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Introduction

Schemes for the extraction of qualitative shape information from stereo tend to relegate the solution

of the correspondence problem to a preprocessing stage and to assume that their input is provided in

the form of a matched image pair { a disparity map [1]. The disparity map is a rich source of shape

information, which allows the recovery of depth on a ratio scale [2] even when the camera geometry

is unknown. Consequently, using the disparity map to extract qualitative rather than inexact

quantitative shape information may be well-justi�ed by considerations of stability and robustness

[3], but appears to be wasteful in the sense that a rich and di�cult to compute representation is

transformed into a relatively terse one (Figure 1).

Figure 1: Can at least partial qualitative shape information be obtained from a stereo pair without

going through a detailed disparity map?

Can at least partial qualitative shape information be obtained from a stereo pair without going

through a detailed disparity map? A similar question arises in several approaches to model-based

3D object recognition, where object and model features have to be matched before the object's

viewpoint transformation, used subsequently to align the object's image with the model, can be

recovered (e.g., [4]). In object recognition the only alternative to detailed matching suggested so

far is a class of methods that involve the computation of quantities that depend on entire objects

rather than on their local features. One such method [5] exploits the observation that matrices

formed by the 2D image-plane moments of rigid planar patch objects in 3D transform as tensors

under a general viewpoint change (modeled, under orthographic projection, by an image-plane

a�ne transformation). As an approach to recognition, the moment-based methods su�er from



an inherent sensitivity to occlusion and to imprecise or noisy segmentation. The idea behind the

moment approach can be incorporated, however, into a qualitative vision module that provides

information about the sign of the Gaussian curvature of surface patches through the use of regional

rather than detailed correspondence (representation by the sign of the Gaussian curvature has been

proposed, e.g., in [6,7]).

The idea

An arbitrary 3D viewpoint change can be modeled by an image-plane (2D) a�ne transformation if

and only if the viewed object is planar. Let p = (x y z )
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be corresponding

points in two views of the same object. Assume that p and p

0

are related by a 3D rotation R (the

addition of 3D translation does not change the argument):
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If the object is planar, that is, if for every point p = (x y z)

T

the depth z = Ax + By + C, then

the projections of p and p

0

are related by a 2D a�ne transformation:
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This transformation also relates the positions of the centroid (�rst-order moment tensor) of the

planar patch as seen from the two viewpoints. Suppose that the patch is, in fact, not planar

but hyperbolic (saddle-like). If the image of such a patch is divided into, say, four sectors with

the origin at the centroid, some of the sectors will be in part closer to the two cameras than the

tangent plane at the centroid, and others will be farther than the tangent plane. Moreover, the

\near" and the \far" sectors will alternate as one goes around the patch centroid.

1

Consequently,

the direction from the actual location of a sector's centroid towards its location as predicted by the

\global" a�ne transform will change four times.

2

These changes can be detected by looking at the

signs of the inner products of successive displacement vectors. The number of sign changes will

be zero for elliptic or planar patches. Elliptic patches, however, can be detected by looking at the

inside/outside di�erence in the signs of the relative depth values rather than at the sector-by-sector

di�erences (see Figure 2B, right). A convex patch will have a positive (+) relative depth on the

inside and a negative (�) one on the outside, and a concave patch { vice versa. Note that the depth

is compared to that of a planar approximation to the surface, which is more or less parallel to the

tangent plane at the center, but does not necessarily coincide with it (Figure 2A).

1

More than four sectors may have to be looked at, e.g., if the parabolic lines at the center of the patch form an

acute angle.

2

The idea here is similar to Weinshall's [7], who related the number of sign changes around the center in the

output of a simple operator to the sign of the Gaussian curvature of the surface.



Figure 2: (A), The \average" plane approximation to a convex patch. (B), left: a hyperbolic

patch is characterized by an alternation of the signs of depth values, where depth is computed

relative to the \average" planar approximation. The arrows show the displacements of the sector

centroids relative to the locations predicted by the global a�ne transform (see text). Right: an

elliptic patch yields an inside/outside di�erence in the sign of the relative depth value rather than

a sector-by-sector one. Bottom: the classi�cation algorithm.



Underlying assumptions

The ability of the above method to come up with a correct qualitative description of the surface

patch depends on several conditions:

� The \global" a�ne approximation to the transform relating the two input images must be

known. One way to obtain such knowledge is through the use of the tensor method [5].

However, if the method is to be used in a binocular stereo setting, an approximate knowledge

of the interocular distance would su�ce.

� Since the method substitutes distance along the line of sight for the distance along the local

normal to the surface, it works best when the two are close, i.e., when the slant and the tilt

of the planar approximation to the surface are small. Alternatively, if the slant and the tilt

are available independently (e.g., from a motion-based mechanism, or through a least-squares

solution for A, B and C, given r

ij

and several corresponding region centroids), the method

can be modi�ed to use them.

� While the method does not need feature to feature correspondence between the two frames, its

performance depends on correct attribution of features to the sectors over which the centroids

are computed (Figure 2B). Placing the origin of the reference system in each frame at the

global centroid usually su�ces for that purpose. Better yet, the origin may be placed at a

prominent well-localized feature, if one can be identi�ed in the two frames.

Implementation by receptive �elds

As shown in Figure 2, the operation on which the present method is based can be carried out by a

hard-wired mechanism such as a binocular \retinal" receptive �eld (RF) that can compute image

centroids over its sub-�elds and compare the results from the two images. The classi�cation of the

surface at each location can then be computed by combining the output of a \saddle detector" with

that of an \egg detector" (Figure 2B).

Examples

Experiments with images of surface patches produced by a solid modeling system showed that

the simple classi�cation method outlined above works well both under orthographic and perspective

projections and tolerates global surface tilt and slant that is comparable to largest di�erence in

Figure 3: Left: A synthetic stereo pair, showing a textured pear-shaped object, and the output of

a hyperbolic patch detector (white = hyperbolic). The pear's neck has been correctly classi�ed as

most likely to be hyperbolic. Right: The same operator applied to two frames of a motion sequence

of a rotating human head. The bridge of the nose has been correctly classi�ed as hyperbolic.



local normal orientation over the patch (that is, no part of the patch is allowed to be tangent to the

line of sight because of the global tilt/slant) . The method can also be applied to raw (gray-level)

synthetic images (Figure 3).

Summary

I have described a simple method that, under certain assumptions, is capable of extracting crude

qualitative shape information (namely, the sign of the Gaussian curvature) from stereo without

detailed correspondence. The method is based on centroid computation, an operation that can

be implemented by a receptive �eld, and can be applied directly to gray-level images. Although

the method is attractively straightforward and can serve as a part of a fast low-level qualitative

shape module, it would probably be of little use in systems that can a�ord the computational e�ort

of stereo matching and reconstruction. The question regarding the possibility of extracting more

complex qualitative shape features without correspondence appears, at present, to have no de�nite

answer.
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