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Abstract

It is proposed to conceive of representation as an emergent phenomenon that is superve-
nient on patterns of activity of coarsely tuned and highly redundant feature detectors. The
computational underpinnings of the outlined concept of representation are (1) the properties of
collections of overlapping graded receptive fields, as in the biological perceptual systems that
exhibit hyperacuity-level performance, and (2) the sufficiency of a set of proximal distances be-
tween stimulus representations for the recovery of the corresponding distal contrasts between
stimuli, as in multidimensional scaling. The present preliminary study appears to indicate that
this concept of representation is computationally viable, and is compatible with psychological
and neurobiological data. Keywords: vision, categorization, representation, similarity, receptive

fields, multidimensional scaling, feature spaces.

1 Introduction

A perceptual system confronted with a stimulus must decide whether it belongs to an already
encountered category, and, if the stimulus is sufliciently novel, create a new category and store it
for future reference. It is widely agreed that the crucial issue in the recognition of familiar stimuli
and in the generalization to novel ones is that of representation. This paper proposes that similarity
relative to a small but diverse set of prototypes is a natural computationally feasible candidate for a
generic representation scheme, and is consistent with neurophysiological and psychophysical data.
The paper is organized as follows. Section 2 reviews briefly some of the problems involved in
defining similarity, as they arise in philosophical, psychological, and computational discussions of
representation. Section 3 then proposes a way of making similarity work that is based on mechanisms
of transduction and pattern matching peculiar to biological information processing systems. Finally,
sections 4 and 5 discuss the proposed theory of representation in a wider context of understanding

perception, categorization, and learning.



2 The problem: representation of similarity

Consider the familiar notion of generalization (see Shepard, 1987, for a discussion): it is easier to
respond intelligently to a stimulus if one can recall previous satisfactory (e.g., rewarded) responses
made under similar circumstances. Thus, a perceptual system does well insofar as it succeeds to
represent internally the similarities between different stimuli.

The problem in understanding how biological perceptual systems represent similarity, and in
building artificial systems that do so, is that the notion of perceptual similarity is notoriously
difficult to formalize (Quine, 1969). It has been pointed out repeatedly, by C. S. Peirce and others,
that definitions in terms of shared or contrastive properties only beg the question of property
selection. Borrowing an example from Murphy and Medin (1985), the number of attributes shared
by plums and lawn-mowers could be infinite: both weigh less than 1000 kilograms (and less than
1001 kilograms), both cannot hear well, both have a smell, etc. Any two entities can thus be
arbitrarily similar or dissimilar, depending on what is to count as a relevant property.

The same pitfall associated with the concept of similarity is illustrated by the following theorem
due to Watanabe (1985): “Any two objects are as similar to each other as any other two objects,
insofar as the degree of similarity is measured by the number of shared predicates.”! Watanabe’s
conclusion (see also Tversky, 1977) is that different weights must be assigned to different predicates.
This, however, merely shifts the focus of the problem to the choice of the appropriate weights.
Furthermore, before one can choose weights (e.g., in a model designed to fit psychological data
on perceptual similarity) the predicates or features to be weighed must be somehow determined.
Clearly, any conceivable approach to the choice of features and of their weights will necessarily
constitute a kind of bias, be it theoretical or experimental. In the present work, I have chosen to

assume a natural bias that follows the observations of Quine (1969):

A response to a red circle, if it is rewarded, will be elicited again by a pink ellipse
more readily than by a blue triangle; the red circle resembles the pink ellipse more than
the blue triangle. Without some such prior spacing of qualities, we could never acquire a
habit; all stimuli would be equally alike and equally different. These spacings of qualities,
on the part of men and other animals, can be explored and mapped in the laboratory by
experiments in conditioning and extinction. Needed as they are for all learning, these

distinctive spacings cannot themselves be all learned; some must be innate.

A basic characterization of innate and acquired features of similarity may be derived from constraints
imposed (1) by the patterns of natural kinds prevailing in the world;? (2) by the manner in which, in
principle, distal objective similarities and dissimilarities can be mirrored in the proximal represen-

tations, and (3) by the architecture of a given perceptual system. The rest of this paper is devoted

! This theorem, which he called the Theorem of the Ugly Duckling, holds if the set of predicates is finite and equally
applicable to all objects, and if no two objects are identical with respect to this set.

2] assume flatly ontological realism, and, in particular, realism about natural kinds.



to bringing these three kinds of constraints — physical, computational, and implementational (cf.

Marr and Poggio, 1977) — to bear on the issue of representation by similarity.

3 The outline of a solution: a Chorus of Prototypes

3.1 Motivation

In the previous section we have seen that the notion of similarity defies a formalization in absolute
terms. In the absence of such a formalization, we must either give up the attempt to derive an
intuitively appealing theory of representation based on similarity, or, in the spirit of Quine (1969),
tailor the concept of similarity to the means and needs of biological perceptual systems. This second
alternative offers the possibility of developing a new and powerful theory of representation.

It may be observed that a biological system can only base its inferences about the world on
the firing of its neurons (Poincaré, 1963; Bialek et al., 1991). Thus, at any stage in the processing
hierarchy, differences between stimuli only matter insofar as they can be represented by the activity
patterns of the preceding stage. This means that, for better or for worse, already at the output
of the retina the vague notion of similarity between two stimuli gives way to a concrete concept
of distance between their representations in the space spanned by the activities of ganglion cells,
which must serve as the foundation to any possible metric computed by the subsequent levels of
processing.

In the recent years, much effort has been devoted to the study of the ability of receptive fields
(RFs) in the visual information processing pathway to support fine spatial analysis of the stimulus
despite their large size already at the level of retinal ganglion cells — a puzzle as old as the concept
of a receptive field (Hartline, 1938). Some of the pieces of the puzzle, known also as the phenomenon
of hyperacuity (Westheimer, 1981), may be found (to mention some of the more recent works) in the
computational analysis of Snippe and Koenderink (1992), and in the models of Poggio et al. (1992)
and Weiss et al. (1993). According to the latest integrated understanding of hyperacuity, a collection
of graded and highly overlapping RF's forms a representation that can support discrimination of fine
spatial detail of the input (not necessarily via the recovery of the exact distribution of the retinal
stimulation).

Computer simulations indicate that the information contained in this kind of representation is
sufficient for discriminating among highly complex stimuli such as images of human faces (Weiss
and Edelman, 1993). Experience with a face recognition system (Edelman et al., 1992) showed,
however, that raw patterns of RF activities are better not stored and compared directly, and that
an acceptably low error rate in face discrimination can only be achieved by a two-stage scheme
(see appendix A, and Figure 5). In the first stage, the base representation is fed into a bank of
individual classifiers, each of which is trained to respond to the face of a particular person. As
several classifiers typically respond (more or less strongly) to any given face, the first stage thus

computes an intermediate representation that encodes the distances between the input and each of



the stored prototypes (faces best recognized by the individual classifiers). In the second stage, this
set of distances is used to classify the input with a much greater precision than what is possible

without the ensemble representation provided by the first stage.

3.2 The proposed theory: a Chorus of prototypes

These and other computer experiments in face recognition suggest that images of faces occupy a
space whose dimensionality is significantly lower than the number of pixels in each image, which
is the default dimensionality that must be assumed in the absence of evidence to the contrary
(Kirby and Sirovich, 1990; Turk and Pentland, 1991). Psychophysical findings on synthetic 3D
object recognition (Cutzu and Edelman, 1992) and on face discrimination (Rhodes, 1988) in human
subjects confirm the relevance of low-dimensional approaches. The dimensions or features used by
human subjects tend, however, to defy an easy and general computational characterization. In face
discrimination, for example, the physical variables best correlated with the principal dimensions
identified by multidimensional scaling analysis of face similarity ratings are sex and age (Rhodes,
1988). Thus, one way to understand, on the computational level, how faces can be represented in
a low-dimensional space is to find out how sex and age can be determined from a face image — a
formidable task by itself.

The success of the two-stage ensemble-based scheme for face recognition suggests an alternative
approach to the low-dimensional representation of visual objects. The proposed approach, at the core
of which there is a Chorus of prototypes, employs vectors of first-stage distances to a small number
of reference objects to span the second-stage representation space.®> In Chorus, the representation
space for objects is built over a higher-dimensional space of primitive features (in the face recognition
system discussed above, the primitive features are the activities of the simple receptive fields placed
over the input image). Recurring stable patterns of primitive features, which are expected to
correspond to persistent objects,* are represented explicitly, and constitute the prototypes that span
the object space. Each persistent prototype may be represented by a set of detectors, implemented by
receptive field-like mechanisms tuned to a number of the object’s views (Poggio and Edelman, 1990),
and may be constructed in a self-organizing fashion following mere exposure to the object (Edelman
and Weinshall, 1991). In distinction to the persistent entities, rare or ephemeral patterns of primitive
features are represented implicitly, by the distributed activity they induce in the prototype detectors
(see Figure 1).

The power of ephemeral implicit representations stems from the same principle that makes

multidimensional scaling (MDS) work: in a metric space, fixing the relative distances of a set of

?Webster’s Dictionary has: cho.rus \’ko-r-*s, ’ko.r-\ n [L, ring dance, chorus, fr. Gk choros] la: a company of singers
and dancers in Athenian drama participating in or commenting on the action. In a chorus, unlike in Selfridge’s (1959)
Pandemonium, the contributions of the individual actors are in harmony with each other. Lee Brooks (1987, p.165)

uses the expression “chorus of instances” in his discussion of Medin and Schaffer’s (1978) theory of representation.
*But which may also correspond to entities devoid of a real objecthood, just as canonical views of 3D objects

sometimes cannot be represented as actual projections of the corresponding 3D shapes (Cutzu and Edelman, 1992).
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Figure 1: Presenting a novel stimulus to a system familiar with foxes, cats, alligators, camels,
elephants, and bears. Each of the detectors for the familiar animals responds at a fraction of the
maximal activity (the strength of the response is illustrated symbolically by the size of the disk
beneath the detector box). Ounly part of the connections between layers are shown. Unlike in

Selfridge’s (1959) Pandemonium, all the responses and not merely the strongest one matter here.

points effectively determines their coordinates, up to a translation and rotation of axes (Shepard,
1980). If several basic requirements, listed in section 4.1 below, are satisfied, and if the input stimuli
do in fact possess an (unknown) low-dimensional structure, the combined persistent/ephemeral
feature method based on MDS is assured to recover a faithful replica of that structure, solely
from qualitative (rank order) similarity measurements made in the space of primitive features (see

Figure 2).

3.3 Persistent and ephemeral representations in Chorus

The postulated difference between persistent and ephemeral representations stems from the con-
straints imposed by limited resources in a real perceptual system: all objects cannot possibly be
assigned individual representations. Fortunately, as we have seen above, MDS considerations in-
dicate that only a relatively small number of objects need be represented in a persistent fashion.
How can one decide whether a given stimulus has a persistent representation in a biological visual

system? A criterion that seems proper is based on the notion priming: if repeated exposure modi-
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Figure 2: A different look at the situation depicted in Figure 1. The set of graded responses of
the (persistent) detectors, each tuned to a familiar animal shape, can be processed by a technique
related to multidimensional scaling (MDS) to yield the location of the (ephemeral) representation

of the novel stimulus in the space “spanned” by the familiar shapes.

fies the response of the system to a stimulus, there is a good chance that this stimulus possesses a
physically localized representation (e.g., a unit or a tightly coupled clique of units) which is affected
(fatigued or excited) by the stimulation and which retains a memory of it over a certain period
of time. This line of reasoning is developed, e.g., in (Biederman and Cooper, 1991), where it is
argued that recognition priming at the level of object parts, or geons, constitutes evidence in favor
of physically explicit geon-level representations.

There are two remarks to be made at this point. The first one has to do with the condition
under which priming can be considered an indication as to the persistent nature of an internal
representation. The condition is that of stimulus specificity, which figures prominently in the recent
resurgence of work on perceptual learning (Sagi and Tanne, 1994). If the processing savings due
to prior exposure do not transfer from one stimulus to another (despite these being merely rotated
versions of the same pattern (Poggio et al., 1992)), then it is highly likely that a well-defined

representation of the first stimulus is involved.



The second remark has to do with the amenability of the physical nature of the persistent repre-
sentation mechanism to neurophysiological study. In principle, priming need not be physically local:
units that participate in a “coalition” representing a given concept could also be primed, provided
that the coalition persists at least for the duration of the experiment. In that case, the distinction
between persistent and ephemeral representations would be blurred, and, moreover, would be dif-
ficult to demonstrate using currently available experimental methods in neurophysiology. On the
other hand, the discovery of a class of (presumably ephemerally represented) objects immune to
visual, as opposed to the ever-present “semantic,” priming would strongly support such distinction.

The nature of what I have chosen to call ephemeral representations is well summarized by the

following passage from (Barsalou, 1987):

Concepts as constructs. Instead of viewing long-term memory as being divided into
invariant concepts, it may make more sense to view long-term memory as containing large
amounts of highly interrelated and “continuous” knowledge that is used to construct

concepts in working memory.

Assuming that some basic or background abilities are necessary even in such a flexible represen-
tational framework, Barsalou’s idea of “continuous knowledge” would translate into the following
observation: persistent representations can only support the formation of useful ephemeral ones if
they have (1) highly overlapping receptive fields, and (2) a graded structure. These two requirements
correspond exactly to the conclusions of (Snippe and Koenderink, 1992) regarding the properties of

receptive fields necessary for achieving hyperacuity-level performance (see section 3.1).

4 Discussion

4.1 Basic computational requirements of Chorus

Consider a collection of objects in the world that is to be represented in a perceptual system, and
suppose that each object has a true physical description in terms common to all objects. While the
object’s 3D shape certainly constitutes an example of such a description, it has consistently proved
extremely difficult to recover in a reliable fashion.

Luckily, for the purpose of classification only the comparisons or contrasts between the objects
are interesting: if the world consisted of just one object, it would not really matter how that object
were represented. Thus, recognition of a familiar shape and intelligent categorization of any shape
do not require that the system recover those shapes in full 3D detail: it suffices to represent and
use the low-dimensional information inherent in the structure of the natural kinds. Because neither
this information nor the dimensions of the shape space are directly accessible to the perceptual
system, the comparison between true distal descriptions of object shapes depends on a comparison
of proximal descriptions related to the distal ones by multidimensional scaling (see Figure 3). If this

comparison is to be faithful to the physical reality, several conditions must be met.



1. Smoothness. At the relevant level of description, the natural kinds are assumed to be related

to each other by gradual change.’

2. Monotonic covariation. Differences between proximal descriptions must covary monotonically
with differences between distal descriptions.® This is a basic requirement for the applicability

of MDS (Shepard, 1980).

3. Dynamic range. For the proximal distances to be estimated reliably, the transduction mecha-
nism must be allowed to operate within its dynamic range. Differences that are too small or

too large would render the data submitted to MDS degenerate.

4. Linearity. This is a recommendation rather than a strict requirement. If the proximal mea-
surements vary linearly (and not merely monotonically) with distal data, then metric MDS
may be applicable. In that case, the system would require fewer persistent (reference) repre-

sentations to achieve the same accuracy of discrimination.

The first point listed above, smoothness, is an assumption about the world, rather than a constraint
on the structure of the perceptual system. Generalization would be impossible were it not for this
property of the world, and, indeed, smoothness plays a central role in computational formulations
of learning from examples (see section 4.4).

The second requirement — that of monotonic covariation — is of crucial importance in Chorus.
For objects to be properly represented, the monotonically increasing difference between two objects
must precipitate a concomitant increase in the difference between the patterns they evoke in a space
spanned by a set of feature detectors. In vision, one may distinguish between the idealized case of
objects consisting of points in 3D, in which monotonicity would have to follow from the geometrical
optics involved in point transformation and projection, and the more realistic case of objects endowed
with surfaces, in which monotonicity would have to depend on the imaging geometry, on surface
photometry, and, eventually, on the transduction properties of the receptive fields in the processing
pathway. A recent computational investigation indicates that monotonicity indeed obtains in both
those cases (see Duvdevani-Bar and Edelman, 1994, for details).

As to the last two points in the above list, they may be seen to parallel the requirements of
high degree of overlap or redundancy, and of graded profile of RFs. The redundancy requirement is
fulfilled by biological perceptual systems at every level of representation. Moreover, the sigmoidal
response characteristics of units throughout the visual system (and, in fact, the sigmoidal psycho-
metric curves produced by a behaving organism as a whole) can frequently be linearized around a

given operating point, making linearity a plausible assumption in many cases.

°Cf. John Locke: “..in all the visible corporeal World, we see no Chasms, or Gaps. All quite down from us, the
descent is by easy steps, and a continued series of Things, that in each remove, differ very little one from the other.”

(Kornblith, 1993, p.20).
SLocke’s much criticized concept of representation by covariation (Cummins, 1989) may after all deserve a

reconsideration.



4.2 Relationship to multidimensional scaling

The role of multidimensional scaling in the proposed representational framework must be further
clarified. MDS has been originally developed as a method for the recovery of a metric structure of a
set of points from measurements of quantities monotonically related to pairwise distances between
those points. When MDS is applied as a tool for the study of internal representations, care must
be taken to ensure that its basic assumptions are satisfied (e.g., that it makes sense to assume that
the representation space is metric, etc; (Beals et al., 1968)). Unlike in the application of MDS in
psychophysics, where the inference is from the derived overt measurements to the primary structure
of the hidden inner space, in perception the purported inference is from the derived inner (proximal)
similarities to the primary distal ones. This means that the metric properties are attributed first
and foremost to the distal (real-world) entities. Locke’s observation regarding the “continuity” of
real-world objects, as well as the more recent exercises in computer graphics in which 3D objects are
made to deform smoothly into each other, should convince us that this attribution is not entirely
unfounded. As to the nature of the inner representation space, the monotonic transduction process
enables this space to reflect the distal metrics.

Faithful proximal recovery of the metrics of the distal space does not preclude additional factors
(such as top-down influences) from introducing occasional violations of the metric axioms; it merely
provides a principled basis for the representation of the smooth order of the natural kinds, which can
be subsequently warped, as in the phenomenon of categorical perception (Harnad, 1987). When such
warping occurs, associations acquired through experience or instruction may affect the structure of
the representational space by tying together some of its points that normally are far apart. As a
simple example, one may think of the association between the ringing of a bell and the smell of food

in Pavlov’s dogs.”

4.3 The hierarchy of features and dimensionality reduction

An implementation of Chorus along the lines suggested above would include a layer of primitive
feature detectors, an intermediate layer of persistent features, and an output layer of ephemeral
feature detectors. Two questions that may be raised regarding this structure are (1) whether the
persistent representation layer can be left out altogether, and (2) whether more than one such layer
would impute additional computational power to the system. Suppose that the primitive features
are oriented patterns similar to the receptive field profiles of simple cells in the primary visual cortex.
An activity of a collection of such feature detectors can signal reliably the presence of a complex
object such as a face. If a new face is shown to the system, the primitive feature pattern will change
according to the dissimilarity between the new face and the old one. However, this change will reflect

distance in the primitive feature space, rather than in “face space” (see Figure 4). Consequently, a

"In visual neurophysiology, cortical representation of random associations between image pairs has been demon-
strated in the monkey (Sakai and Miyashita, 1992); a possible computational role of such associations is discussed in

(Edelman and Weinshall, 1991).



system without a persistent and dedicated representation of faces would be subject to an atomistic
bias of the kind found, e.g., in pigeons (Cerella, 1987), but not in humans.

The above intuition can be made more precise by invoking the notion of task-dependent di-
mensionality reduction. Note that whereas the pattern of activity at the primitive feature level
constitutes a fine-grained representation of the stimulus, it is not particularly suitable for classifi-
cation, because it involves, at the same time, similarity to all possible parts of all objects known to
the system. The move to the persistent representation layer is more useful in this respect, because
it corresponds to similarity in a considerably lower-dimensional shape space. Moreover, dimension-
ality reduction performed by measuring distances between the stimulus and the persistent complex
features has the desirable mathematical property of approximate isometry (that is, it is likely to
preserve the metric structure of the input space; see Duvdevani-Bar and Edelman, 1994). Thus,
the involvement of persistent features permits dimensionality reduction (an essential step in any
system that is to learn from examples (Poggio and Girosi, 1989)) to be done in a principled manner,
preserving the metric information inherent in the primitive-feature representation.

Would additional “hidden” layers of (persistent) feature detectors improve the learning ability
and the generalization performance of Chorus? If learning is treated as function approximation
(Poggio, 1990), one hidden layer suffices under a broad range of conditions on the inputs and on
the primitive features (Cybenko, 1989; Girosi and Poggio, 1990; Hartman et al., 1990). It should be
noted, however, that if the metrics of the top-level representation space are to differ qualitatively
from the metrics at the base representation level, more layers of function approximation modules
may become necessary. Consider, for example, the case of a 3D object undergoing transformation
in space. As pointed out by Shepard (1987), generalization to a novel pose of such an object may
be nonmonotonic, depending on the symmetry properties of the object. Similarly, Biederman and
Cooper (1991) showed that subjects generalize perfectly across a mirror reflection of 3D objects. To
account for such nonmonotonic (at the level of the primitive features) generalization, an additional
level of processing in the visual system may have to be postulated, which would explicitly detect and
represent (or cancel out) the appropriate transformations. Alternatively, the requisite “distortions”
in the global metrics of the representation space can be introduced by long-range associations, as

hinted at the end of section 4.2.

4.4 Relationship to the Hyper Basis Function theory of the brain

The Chorus scheme bears a close relationship to the theory of the brain recently proposed by Poggio
(1990). This theory postulates that the main computational challenge which the brain must meet
is learning from examples, or, more specifically, smooth approximation of the function that maps a
stimulus to its desired response (or, in the case of perception, to the desired inner representation).
Given the values of the function at a number of sample points, the value at a new point is found
essentially by taking a linear combination of appropriately scaled basis functions centered on the

sample points (Poggio and Girosi, 1990).
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A clear analogy exists between the basis functions of the HBF model and the prototypes of
Chorus: the response profile of the prototype unit in Chorus can be considered as a basis function in
a network implementing HBF approximation. This analogy, as well as some fundamental conceptual

differences between the two schemes, are discussed below.

Smoothness vs. monotonic covariation. In HBF, the shape of the basis functions is determined
by the kind of smoothness assumption on the class of target functions that are to be approximated
(Poggio and Girosi, 1990). Similarly, in Chorus it is required that the physical description of an
object change smoothly as it becomes less and less like the prototype of its class. However, Chorus
imposes the additional requirement of monotonic covariation, over and above smoothness, and when
the monotonicity fails, the fidelity of the representation will suffer.

Consider, for example, objects composed of clouds of points in 3D. When two such objects rotate
in space, the image-plane distance between their chosen views (defined, e.g., as the sum of distances
between corresponding points) changes smoothly with rotation, but does not change monotonically.®
Interestingly, there are psychophysical indications (Edelman and Biilthoff, 1990) that subjects find it
more difficult to generalize over rotation in depth than over other transformations that are not even
rigid, such as 3D shear (note that shear causes a monotonic increase in the 2D pointwise distance

to a reference or prototype view).

Classification vs. recognition The above example of the failure of monotonicity suggests the
following division of labor between HBF approximation and Chorus (which, as a matter of fact, can
be implemented by a two-layer system of HBF modules; see appendix A). On the one hand, in the
recognition of different views of the same object, where the smoothness assumption is warranted
over the entire range of possible rotations (Ullman and Basri, 1991), but the monotonicity only holds
for a relatively small range of views around a given reference view, a straightforward application
of HBF appears to be a useful strategy (Poggio and Edelman, 1990). On the other hand, in the
classification of potentially unfamiliar objects, where in general there is no theoretical guarantee of
the applicability of HBF approximation, the reliance on monotonic transduction and a Chorus-like

scheme may be a more acceptable approach.

The required number of prototypes. In HBF, the minimum number of training stimuli nec-
essary for achieving a certain probabilistically guaranteed level of generalization performance can
be determined using the tools of computational learning theory (Haussler, 1992; Edelman, 1993). If
additional stimuli for which the generalization proves to be poor become available, the architecture
of the HBF module can be modified to accommodate the new data, without increasing the number

of layers (Platt, 1991). Similar considerations apply to Chorus, where the prototypes must cover

8Recall how strange did the “backtracking” of the apparent trajectories of the planets seem to the ancient

astronomers.
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the input space so that there is high likelihood that enough prototype units respond above floor and

below saturation, for any possible input.

Relationship to coarse coding. Both HBF approximation and the interaction of prototypes
in Chorus may be considered as computational implementations of the well-established notion of
coarse coding (Feldman and Ballard, 1982). Importantly, these two theories also contribute to the
explanatory value of coarse coding, by tying it to the notion of hyperacuity: what makes it work
is the computational advantage conferred by the use of overlapping graded receptive fields. On a
more general level, HBF and Chorus relate to complementary aspects of coarse coding. HBF and
the universal approximation theorems on which HBF relies reveal the power of coarse coding as a
device for mapping stimuli into representations. In comparison, Chorus stresses the importance of
identifying the conditions under which the resulting representations can be provably relevant to the

real world.

4.5 Biological considerations
4.5.1 Psychophysics

Subjects in a wide variety of generalization studies in different perceptual modalities have been found
to behave as if they represent the stimuli in a low-dimensional psychological space (Shepard, 1987),
as would be expected from an approach based on comparison of the stimulus with a small number of
prototypes. In a majority of these studies, however, the stimuli were structurally simple, indicating
that, at best, similarity relationships with respect to prototypes hold at the lower levels of the
relevant perceptual subsystems. For complex 3D object discrimination, results indicating possible
involvement of low-dimensional Chorus-type representations are becoming available (Cutzu and
Edelman, 1992; Edelman, 1994; see also appendix B). More research is needed to substantiate these
findings, and to define the relationships between Chorus and psychological theories of categorization

and recognition based on multivariate approaches (for a recent review see Ashby, 1992).

4.5.2 Physiology

The shallow representational hierarchy posited by Chorus is compatible with the current notions
of the function of the shape processing stream in primate vision. In the primate visual system,
the role of primitive features can be assigned tentatively to the orientation-selective simple and
complex cells in the primary visual cortex. Persistent representations would then correspond to the
inferotemporal (IT) cortex cells selective for faces and face parts (Gross et al., 1972; Perrett et al.,
1982; Perrett et al., 1989); these representations are expected, to a certain extent, to be modifiable
by practice (Rolls et al., 1989). Other objects, for which no specially selective cells have been found,
may be represented ephemerally.

The cells in V4 and IT selective for well-defined and rather complex shapes, described by Tanaka

12



and his collaborators (Tanaka, 1992), are another example of possible hardwired persistent represen-
tations. (Fujita et al., 1992) recently reported that the shape-selective cells may in fact be arranged
in a columnar format, ordered by shape preference, along the surface of the cortex. This finding is
particularly relevant because orderly columnar arrangement is frequently explained by appeal to the
need for an analog representation of similarity by physical distance on the cortex. Such an analog
mechanism would greatly assist the implementation of Chorus in neural hardware.

It is interesting to note that the receptive field, which is, according to the original definition the
part of the visual space to which a given unit is sensitive, can actually be defined with respect to
three different spaces. The first two of these are defined by the transformations under which the
retinal projection of the stimulus preserves its rigid structure. Thus, the translation space yields
the classical notion of retinotopic receptive field, while the rotation about the optical axis of the
system exposed to a bar stimulus yields what is usually termed the orientation selectivity curves
of, say, the simple cells in V1. Finally, there is the shape space, whose dimensions are defined by
the possible deformations of the stimulus. In this space, the receptive field means simply the shape
selectivity profile of the unit in question.

The present work concentrates on the properties of receptive fields in the shape space, where the
main computational problem is making sense of objects not previously seen before. The problems of
dealing with objects translated or rotated in depth (and the associated notions of receptive fields in
transformation spaces) are considered to be of secondary importance. The reasons for this decision
are derived from the availability of biologically motivated models that can support invariance to rigid
transformations and to scaling (Schwartz, 1985; Anderson and Essen, 1987), or tolerate rotation in
depth by learning to compensate for it from examples (Poggio and Edelman, 1990). The possibility
of discounting such transformations prior to dealing with shape is actually beneficial for the present
model. A more intriguing idea is that of mutability of the receptive fields in the shape space itself.
For example, it has been demonstrated that the selectivity profile of V4 receptive fields can be
manipulated by the parameters of the task (Spitzer et al., 1988). The computational considerations
stated in section 4.1 suggest that the shape selectivity profile of IT cells should be sufficiently broad,
as in (Desimone et al., 1984): “most of the stimulus-selective cells gave at least a small response to
virtually every stimulus tested, especially complex stimuli.” A subsequent increase in the response
specificity (leading to the relatively sharply tuned responses such as those found by Tanaka’s group)

9 Findings of such plasticity

can be precipitated by familiarity with the stimuli (Li et al., 1993).
of receptive fields in shape space should eventually determine the degree of permanence of the

persistent representations postulated by Chorus.

?Notably, a massive increase in the incidence of IT cells selective to a set of shapes was found after prolonged

exposure to the chosen shapes (Tanaka, 1993).
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4.6 Philosophical considerations

The central philosophical statement of Chorus, being largely an allusion to Locke’s notion of repre-
sentation by covariation, has to do with the problem of distal knowledge. This classical epistemolog-
ical problem resurfaced in experimental psychology because of the need to provide a foundation for
multidimensional scaling, conceived as a psychologist’s tool in understanding perception. Because
the present paper aims to introduce Chorus as a computational foundation for representation, I will
avoid philosophical technicalities such as the formal content of representation by prototypes (pace
(Fodor, 1981); these issues will be discussed elsewhere), and will remark instead on the psychological
roots of Chorus, having discussed its computational characteristics in the preceding sections.
Much of the original motivation for the development of multidimensional scaling was provided by
considerations not unlike the notion of multiple simultaneous measurements underlying Chorus. For
example, in an early work, Thurstone (1927) proposed an empirical law relating the psychological
distance between two stimuli to the dispersion of their difference as judged by an observer over a
series of trials. Thurstone also suggested (ibid., p.278) that an equivalent law may hold in the case
involving many observers each of whom makes a single comparative judgment (the analogy here
is between a collection of observers making a simultaneous judgment and a system of persistent
feature detectors in Chorus). This multiple-“observer” approach appears to provide a realistic basis
for the modeling of statistical aspects of perception. Real perceptual systems rarely have the chance
to experience a given stimulus repeatedly (Bialek et al., 1991), hence the value of a simultaneous
analysis of the input via a number of parallel channels. Related ideas may be found in Brunswik’s
(1956) “lens model” of perception and response, and in Feigl’s (1958) notion of “triangulation.”
Campbell (1985) formulates it as follows: “From several widely separated proximal points, there is
triangulation upon the distal object, “fixing” it and its distance in a way quite impossible from a

single proximal point. Binocular vision can be seen quite literally as such a triangulation.”!®

5 Conclusions

5.1 Summary

The central tenet of Chorus is that a perceptual object can be effectively represented by computing
its similarity to a collection of prototypes of related object classes. A set of similarity values, one per
prototype, is needed; if these values are summed, as in (Nosofsky, 1991), important information is
lost. Chorus is motivated by empirical observations of the performance of a computer scheme for face

recognition (Edelman et al., 1992), and by recent neurobiological findings regarding the functional

1°0f course, triangulation is in fact the least difficult problem in stereopsis, the most difficult one being the recovery
of the correspondence between scene features in the two images (Marr and Poggio, 1979). Similarly, in an application of
MDS to perception, care must be taken to ensure that the difficult part of the procedure (e.g., the choice of transducer
RF profiles and of the prototypes to be stored) is computationally feasible.
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architecture of the inferotemporal cortex in the monkey (Tanaka, 1992). Computationally, Chorus

relies on two phenomenas:

o Hyperacuity: the possibility of achieving hyperacuity-level performance in a system of over-

lapping graded receptive fields (Altes, 1988; Snippe and Koenderink, 1992);

o Multidimensional scaling: the sufficiency of a set of perceptual (proximal) distances between
stimuli representations for the recovery of the corresponding distal contrasts between stimuli

(Shepard, 1980).

The proposed concept of representation appears to be computationally viable, and is compatible

with a range of findings from psychophysics and neurobiology of vision.

5.2 Implications

The “binding problem.” By offering an alternative to the structural approaches to representa-
tion, the present framework may obviate the computational need for binding, because it represents
structure effectively by responding multiply and selectively to structure present in the input.!! The
so-called binding problem arises because of the natural propensity of the structural approaches first
to take the represented objects apart (by describing them in terms of generic primitives), only to
face later the problem of putting them together again, usually in the form of a computational struc-
ture known as an attributed graph. Modelers nowadays tend to “solve” the binding problem by
postulating mechanisms for biological implementation of abstract graphs, such as coupled oscilla-
tions that maintain phase lock across significant distances in the cortex (Hummel and Biederman,
1992). No evidence for such mechanisms has, however, been found in primates (Young et al., 1992).
Thus, a scheme that circumvents binding altogether (see Figure 4) enjoys the advantage of biological

plausibility over the standard structural approaches.

Invariances. Because Chorus relies on a proximal recovery of the metrics of the distal shape space,
any factor that acts along the pathway that leads from the true shape via the imaging process to
the internal representation may interfere with the veridicality of that representation. For example,
Adini et al. (1993) showed that the pixel-based distance between two images of the same face taken
under two different illuminant directions may be greater than the distance between the images of
two different persons under similar illumination. In other words, in this case the metrics prevailing
in the image space as a result of illumination changes would not allow Chorus to operate properly.
It appears, however, that this problem largely disappears already in the space of center-surround
receptive fields resembling those of the ganglion cells at the output of the retina, because of the
spatial frequency selectivity of such RFs (Weiss and Edelman, 1993). It remains to be seen whether
the principle of “amending the metrics” can be applied to the understanding of other biological

information processing subsystems.

" This may be compared to the idea of representations being in the world, rather than in the head (Putnam, 1988).
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5.3 Prospects

The applicability of MDS to the understanding of biological information processing in areas other
than vision appears to be worth exploring. Olfaction seems to be a promising candidate for modeling
in terms of representation by similarity (see Granger and Lynch 1991, p.211; neurophysiological
findings that agree with a recent hierarchical clustering model of the piriform cortex have been
reported in (McCollum et al., 1991)). Another area in which similarity-based models are likely to
emerge is speech perception (Miller and Eimas, 1979). In psychophysical problems that arise in all
domains of perception, MDS may provide the guiding principle whereby a perceptual system can
estimate physical (distal) qualities from the psychological (proximal) measurements it performs on
the world.

As a more far-fetched issue, one may consider the relevance of MDS-like models to the un-
derstanding of how language bridges the gap separating the mental representation spaces of the
communicants. Across this gap, the similarity structure of the individual representation spaces may
still be recoverable via MDS, from the patterns of activities evoked internally by exposure to the
linguistic stimuli. In this connection, it is interesting to note that both epistemological considera-
tions (Quine, 1960; Quine, 1969) and psycholinguistic evidence (Markman, 1989) point towards the
advantage of holistic treatment of stimuli in the process of concept acquisition by ostension (that is,
in learning by hearing the word applied to samples of the concept, without prior knowledge of the
relevant features of the concept; see Quine, 1969). This bias towards an initially holistic approach
in concept learning may correspond to the need to acquire a rudimentary basis of persistent proto-
types, which then serve as yardsticks used by the perceptual system to measure the world (Stich,
1990; Margolis, 1991). Thus, it may turn out that at least part of the philosophy of representation

s a footnote — not to Plato, but to Protagoras.
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Appendices

A Computer recognition of faces

This appendix is a short account of the experiments with a two-stage computer program for face
recognition reported in (Edelman et al., 1992). In the first stage (see Figure 5), the base represen-
tation (the activities of seventy-odd receptive fields spread over the input image) was fed to a bank
of 16 individual classifiers, each implemented as RBF networks (Poggio and Girosi, 1990; Poggio
and Edelman, 1990) and trained to respond to the face of a particular person. The second stage
RBF module was trained on the vectors of responses of the individual classifiers and was required to
produce a vector of length 16 with just one dominant component (corresponding to the recognized
individual).

The recognition program was tested on a subset of the MIT Media Lab database of face images
made available by Turk and Pentland (1991), which contained 27 face images of each of 16 different
persons. The images were taken under varying illumination and camera location. Of the 27 images
available for each person, 17 randomly chosen ones served for training the program, and the remain-
ing 10 were used for testing. A different recognizer was created for each person, and was trained to
output 1 for the images in the training set.

The performance of the individual recognizers was assessed by computing a 16 x 16 confusion
table, in which the entries along the diagonal signified mean miss rates and the off-diagonal entries
— mean false alarm rates (see Figure 6).!2 An examination of the confusion table reveals that
some of the individuals tended to be confused with almost any other person in the database. To

> another RBF module was trained to accept vectors

take advantage of this “ensemble phenomenon,’
of individual recognizer activities and to produce vectors of the same length in which the value
corresponding to the activity of the correct recognizer was 1, and all other values were 0 (see
Figure 5). The training set for the second-stage RBF module was obtained by pooling the training
sets of all 16 first-stage recognizers. The outcome of the recognition of a test image was determined
by finding the coordinate in the output vector whose value was the closest to 1. The performance of
the two-stage scheme was considerably better than that of the individual recognizer stage alone (9%

error rate, compared to 22% ), demonstrating the importance of ensemble knowledge for recognition.

2The table was computed row by row, as follows. First, recognizer for the person whose name appears at the
head of the row was trained. Second, the recognition threshold was set to the mean output of the recognizer over the
training set less two standard deviations. Third, the performance of the recognizer on the test images of the same
person was computed and the miss rate entered on the diagonal of the table. The above choice of threshold resulted in
a mean miss rate of about 10%. Finally, the false alarm rates for the recognizer on the images of the other 15 persons

were computed and entered under the appropriate columns of the table.
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B Similarity to prototypes in 3D shape discrimination

Subjects in a wide variety of generalization tasks in a number of perceptual modalities behave as if
they represent the stimuli in a low-dimensional psychological space (Shepard, 1987, for a review).
The four experiments, described fully in (Edelman, 1994) and summarized here, were designed (1)
to find out whether similarity in a low-dimensional feature space is a good predictor of performance
in 3D shape discrimination, and (2) to characterize such a feature space in objective terms.

Fourteen subjects performed a delayed match to sample task, with each of the two stimuli
belonging to a set of 16 images (2 object classes X 2 exemplars x 4 orientations). The object classes
in the four experiments were, respectively, animal shapes, scrambled animal shapes, wires made
of distinctive 3D segments (geons), and wires made of plain cylinders. Stimuli were rendered as
shaded matte metal and displayed on a computer. Response time (RT) data from each subject were
entered in a 16 x 16 confusion table arranged by stimulus identities (RTs of correct “yes” responses
unmodified; RTs of correct “no” responses as maxg,;; —RT; erroneous responses yielded missing
values).

The RT data were assumed to be monotonically related to distances among relevant represen-
tations of the stimuli in the hypothesized feature space. The confusion tables were submitted to
a nonmetric multidimensional scaling analysis. For animal shapes, but not for wires, the resulting
2D configuration revealed an astonishingly faithful replica of the low-dimensional structure of the
parameter space used to generate the stimuli, namely, the distinction between the two object classes,
and the orthogonal within-class variation. A similar configuration was obtained with a prototype-
based model that operated on the same images seen by the human subjects (a simpler model based
on dissimilarities between vectors of receptive field activities did not perform as well). This finding
is compatible with the notion that the feature space involved in the classification decision made by

the subjects is spanned by distances to the class prototypes, as called for by the Chorus scheme.
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Figure 3: Multidimensional scaling (MDS) and the problem of distal knowledge (in biological sys-
tems, the proximal representations are really patterns of responses of spatial filters, and not little
pictures of the represented objects; see section 3.2). A discussion of this problem and of possible

approaches to its solution can be found in (Campbell, 1985).
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Figure 4: The requirement that the representation of the face in image A be closer to that in image B
than to C constrains the level at which faces should be represented. Specifically, a representation
at the level of mere presence of individual features appears inadequate; the spatial relationships
among the features must be encoded as well. Within the Chorus framework, these relationships are

encoded at the level of persistent representations.
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Figure 5: The two-stage scheme for face recognition (Edelman et al., 1992); see appendix A.
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Figure 6: A confusion table representation of the performance of the first stage of the face recognition
system, described in appendix A. Entries along the diagonal correspond to the “miss” error rates;

off-diagonal entries signify the “false-alarm” error rates (zeros omitted for clarity).
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