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Seeing is forgetting the name of the thing one sees.

Paul Valéry (1871-1945)

If you are looking at the object, you need not think of it.1

Ludwig Wittgenstein (1889-1951)

1.1 Introduction

A decisive resolution of the problems of high-level vision is at present
impeded not by a shortage of computational ideas for processing the
array of measurements with which vision begins, but rather by certain
tacit assumptions behind the very formulation of these problems.

Consider the problem of object recognition. Intuitively, recognition
means determining whether or not the input contains a manifestation
of a known object, and perhaps identifying the object in question. This
intuition serves well in certain contrived situations, such as character
recognition in reading or machine part recognition in an industrial set-
ting — tasks that are characterized first and foremost by only involving
objects that come from closed, well-defined sets. An effective computa-
tional strategy for object recognition in such situations is to maintain a
library of object templates and to match these to the input in a flexi-
ble and efficient manner (Basri and Ullman, 1988; Edelman et al., 1990;
Huttenlocher and Ullman, 1987; Lowe, 1987).

In categorization, where the focus of the problem shifts from identify-
ing concrete shapes to making sense of shape concepts, this strategy be-
gins to unravel — not because flexible template matching as such cannot

3



4 S. Edelman

keep up with the demands of the task, but rather because the template
library is no longer well-defined at the levels of abstraction on which the
system must operate. The established approaches to both recognition
and categorization are thus seen to suffer from the same shortcoming:
an assumption that the input is fully interpretable in terms of a finite
set of well-defined visual concepts or “objects.”

In this chapter, I argue that forcing a specific and full conceptual
interpretation on a given input may be counterproductive not only be-
cause it may be a wrong conceptual interpretation, but also because the
input may best be left altogether uninterpreted in the traditional sense.
Non-conceptual vision is not widely studied, and yet it seems to be the
rule rather than the exception among the biological visual systems found
on this planet, including human vision in its more intriguing modes of
operation (Edelman, 2008, ch.5).

To gain a better understanding of natural vision, and to make progress
in designing robust and versatile artificial visual systems, we must there-
fore start at the beginning, by carefully considering the range of tasks
that natural vision has evolved to solve. In other words, we must sooner
rather than later face up to the question of what it means to see.

1.2 Seeing vs. “seeing as”

In his epochal book Vision, David Marr (1982) offered two answers to the
question of what it means to see: one short and intuitive, the other long,
detailed, and computational. Briefly, according to Marr, to see means
“to know what is where by looking” — a formulation that expresses the
computational idea that vision consists of processing images of a scene
so as to make explicit what needs to be known about it. On this account,
“low-level” vision has to do, among other things, with recovering from
the stimulus the positions and orientations of visible surfaces (perhaps
in the service of navigation or manipulation), and “high-level” vision
with determining which of the known objects, if any, are present in the
scene.

The research program initiated by Marr and Poggio (1977), now in
its fourth decade, spurred progress in understanding biological vision
and contributed to the development of better machine vision systems.
Most of the progress has, however, been confined to the understanding
of vision qua interpretation, rather than of vision per se. The difference
between the two is best introduced with a selection of passages from
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Wittgenstein (1958), who distinguished between “seeing” and “seeing
as”:

Two uses of the word “see.”
The one: “What do you see there?” — “I see this” (and then a description, a
drawing, a copy). The other: “I see a likeness between these two faces” [. . . ]
I contemplate a face, and then suddenly notice its likeness to another. I see
that it has not changed; and yet I see it differently. I call this experience
“noticing an aspect.” [. . . ]
I suddenly see the solution of a puzzle-picture. Before, there were branches
there; now there is a human shape. My visual impression has changed and
now I recognize that it has not only shape and color but also a quite particular
‘organization.’ [. . . ]
Do I really see something different each time, or do I only interpret what I see
in a different way? I am inclined to say the former. But why? — To interpret
is to think, to do something; seeing is a state.

— Wittgenstein (1958, part II, section xi)

A little reflection reveals that the two kinds of seeing — I’ll call the
first one “just seeing” to distinguish it from “seeing as” — are related
to each other. Informally, the ultimate level of “just seeing” would be
attained by a system that can see any possible scene “as” anything at
all — that is, a system that can parse differences among scenes in every
conceivable way, by varying the labels it attaches to each discernible
“aspect” of the input, to use Wittgenstein’s expression (these aspects
need not be spatial).2

Semi-formally, the power of a visual system can be quantified by treat-
ing scenes as points in some measurement space, s ∈ S, which are to
be distinguished from one another by being classified with respect to a
set of concepts C. A system is powerful to the extent that it has both a
high-resolution measurement front end and a sophisticated conceptual
back end (a 12-megapixel digital camera and a person with low vision
are both not very good at seeing, for complementary reasons). If, how-
ever, the dimensionality of the measurement space is sufficiently high,
the system in question will be able at least to represent a very large
variety of distinct scenes.3 Let us, therefore, assume that the dimen-
sionality of the measurement space is in the mega-pixel range (as indeed
it is in the human retina) and proceed to examine the role of conceptual
sophistication in seeing.

This can be done by formalizing the visual system’s conceptual back
end as a classification model. The model’s power can then be expressed
in terms of its Vapnik-Chervonenkis or VC dimension (Vapnik, 1995;
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Vapnik and Chervonenkis, 1971). Consider a class of binary concepts
f ∈ C defined over a class of inputs (that is, measurements performed
over scenes from S), such that f : S → {0, 1}. The VC dimension
V Cdim(C) of the class of concepts (that is, of the model that constitutes
the categorization back end of the visual system) quantifies its ability to
distinguish among potentially different inputs. Specifically, the V Cdim

of a concept class C is defined as the cardinality of the largest set of
inputs that a member concept can shatter.4

Because classifying a scene as being an instance of a concept amounts
to seeing it as something, we have thus effectively formalized the notion
of “seeing as.” We are now ready to extend this framework to encompass
the ability to “just see.” The key observation is this: among several con-
ceptual systems that happen to share the same measurement space, the
one with the highest VC dimension is the most capable of distinguishing
various subtle aspects of a given input. In other words, to progressively
more complex or higher-V Cdim visual systems, the same scene would
appear richer and more detailed — a quality that translates into the
intuitive notion of a progressively better ability to “just see.”

It is worth recalling that the VC dimension of a class of visual concepts
determines its learnability: the larger V Cdim(C), the more training ex-
amples are needed to reduce the error in generalizing C to new instances
below a given level (Blumer et al., 1986; Edelman, 1993). Because in
real-life situations training data are always at a premium (Edelman and
Intrator, 2002), and because high-V Cdim classifiers are too flexible and
are therefore prone to overfitting (Baum and Haussler, 1989; Geman
et al., 1992), a purposive visual system should always employ the sim-
plest possible classifier for each task that it faces. For this very reason,
purposive systems that are good at learning from specific experiences are
likely also to be poor general experiencers: non-conceptual and purpose-
less experience of “just seeing” means being able to see the world under
as many as possible of its different aspects, an ability which corresponds
to having a high V Cdim.5

To clarify this notion, let us now imagine some examples. A rather
extreme one would be a pedestrian avoidance system installed in a car,
which sees any scene s that’s in front of it either as an instance of
a class C1 = {s | endangered pedestrian(s) = 1} or as an instance
of C2 = {s | endangered pedestrian(s) = 0}. Note that C2 is a rather
broad category: it includes elephants, ottoman sofas, and heaps of salted
pistachios, along with everything else in the universe (except, of course,
some pedestrians). I would argue that the ability of such a pedestrian
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avoidance system to “just see” is very limited, although it is not to be
dismissed: it is not blind, merely egregiously single-minded.

In contrast, the ability of a human driver to “just see” is far more
advanced than that of a pedestrian-avoidance module, because a human
can interpret any given scene in a greater variety of ways: he or she can
harbor a much larger number of concepts and can carry out more kinds
of tasks. The human ability to “just see” is, however, very far from ex-
hausting the range of conceivable possibilities. Think of a super-observer
whose visual system is not encumbered by an attention bottleneck and
who can perceive in a typical Manhattan scene (say) the location and
disposition of every visible building and street fixture and can simulta-
neously track every unattached object, including chewing gum wrappers
and popcorn kernels, as well as discern the species and the sex of every
animal within sight, including pigeons, pedestrians, and the occasional
rat.

A being with such powers of observation would be very good at “seeing
as”: for instance, should it have had sufficient experience in outer space
travel, it may be capable of seeing the street scene as a reenactment of
a series of collisions among rock and ice fragments in a particular cubic
kilometer of the Oort cloud on January 1, 0800 hours UTC, 2008 CE,
which it happened to have viewed while on a heliopause cruise. Equally
importantly, however, it would also be very good at “just seeing” — a
non-action6 in which it can indulge merely by letting the seething mass
of categorization processes that in any purposive visual system vie for
the privilege of interpreting the input be the representation of the scene,
without allowing any one of them to gain the upper hand.7

Note that although the evolution of visual systems may well be driven
by their role in supporting action and by their being embodied in active,
purposive agents (Noë, 2004), once the system is in place no action is
required for it to “just see” (Edelman, 2006). When not driven by the
demands of a specific task, the super-observer system just imagined may
see its surroundings as nothing in particular, yet its visual experience
would be vastly richer than ours, because of the greater number of as-
pects made explicit in (and therefore potential distinctions afforded by)
its representation of the scene.

This brings us to a key realization: rather than conceptual, purposive,
and interpretation-driven, visual experience, whether rich or impover-
ished, is representational. As Wittgenstein (1958) noted, “To interpret
is to think, to do something; seeing is a state.”8 We are now in a posi-
tion to elaborate on this observation: seeing is a representational state
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(Edelman, 2002; for a detailed discussion, see Edelman, 2008, sec. 5.7
and 9.4).

1.3 A closer look at “seeing as”

The foregoing discussion suggests that to understand the computational
nature and possible range of pure visual experience, or “just seeing,”
we must first understand the nature of conceptual vision, or “seeing
as,” of which “just seeing” is a kind of by-product (at least in evolved
rather than engineered visual systems). In the early years of principled
computational study of vision, the efforts to understand “seeing as”
focused on charting the possible paths leading from raw image data to
seeing the world as a spatial arrangement of surfaces, volumes, and,
eventually, objects (Aloimonos and Shulman, 1989; Marr, 1982; Marr
and Nishihara, 1978). The key observation, due to Marr, was that this
goal could be approached by processing the input so as to make explicit
(Marr, 1982, pp.19-24) the geometric structure of the environment that
is implicitly present in the data. This research program thus amounts
to an attempt to elucidate how the geometry of the world could be
reconstructed from the visual input.

Both the feasibility of and the need for an explicit and sweeping re-
construction of the geometry of the visual world have been subsequently
questioned (Aloimonos et al., 1988; Bajcsy, 1988). Noting that biological
vision is purposive and active, researchers proposed that computer vision
too should aim at serving certain well-defined goals such as navigation or
recognition rather than at constructing a general-purpose representation
of the world. Moreover, a visual system should actively seek information
that can be used to further its goals. This view rapidly took over the
computer vision community. At present, all applied work in computer
vision is carried out within the purposive framework; the role of active
vision is especially prominent in robotics.

From the computational standpoint, this development amounted to
shifting the focus of research from “inverse optics” approaches (Bertero
et al., 1988), which aim to recover the solid geometry of the viewed
scene, to managing feature-based evidence for task-specific hypotheses
about the input (Edelman and Poggio, 1989). This shift occurred in
parallel with the gradual realization that the prime candidate framework
for managing uncertainty — graphical models, or Bayes networks — is
ubiquitous in biological vision (Kersten et al., 2004; Kersten and Yuille,
2003; Knill and Richards, 1996), as it is, indeed, in cognition in general
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(Chater et al., 2006). Importantly, the Bayesian framework allows for a
seamless integration of bottom-up data with prior assumptions and top-
down expectations, without which visual data are too underdetermined
to support reliable decision-making (Marr, 1982; Mumford, 1996). Such
integration is at the core of the most promising current approaches to
object and scene vision (Fei-Fei et al., 2003; Freeman, 1993; Torralba
et al., 2003), including the explicitly generative “analysis by synthesis”
methods (Yuille and Kersten, 2006).

1.4 The problems with “seeing as”

Both major approaches to vision — scene reconstruction and purposive
processing — run into problems when taken to the limit. On the one
hand, vision considered as reconstruction is problematic because com-
plete recovery of detailed scene geometry is infeasible, and because a
replica of the scene, even if it were available, would not in fact further
the goal of conceptual interpretation — seeing the scene as something
(Edelman, 1999). On the other hand, extreme purposive vision is prob-
lematic because a system capable of performing seventeen specific tasks
may still prove to be effectively blind when confronted with a new, eigh-
teenth task (Intrator and Edelman, 1996). To better appreciate the
issues at hand, let us consider three factors in the design of a visual
system: the role of the task, the role of the context in which a stimulus
appears, and the role of the conceptual framework within which vision
has to operate.

1.4.1 The role of the task

Given that biological visual systems are selected (and artificial ones en-
gineered) not for contemplation of the visible world but for performance
in specific tasks, it would appear that the purposive approach is the
most reasonable one to pursue — provided that the list of visual tasks
that can possibly matter to a given system is manageably short. Decid-
ing whether the purposive approach is feasible as a general strategy for
vision reduces therefore to answering the question “What is vision for?”
In practice, however, the need to develop a taxonomy of visual tasks has
not been widely recognized in vision research (the works of Marr (1982),
Ballard (1991), Aloimonos (1990), and Sloman (1987, 1989, 2006) are
some of the rare exceptions).
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The unavailability of a thorough, let alone complete, taxonomy of vi-
sual tasks has a reason other than the sheer tediousness of taxonomic
work. The reason is this: insofar as vision is to be useful to an active
agent (biological or engineered) in confronting the real world, it must be
open-ended. Specifying ahead of time the range of tasks that a visual
system may need to face is impossible because of a very general property
of the universe: the open-endedness of the processes that generate com-
plexity — especially the kind of complexity that pervades the biosphere
(Clayton and Kauffman, 2006).

The relentless drive toward higher complexity in ecosystems can be
illustrated by the simple example of a situation in which a predator must
decide between two species of prey: inedible (toxic) “models,” and edible
“mimics” (Tsoularis, 2007). The resort to mimicry by the edible prey
presents a computational challenge to the predator, whose perceptual
system must learn to distinguish among increasingly similar patterns
presented by the prey, on the pain of indigestion, starvation, and possibly
death.9 The mimic species faces a similar perceptual challenge (albeit
dissimilar consequences of a wrong decision) in mate choice.10 Crucially
for the evolution of a visual system that is thrown into the midst of such a
computational arms race, mimicry situations typically involve “rampant
and apparently easy diversification of mimetic patterns” (Joron, 2003).

Note that counting new perceptual distinctions as new “tasks” in the
preceding example falls squarely within the computational complexity
framework based on VC dimension, which is all about counting ways to
classify the data into distinct categories. Complexity theory is neutral
with respect to the actual methods whereby classification can be learned
and progressively finer perceptual distinctions supported. Of the many
such methods (Hastie et al., 2001), I mention here one of the simplest,
the Chorus of Prototypes (Edelman, 1998, 1999). According to this
method, the representation space into which new stimuli are cast and in
which the categorization decision is subsequently made is spanned by the
outputs of filter-like units tuned to some of the previously encountered
stimuli (the “prototypes”) — a representation that can be learned sim-
ply by “imprinting” units newly recruited one after another with select
incoming filter patterns.

Employing the terminology introduced earlier, we may observe that
a stimulus presented to such a system is thereby simultaneously “seen
as” each of the existing prototypes (in a graded rather than all-or-none
sense, because the responses of the prototype units are graded). The
denser the coverage of a given region of the stimulus space by prototypes,
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the finer the discrimination power that is afforded in that region to the
system by the vector of similarities to the prototypes (and the higher the
VC dimension of the system). Crucially, if discrimination is deferred,
the mere representation of the stimulus by the outputs of the prototype-
tuned filters still amounts to “just seeing” it — that is, to having a visual
experience whose richness is determined by the dimensionality and, very
importantly, by the spatial structure and the prototype composition of
the representation space.

Why do the structure and the composition of the representation space
spanned by the system’s conceptual back end matter so much? Although
any input scene is necessarily also represented in the front end (as a vec-
tor of pixel values or photoreceptor activities), this more primitive rep-
resentation does not make explicit various behaviorally and conceptually
consequential aspects of the scene. The human visual system harbors
both raw (pixel-like) representations and a great variety of structured
ones, while a pedestrian detection system may only need the former; this
is why a human is much better not only at seeing the visual world as
a profusion of objects, but also at “just seeing” it (insofar as he or she
can make sure that “seeing as” does not get in the way).11

1.4.2 The role of context

The runaway proliferation of visual tasks, which as noted above include
the distinctions that need to be made among various stimuli, stems not
only from the complexity of the stimuli by themselves, but also from
the diversity of the contexts in which they normally appear. This latter,
contextual complexity figures prominently in what Sloman (1983, p.390)
called “the horrors of the real world” that beset computer vision systems.

One problem posed by real-world scenes is that recognizable objects,
if any, tend to appear in the wild against highly cluttered backgrounds
(Oliva and Torralba, 2007). I illustrate this point with two photographs:
Figure 1.1, top, shows an urban scene in which some common objects (a
car, a cat, a house) appear at a medium distance; Figure 1.1, bottom,
shows a close-up of a rain-forest floor centered on a snail clinging to a rot-
ting mango. Reliable detection (let alone recognition) of objects in such
scenes was impossible until recently in computer vision. Highly purpo-
sive systems limited to dealing with a small number of object classes are
now capable of finding their target objects in cluttered scenes, by em-
ploying Bayesian methods that combine bottom-up and top-down cues
(Torralba et al., 2003; Weber et al., 2000; Yuille and Kersten, 2006).
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Fig. 1.1. Two real-world scenes. Top: an urban environment, mid-distance.
Bottom: a natural environment, close-up.

Being class-specific, these methods cannot, however, solve the wider
problem posed by real-world clutter: the impossibility of constructing
an exhaustive and precise description of any scene that is even halfway
interesting. The best that a targeted recognition system can hope for
is attaining a sparse, conceptual description, as when the arid pasture
scene of Figure 1.2, top, is mapped into the set of spatially anchored
labels shown at the bottom. By now, computer vision researchers seem
to have realized that reconstructing the detailed geometry of such scenes,
in which the shape and pose of every pebble and the disposition of every
blade of grass is made explicit (as in the 2 1

2D sketch of Marr (1982) or
the intrinsic images of Barrow and Tenenbaum (1978)), is not feasible
(Barrow and Tenenbaum, 1993; Dickinson et al., 1997).
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Fig. 1.2. Two versions of a real-world scene. Top: a natural environment.
Bottom: the same natural scene, represented by spatially anchored conceptual
labels.

Our visual experience would be impoverished indeed if we were capa-
ble of seeing the scenes of Figures 1.1 and 1.2 only “as” parked car, rotting

mango, or grazing goat, respectively.12 These photographs13 strike us as
replete with visual details. Most of these details are, however, “just
seen,” not “seen as” anything; computer vision systems too need not at-
tempt the humanly impossible when confronted with real-world scenes.
Matching the complexity of a human experience of the visual world is a
realistic goal, and is challenging enough. As we saw earlier, representa-
tions that would make such a match possible are also likely to support
highly sophisticated purposive vision.
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1.4.3 The role of conceptual knowledge

As just noted, purposive visual systems can only deliver scene descrip-
tions that are (1) sparse, and (2) conceptual. The second of these prop-
erties, or rather limitations, is no less important than the first one (which
I discussed briefly above). Restricting the representations derived from
scenes to being conceptual amounts to imposing a severe handicap on
the visual system. At the level of description with which human “just
seeing” resonates, the natural visual world is ineffable, in that a vast
majority of its “aspects” are not statable in a concise linguistic form;
indeed, most are non-conceptual (Clark, 2000, p.162).14 Correspond-
ingly, philosophers point out that “Perceptual experience has a richness,
texture and fineness of grain that [conceptual] beliefs do not and cannot
have” (Bermúdez, 1995; see also Akins, 1996; Villela-Petit, 1999).

When a set of conceptual labels is applied to a visual scene and is
allowed to take over the representation of that scene, the ineffability
issue gives rise to two sorts of problems. The first problem stems from
the poverty of conceptual labels; earlier in this section I used Figure 1.2
to illustrate the extent to which a conceptual interpretation of a scene
is impoverished relative to its image. The second problem arises when
one tries to decide where exactly to place the boundary between areas
corresponding to each two adjacent labels — precisely the task with
which users of interactive scene labeling applications such as LabelMe
(Russell et al., 2007) are charged.

The common mistake behind various attempts to develop the ultimate
algorithm for scene segmentation, whether using image data or input
from a human observer, is the assumption that there is a “matter of fact”
behind segmentation.15 For natural scenes, segmentation is in the eye of
the beholder: the same patch may receive different labels from different
users or from the same user engaged in different tasks (cf. Figure 1.3), or
no label at all if it is too nondescript or if it looks like nothing familiar.16

To a visually sophisticated observer, a complex natural scene would
normally appear as continuous canvas of rich experience, rather than as
a solved puzzle with labeled pieces. Even if nothing in the scene is “seen
as” something familiar, the whole, and whatever fleeting patterns that
may be discerned in it, can always be “just seen” in the sense proposed
above.

To summarize, the major challenges that arise in the design of an ad-
vanced visual system — adapting to diverse tasks, dealing with realistic
contexts, and preventing vision from being driven exclusively by con-
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Fig. 1.3. Concepts that may affect scene segmentation are not necessarily
universal, as illustrated metaphorically by these butchers’ diagrams, which
compare the US cuts of beef (left) to the British cuts (right). Ask an English
butcher for a piece of beef tenderloin, and you will not be understood.

ceptual knowledge — can all be met in the same way. This middle way,
which calls for fostering properly structured intermediate representations
while avoiding the symmetrical excesses of full geometric reconstruction
and full conceptual interpretation, corresponds precisely to “just see-
ing.” Somewhat paradoxically, therefore, it is “just seeing” that saves
the day for “seeing as.”

1.5 Some parallels with biological vision

In computer vision, the discussion of what it means to see can afford
to be normative, in suggesting what a good visual system should be
doing. In biological vision, in contrast, the first order of business is
finding out what it is that living visual systems actually do. What a
visual system does depends on the animal in which it is embodied and
on the ecological niche in which the animal resides. For instance, in
the behavioral repertoire of the bay scallop, escaping danger by rapidly
pulling the shell shut occupies a prominent place. The scallop’s visual
system, which is fed information from the many tiny eyes that line the
rim of its mantle, triggers the escape reflex in response to the onset of a
shadow (Hartline, 1938; Wilkens and Ache, 1977).

Even when the shadow is in fact cast by a cuttlefish on the prowl, it
would be unparsimonious to assume that the scallop sees it as a man-
ifestation of the concept cuttlefish: scallops are simply wired to propel
themselves away from shadows (just as frogs are preset to snap at dark
moving dots that may or may not be flies, and flies are compelled to
chase other dark moving dots).17 Near the other end of the spectrum of
visual sophistication, the primate visual system (Kremers, 2005) incor-
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porates, in addition to a multitude of reflexes, a variety of classification-
and action-related functions.

The now familiar contrast between “just seeing” and “seeing as” can
be interpreted in terms of a major distinction that exists among the
various functions of the primate visual system. In anatomical terms,
it corresponds to the distinction between mesencephalic (midbrain) and
telencephalic (forebrain) visual systems. A key part of the former is the
superior colliculus (King, 2004): a structure in the midbrain’s “roof” or
tectum, where sensory (visual, auditory, and somatic), motor, and mo-
tivational representations are brought together in the form of spatially
registered maps (Doubell et al., 2003).

With only a slight oversimplification, it may be said that the supe-
rior colliculus (SC) is the engine of purposive vision: if the animal is
motivated to reach out to a stimulus that its eyes fixate, the action
is coordinated by SC neurons (Stuphorn et al., 2000). It is the spar-
ing of subcortical structures including the thalamus and the SC that
supports blindsight (Stoerig and Cowey, 1997) and makes possible the
persistence of a primitive kind of visual consciousness (Merker, 2007) in
patients with severe cortical damage.

The association networks of concepts (visual and other) that make pri-
mate cognition so powerful are distilled from long-term memory traces
of the animal’s experiences. Because these networks reside in the fore-
brain (Merker, 2004), mesencephalic vision, which bypasses the isocor-
tical structures in primates, is non-conceptual, although the purposive
behavior that it can support may be quite flexible (insofar as its plan-
ning involves integrating information from multiple sources, including
context and goals). As such, the midbrain visual system is not good at
“just seeing” — a function that, as I argued earlier, is built on top of
the capacity for “seeing as.”

In primates, the capacity for “seeing as” is supported by isocortical
structures that consist of the primary visual areas in the occipital lobe
and the high-level areas in the temporal and parietal lobes (Rolls and
Deco, 2001), and the frontal lobe, the visual functions of which include
exerting contextual influence on the interpretation of the viewed scene
(Bar, 2004) and active vision or foresight (Bar, 2007). In computational
terms, the cortical visual system represents the scene by the joint firing
of banks of neurons with graded, overlapping receptive fields, which are
coarsely tuned to various “objects” (which may be conceptually quite
sophisticated) and are modulated by top-down signals (Edelman, 1999).
By virtue of having a cortical visual system — over and above (literally)
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the vertebrate standard-issue one in the midbrain — primates can see
the world as so many different things, as well as just see it.

1.6 Conclusions

We find certain things about seeing puzzling, because we
do not find the whole business of seeing puzzling enough.18

Ludwig Wittgenstein (1889-1951)

Contrary to the widespread but tacit assumption in the sciences of
vision, having a well-developed sense of sight corresponds to more than
the ability to recognize and manipulate objects and to interpret and
navigate scenes. The behavioral, neurobiological, and computational
insights into the workings of primate vision that emerged in the past
two decades go a long way towards characterizing the component that
has hitherto been missing from most accounts of vision. The missing
component is the capacity for having rich visual experiences.

In a concrete computational sense, visual experience is not merely an
epiphenomenon of visual function. A profound capacity for perceptual
contemplation goes together with the capacity for seeking out flexible,
open-ended mappings from perceptual stimuli to concepts and to actions.
In other words, the ability to see the world as an intricate, shifting
panoply of objects and affordances — an oft-discussed mark of cognitive
sophistication (Hofstadter, 1995) — is coextensive with the ability to
“just see.”

From a computational standpoint, this ability requires that the visual
system maintain versatile intermediate representations that (1) make
explicit as wide as possible a variety of scene characteristics, and (2) can
be linked in a flexible manner to a conceptual system that is capable of
growing with need and experience. These requirements transcend the
traditional goals of high-level vision, which are taken to be the ability
to recognize objects from a fixed library and to guess the gist of scenes.
The visual world is always more complex than can be expressed in terms
of a fixed set of concepts, most of which, moreover, only ever exist in
the imagination of the beholder.

Luckily, however, visual systems need not explain the world — they
only need to resonate to it in various useful ways (Gibson, 1979; Sloman,
1989). Anticipating the idea of O’Regan (1992) and O’Regan and Noë
(2001) who argued that the world is its own best representation, Reitman
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et al. (1978, p.72) observed that “The primary function of perception is
to keep our internal framework in good registration with that vast ex-
ternal memory, the external environment itself.” To be able to resonate
with the virtually infinite perceivable variety of what’s out there — quot-
ing William Blake, “to see a world in a grain of sand” — an advanced
visual system should therefore strive for the richness of the measure-
ment front end, the open-endedness of the conceptual back end,19 and
the possibility of deferring conceptualization and interpretation in favor
of just looking.20
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Notes
1 Philosophical Investigations, (Wittgenstein, 1958, II,xi).
2 Although intuition is never to be trusted blindly, we must use it as a

starting point in a process of formalization, because the notion of seeing
is itself inherently intuitive rather than formal to begin with. In that, it
is similar to the notion of effective computation, which is invoked by the
Church-Turing Thesis.

3 For a discussion of the nominal dimensionality of continuous
measurement spaces and the actual dimensionality of data sets mapped
into such spaces, see Edelman (1999). The same topics are treated in
terms of persistent homology theory by Fekete et al., Arousal increases
the representational capacity of cortical tissue (2008, submitted).

4 A set S is shattered by the binary concept class C if for each of the 2|S|

subsets s ⊆ S there is a concept f ∈ C that maps all of s to 1 and S − s
to 0. The analytical machinery of VC dimension can be extended to deal
with real-valued concepts: for a class of real-valued function g : S → R,
the VC dimension is defined to be that of the indicator class
{I(g(s)− β > 0)} where β takes values over the range of g (Hastie et al.,
2001). An extension to multiple-valued concepts is also possible
(Bradshaw, 1997).

5 A fanciful literary example of a cognitive system crippled by its own
enormous capacity for individualizing concepts can be found in the short
story Funes the Memorious by Jorge Luis Borges (1962); a real case has
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been described by A. Luria in The Mind of a Mnemonist (Harvard:
1968).

6 For the concept of non-action, or wu wei, see Loy (1985).
7 Because the activation levels of conceptual representations are graded,

there exists a continuum between “just seeing” and “seeing as” (I am
grateful to Melanie Mitchell for pointing out to me this consequence of
the approach to vision outlined in this paper). A distributed conceptual
system (e.g., the Chorus of Prototypes model of visual recognition and
categorization; Edelman, 1999) may position itself along this continuum
by controlling its dynamics — in the simplest case, a single
“temperature” parameter (Hofstadter and Mitchell, 1995).

8 Wittgenstein’s observation concerning the nature of vision may have been
anticipated by Aristotle in Metaphysics (350 B.C.E., IX,8): “In sight the
ultimate thing is seeing, and no other product besides this results from
sight.”

9 Famous last words of a mistaken predator: “Oops, it sure looked tasty.”
10 Famous last words of a too undiscriminating sex partner seeker: “Care

for a dance, mate?”, spoken to a trigger-happy alien that looked like a
member of one’s opposite sex.

11 The distinction between the kinds of experience afforded by low-level,
pixel-like representations and high-level ones spanned by similarities to
prototypes is crucial for understanding how the so-called “hard problem”
of consciousness (Chalmers, 1995), which pertains to visual qualia, is
fully resolved by Smart (2004): “Certainly walking in a forest, seeing the
blue of the sky, the green of the trees, the red of the track, one may find
it hard to believe that our qualia are merely points in a multidimensional
similarity space. But perhaps that is what it is like (to use a phrase that
can be distrusted) to be aware of a point in a multidimensional similarity
space.” Briefly, qualia that exist as points in a structured space (such as
the one spanned by a set of prototype-tuned units; Edelman, 1999) can
pertain to any and all aspects of the stimulus (over and above mere local
intensities represented at the “pixel” level). Smart’s insight thus accounts
in a straightforward computational manner for the supposedly mysterious
nature of perceptual experience.

12 The approach to scene “description” illustrated in Figure 1.2 has been
lampooned by René Magritte in paintings such as From One Day to
Another and The Use of Speech (Edelman, 2002).

13 High-resolution originals of the photographs in Figures 1.1 and 1.2 are
available from the author by request.

14 To the extent that non-human animals and prelinguistic infants are
capable of conceptual cognition (Smith and Jones, 1993; Vauclair, 2002),
concepts need not be linguistic. If and when available, language does, of
course, markedly boost the ability to think conceptually (Clark, 1998;
Dennett, 1993).

15 The Platonist notion that there exists an absolute truth about the
conceptual structure of world “out there” that only needs to be
discovered is not peculiar to theories of vision: it has been the mainstay
of theoretical linguistics for decades. This notion underlies the distinction
made by Householder (1952) between what he termed “God’s truth” and
“hocus-pocus” approaches to theorizing about the structure of sentences,
the former one being presumably the correct choice. Although it still
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survives among the adherents of Chomsky’s school of formal linguistics,
the idea that every utterance possesses a “God’s truth” analysis seems to
be on its way out (Edelman and Waterfall, 2007).

16 The few exceptions to this general pattern are provided by scenes in
which a prominent object is foregrounded by a conjunction of several
cues, as when a horse is seen galloping in a grassy field; such images
figure prominently in computer vision work on scene segmentation, e.g.,
that of Borenstein and Ullman (2002).

17 In contrast to scallops, which can act on what they see but not classify it
in any interesting sense, the HabCam computer vision system built by
Woods Hole marine biologists, which carries out a high-resolution scan of
the ocean floor (Howland et al., 2006), can classify and count scallops in
the scenes that it registers. This undoubtedly qualifies it as capable of
seeing scallops as such.

18 Philosophical Investigations, (Wittgenstein, 1958, II,xi).
19 An intriguing computational mechanism that seems capable of

implementing an open-ended representational system is the liquid-state
machine of Maass et al. (2003) (for a recent review, see Maass, 2007).
The power of LSMs to support classification is related to that of
support-vector machines (Cortes and Vapnik, 1995).

20 With regard to the virtues of “just looking,” consider the following piece
of inadvertent propaganda for wu wei : “Don’t just do something, stand
there!” — White Rabbit to Alice in the film Alice in Wonderland (1951).
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