of a learner is defined
as the average edit distance to a correct sentence across the entire corpus it gen-
erates. Edit distance is a much relaxed measure than precision, because it gives
some credit to sentences that are only partially correct. Results on the ten learners
show that the edit distance when splitting on conjunctions (2.15) is almost identi-
cal to the edit distance achieved in the normal setting, (2.09), supporting our claim
that the accuracy of the algorithm was not harmed due to splitting (p = 0.74).

Next, we tried to split the sentences of the corpus not only on their conjunc-
tions but also on their complementizers (e.g., “I like the books that you buy” would
be split into “I like the books” and “you buy”). In this experiment, recall improved
from 0.81 to 0.89 (p < 0.01), but precision also decreased significantly from 0.2
to 0.1 (p < 0.05). Thus, splitting only on conjunctions yielded better results. To
confirm that the improvement stemmed from the linguistically relevant segmenta-
tion and not merely from the shorter sentences handed to the algorithm, we split
the sentences to arbitrarily shorter phrases with the same mean length as in the
first experiment. Again, ten learners were trained, but now recall significantly
decreased from 0.81 to 0.53 while precision remained unchanged.

Even though splitting on conjunctions improved recall significantly, it was
relatively high even in the baseline condition, when the regular version of ADIOS
was used. As we mentioned before, when regular ADIOS is applied to complex
corpora, the usual outcome is low recall. Thus, we wanted to see the effect of
splitting the sentences when the initial recall is low. To that end, we constructed
a second context free grammar (jym3) that differed from jym1 in two respects.
First, the size of the lexicon was increased to 365 lexical items (compared to 155
lexical items in jym1). Given that the size of the corpus is fixed, this means
that every lexical item was now much rarer, making generalization more difficult.
Second, ambiguities were removed from the lexicon. In the jym1 corpus, ten
lexical items belonged to two different categories each. Lexical items that belong
to multiple categories may cause overgeneralization, and so all of the ambiguous
lexical items were replaced by non-ambiguous ones.

From the jym3 context-free grammar, a training set of 9, 000 sentences and a
test set of 1000 sentences was generated. Recall improved dramatically from 0.17
in the normal execution (regular ADIOS) to 0.59 when splitting the sentences.
Precision on the other hand significantly decreased from 0.55 to 0.29. Given that
we weigh recall and precision equally, the overall performance after the splitting
was better: the F-score (defined as the geometric mean of precision and recall)
improved significantly from 0.24 to 0.39. In general, splitting alone managed to
boost ADIOS to a higher level of performance on a complex corpus.

6 Unsupervised identification of conjunctions
A lacuna in the approach described above is the need to provide the algorithm
ahead of time with a list of conjunctions on which to split the complex sentences.



Figure 7: Results for the jym1 and jym3 corpora, showing the precision and recall
measures, for the normal (baseline) version of ADIOS, compared to the version
that splits complex sentences on conjunctions in the first phase of training.

Of course, no such list is available to a child acquiring a language. Children,
however, are very good at recognizing function words very early on (Shi et al.,
2006), using cues such as prosody. Thus, one may conjecture that children have
access to various sources of information that help mark clause boundaries, and that
are unavailable to an algorithm that only relies on text. Thus, it would be useful
to show that clause boundaries and conjunctions are identifiable using only the
statistical properties of their distribution in language.1 If that can be demonstrated,
the independently learned conjunctions can be passed on to ADIOS for the purpose
of splitting. This would keep the entire learning process unsupervised.

The key to identifying conjunctions is to realize that the input is not just a
finite sequence of words, but rather a set of sentences (much like natural language
divides speech into utterances using prosody). Hence, it is possible to characterize
what words appear at the beginnings of sentences, and what words appear at the
endings of sentences. Intuitively, conjunctions are lexical items that coordinate
two constituents which could be separate sentences in their own right. Thus, it is
possible to characterize conjunctions as lexical items that are followed by words
that usually appear at the beginning of a sentence, and are preceded by words
that usually appear at the ending of a sentence. A natural way of formalizing this
intuition is to use straightforward distributional clustering:

• Create a vector Vbeginning that counts for every possible bi-gram b in the
language the frequency of b appearing at the beginning of a sentence. Create
a similar vector Vend for the ending of the sentences.

• For every word w in the language, create a pair of vectors Wbeginning and
Wend. Wbeginning counts for every possible bi-gram b in the language the
frequency of b following w; Wend counts the frequency of b preceding w.

1Although in this work we only show a method for identifying conjunctions, it seems that it can be
easily expanded to identifying clause boundaries.



Rank Conj. in jym1 Conj. in children’s literature
1 , and
2 and but
3 because because
4 although that
5 before though
6 when till
7 where where
8 after until
9 whether
10 which
11 when
12 for
13 thought
14 to

Table 3: The algorithm for unsupervised identification of conjunctions succeeds
in ranking all of the conjunctions in the jym1 corpus at the top of the output list.
When applied on the children’s literature corpus, the top 25 lexical items found
by the algorithm (with one exception) are all conjunctions, complementizers and
prepositions.

• For every pair of vectors Wbeginning and Wend, calculate the angle α1 be-
tween Wbeginning and Vbeginning and the angle α2 between Wend and Vend.

• Let α be the mean of α1 and α2. Sort all the words in the lexicon according
to α in increasing order and return the sorted list.

In the jym1 corpus, eight words are defined as conjunctions. Applying the al-
gorithm to the jym1 corpus results in the eight conjunctions being ranked at the
top of the output list. To test the conjunction detection method on natural data,
we applied it to a fragment of the children’s literature corpus (55, 000 sentences
and 6, 300 different word tokens2). The top 25 lexical items that were found by
the algorithm (with one exception) were all conjunctions, complementizers and
prepositions (see Table 3). To conclude, it seems that the method we developed
succeeds in identifying words that are probable markers for clause boundaries.

2The entire corpus can be downloaded from Project Gutenberg (http://www.gutenberg.org) under
the subject “children’s literature.” We took a random sample from the English corpus and divided it
into sentences using simple preprocessing techniques.



7 Conclusion
The previously described statistical-structural algorithm for unsupervised language
acquisition, ADIOS, detects in complex sentences patterns that combine parts of
different clauses, negatively affecting performance. We addressed this problem
by splitting complex sentences on function words, thus simplifying the complex
sentences and preventing “across-clauses” patterns from occurring. To test this
approach, we constructed an artificial CFG that generates sentences of three types
of complexity: complementation, relativization and coordination. Splitting the
complex sentences on function words indeed had a positive effect on the learning
performance. Furthermore, we developed a method for an unsupervised identi-
fication of conjunctions, based solely on the statistical properties of these parti-
cles, and using distributional clustering. In conclusion, we presented a method
for extending the capabilities of the ADIOS algorithm without detracting from its
unsupervised nature.

Acknowledgments. Thanks to the US-Israel Binational Science Foundation and the
Horowitz Center for Complexity Science for support.

References
Diessel, H. (2004). The Acquisition of Complex Sentences, volume 105 of Cambridge

Studies in Linguistics. Cambridge University Press, Cambridge.
Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179–211.
Lyon, G. (1974). Syntax-directed least-errors analysis for context-free languages: a practi-

cal approach. Communications of the ACM, 17:3–14.
Shi, R., Werker, J. F., and Cutler, A. (2006). Recognition and representation of function

words in English-learning infants. Infancy, 10:187–198.
Solan, Z., Horn, D., Ruppin, E., and Edelman, S. (2005). Unsupervised learning of natural

languages. Proceedings of the National Academy of Science, 102:11629–11634.


