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Figure 9: Experiment 4: n

Session 4

ovel test views. a, Error rate in session 1 vs. misorientation
D relative to the training view (M: MONO, S: STEREO). b, Error rate vs. D in session 4.
Note that the basic dependency of error rate on D is the same both under MONO and
STEREO conditions. This is another indication that the same recognition strategy for

MONO and for STEREO stimuli may have developed with practice.
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Figure 8: Experiment 4: novel test views. Influence of stereo on the development of
the representation strategy with practice (six novel tube-like objects; four sessions of
three trials per view per object each). Prominence of canonical views in intermixed
MONO and STEREO trials was assessed by computing variation of response time and
error rate over views. The strongest difference between MONO and STEREO conditions
was found in variation of response time in Session 2 (F = 4.8; d.f. = 1,34; p < 0.004)
and in variation of error rate — in Session 3 (F' = 4.1; d.f. = 1,21; p < 0.055). As in
experiment 3, the differences between the two conditions became insignificant in the
last session, indicating that the same basic recognition strategy may have developed

for MONO and for STEREO stimuli.
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Figure 7: Experiment 3: identical training and test views. Influence of stereo on the
development of the representation strategy with practice (six novel tube-like objects;
four sessions of three trials per view per object each). Prominence of canonical views in
intermixed MONO and STEREO trials was assessed by computing variation of response
time and error rate over views. The variation of response time (CV of RT) decreased
with session but did not differ significantly between MONO and STEREO conditions. The
strongest difference between MONO and STEREO conditions was in variation of error
rate in session 3 (F = 9.4; d.f. = 1,19; p < 0.006). The difference in session 4 is n.s.
(F < 1), showing that the distribution of error rates tended to become similar in the

two conditions.
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Figure 6: The coefficient of variation of response times over views of the stimuli, for the
two sessions of the canonical views experiment. Left: The decrease in the variation of
response time over views with practice was significant, indicating that response times
became considerably more uniform in the second session. Right: There was no effect

of practice on the variation of error rate over views. Values are Mean + SEM.
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View-sphere visualization of ER = f(viewangle)

Session 1

Session 2

Figure 5: A stereo plot of the distribution of error rates on the viewing sphere (same
object and same format as in Fig. 4).
The difference between the two sessions in the variability of ER over views was not

significant when averaged over the ten test objects.
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[see previous page]

Figure 4: Example of a computer-generated tube-like object (shown in stereo) similar to
the stimuli used by Rock et al. (Rock and DiVita, 1987; Rock et al., 1989). The spheroid
surrounding the tube is a 3D stereo-plot of response time vs. aspect (local deviations from a
perfect sphere represent deviations of response time from the mean). Interpolation was used
to create a smooth surface from measurements taken at discrete orientations. To help fuse the
two images, view the picture from a distance of about 35¢m, holding a piece of white cardboard
in perpendicular to the image plane to separate the images from each other. Top, The target
object, and its and response time distribution for Session 1. Response times are averaged over
the five subjects. Canonical aspects can be easily visualized using this display method. Bottom,

The differences in response time between views are much smaller in the second session.
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View-sphere visualization of RT = f(viewangle)
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Figure 3: Representative “best” and “worst” views for one of the test objects. a,
View with shortest response time (711 msec). b, View with longest response time

(1405 msec). ¢, View with lowest error rate (0%). d, View with highest error rate
(27%).
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Figure 2: Discrimination among objects that belong to the same basic category is
viewpoint-dependent. Whereas it is easy to distinguish between the tubular and the
amoeba-like 3D objects, irrespective of their orientation, the recognition error rate for
specific objects within each of those two categories increases sharply with misorientation
relative to the familiar view. For tube-like objects, this phenomenon was described by
Rock and others (Rock and DiVita, 1987; Biilthoff and Edelman, 1992b), and is further
explored in the present paper. This figure shows that the error rate for amoeba-like
objects, previously seen from a single attitude, is similarly viewpoint-dependent. Means
of error rates of six subjects and six different objects are plotted vs. rotation in depth
around two orthogonal axes (Biilthoff et al., 1991). The extent of rotation was +60°
in each direction; the center of the plot corresponds to the training attitude. Shades
of gray encode recognition rates, at increments of 5% (white is better than 90%; black

is 50%).
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Figure 1: Top: The appearance of a 3D object can depend strongly on the viewpoint
(three views of the same tubular object, taken 90° apart). The results reported in
this paper were obtained mostly with objects of this type. Bottom: Some of the
findings were replicated with amoeba-like shapes. These objects were created with a
solid modeling package (S-Geometry, Symbolics, Inc.) by defining random positions of
control points on a sphere and moving the control points and a surrounding influence
region (with influence weight decaying exponentially with distance from the center) in

the normal direction by a random amount. The three views are 90° apart.
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Appendix A: mean response times and error rates in the four experiments

exp | subject RT ER MISS FA
1 ede 918 410 | 12.2 300 | 9.4 205 | 2.8 103
jin 673 +10 | 16.0 200 | 6.7 200 | 9.4 40
nan 667 10 | 16.8 209 | 15.1 200 | 1.6 x02
qin 708 110 | 10.4 200 | 5.6 400 | 4.8 102
zhe 643 +10 | 24.7 209 | 22.5 205 | 2.2 403
2 dwe 838 415 | 11.3 412 | 6.8 210 | 4.6 +os
jin 756 115 | 24.9 112 | 3.8 410 | 21.1 106
liu 912 415 | 12.9 212 | 11.1 210 | 1.8 o0
liy 1185 115 | 16.1 212 | 11.3 410 | 4.9 20
nan 811 415 | 13.3 212 | 4.8 210 | 8.5 o6
3 ana 745 112 | 9.6 +10 | 0.8 206 | 8.7 o7
ede 917 x13 | 5.5 210 | 2.9 206 | 2.6 xor
est 1095 12 | 20.3 210 | 12.7 406 | 7.5 zor
4 amn 763 25 | 8.1 210 | 4.1 207 | 4.0 zor
hhb 571 s | 89 210 | 6.0 207 | 2.9 2o
jes 693 +s | 8.9 210 | 4.9 207 | 4.0 2o
yve 631 s | 4.5 x10| 2.3 207 | 2.2 xo7

Table 2: Mean response time (RT), error rate (ER), miss rate (error rate in positive
trials; MISS), and false-alarm rate (error rate in negative trials; FA), for all the subjects

in the four experiments. Miss and false-alarm rates are computed as proportions of

the total number of trials, so that ER = MISS + FA.
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The multiple-view interpolation model predicts that recognition would be, above
all, viewpoint-dependent. First, in the recognition of previously seen views, differences
in error rate over test views are expected, because each view preferentially activates
a different locus in the multiple-view structure, causing the overall level of activation
to vary. Injecting activation at different loci is also expected to cause a variation in
the response time over test views (Edelman, 1991b). Detailed computer simulations
(Edelman et al., 1990; Edelman and Weinshall, 1991) show that this mechanism is
capable of replicating the canonical views and mental rotation phenomena described
in section 3.1° Second, in the recognition of objects from novel perspectives, limited
generalization is expected, because of the decrease in the similarity between a test view
and any of the stored views. Here too, computer simulations (Edelman and Weinshall,
1991; Poggio and Edelman, 1990) confirm the expectations. Third, the facilitation of
recognition by adding depth information to the test stimuli is expected to be limited in
extent and in the range of viewpoints for which it is effective, because of the viewpoint
dependence and potential imperfection of the Q%D—sketch representation. All of the
above phenomena are exactly what we found in the experiments described in this paper.

In summary, the patterns of dependency of response time and error rate on view-
point in the recognition of novel 3D objects of the type we have used indicate that their
representations are viewpoint-specific. These representations may also include depth
information encoded as a Q%D—sketch, since stereo cues do facilitate recognition, but
in a viewpoint-sensitive fashion. This strategy is well-suited for a system in which the
memory for storing object views is cheap but the computation involved in viewpoint

normalization or mental rotation may be expensive.

10The view interpolation model can also account for fine details of the mental rotation phenomena,
such as the finding by Tarr and Pinker (1989) of constant-time recognition of mirror-reversed versions
of familiar shapes, which they explain as the result of a “depth flip” (shortest-path rotation in depth).
According to the view interpolation model, such behavior could ensue if the representations of individ-
ual views are relatively invariant to mirror reversion. For tube-like objects, this could happen if the

representations include explicit information on segment lengths (Bilthoff and Edelman, 1992b).
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training view.® Moreover, the viewpoint dependency of the representations formed by
our subjects, manifested in the limitation on generalization to novel views, cannot be
due exclusively to the lack of 3D information in the stimuli, since the same dependency
of error rate on viewpoint was obtained both in MONO and STEREO trials.

The account we offer for the experimental results discussed above holds that, at
least for subordinate-level recognition, 3D objects are represented by collections of spe-
cific views, each of which is essentially a snapshot of the object as it is seen from a
certain viewpoint, augmented by limited depth information.” The collection of stored
views is structured, in the sense that views that “belong” together (e.g., because they
appeared in close succession during previous exposure) are more closely associated
with each other (Edelman and Weinshall, 1991). To precipitate recognition, an input
stimulus must bring the entire structure to a certain minimal level of activity. This
process of activation may be mediated by a correlation-like operation that compares
the stimulus (possibly in parallel) with each of the stored views, and activates the rep-
resentation of that view in proportion to its similarity to the input (Edelman, 1991b).
Computationally, this method of recognition is equivalent to an attempt to express the
input as an interpolation of the stored views (Edelman and Weinshall, 1991; Poggio
and Edelman, 1990), which is much more likely to succeed if the input image is indeed

a legal view of the 3D object represented by the collection of stored views (Ullman and

Basri, 1991).

8These findings also rule out the possibility that the increase in the uniformity of response time over
different views, caused by practice, is due to the formation of a viewpoint-invariant representation of

the target object.

9The basic limitation on the use of depth in recognition stems from its representation in a viewer-
centered coordinate frame (in Marr’s terminology, such representation would be called a Q%D—sketch
(Marr, 1982)). Another possible limitation is expected in view of the recent findings regarding the
imperfections of the perception of 3D shape, as mediated by different depth cues (Bilthoff and Mallot,
1988).
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A recognition scheme based on object-centered representations may be expected
to perform poorly only for those views which by an accident of perspective lack the
information necessary for the recovery of the reference frame in which the object-
centered description is to be formed (Biederman, 1987). In a standard example of this
situation, an elongated object is seen end-on, causing a foreshortening of its major
axis, and an increased error rate, due presumably to a failure to achieve a stable
description of the object in terms of its parts (Marr and Nishihara, 1978; Biederman,
1987). However, Tarr and Pinker have demonstrated viewpoint dependency in the
recognition of objects with a clearly marked central axis, for which this exception
does not apply (Tarr and Pinker, 1989). At the same time, our finding of viewpoint-
dependent recognition for objects that have virtually no self-occlusion (see Fig. 1, top)
rules out another possible cause for the breakdown of viewpoint invariance: loss of
information due to occlusion.

Part of the findings on viewpoint-dependent recognition, including mental rotation
and its disappearance with practice, and the lack of transfer of the practice effects to
novel orientations or to novel objects (see the discussion of experiment 1 in section 3 and
(Tarr and Pinker, 1989)), can be accounted for in terms of viewpoint normalization or
alignment (Ullman, 1989). According to the alignment explanation, the visual system
represents objects by small sets of canonical views and employs a variant of mental
rotation to recognize objects at attitudes other than the canonical ones. Furthermore,
practice causes more views to be stored, making response times shorter and more
uniform. At the same time, the pattern of error rates across views, determined largely
by the second stage of the recognition process in which the aligned model is compared
to the input, remains stable due to the absence of feedback to the subject.

This explanation, however, is not compatible with the results of experiment 4,

which show a marked and persistent dependency of error rate on the distance to the
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e Mere repetition of the experiment in which the same views were seen again and
again sufficed to obliterate much of the variation of response time over different
views of the target. As the response times became more uniform, their distribu-
tion underwent a qualitative change. Whereas in the first experimental session
response time increased monotonically with misorientation relative to a canonical
view, in the second session the dependence of response time on the distance to a

canonical view became disorderly.

e Adding binocular disparity to provide the subjects with an additional and reli-
able depth cue reduced the mean error rate, in all cases, by a factor of about
two. Nevertheless, the mean error rate remained far from negligible even in the
presence of stereo depth. The development of performance with practice was
somewhat different under mono and stereo conditions. Eventually, similar pat-
terns of error rates for the various views (familiar or novel) of a given object were
obtained both in the stereo and in the mono trials. Most importantly, the avail-
ability of depth information did not change the basic feature of generalization to
novel views, namely, the increase in the error rate with misorientation relative to

a familiar view.

The experimental findings reported above are incompatible with standard formu-
lations of theories of recognition that postulate object-centered representations. Such
theories predict no differences in recognition performance across different views of ob-
jects, and therefore cannot account either for the canonical views phenomenon or for
the limited generalization to novel views, without assuming that, for some reason, cer-
tain views are assigned a special status. Modifying the thesis of viewpoint-independent
representation to allow privileged views and a built-in limit on generalization greatly
weakens it, by breaking the symmetry that holds for truly object-centered representa-

tions, in which all views, including novel ones, are equally easily accessed.
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periment three times, the number of correct responses per combination ranged from
zero to three. Consequently, the contingency tables were of dimension 4 x 4, with
entry (7,7) set equal to the number of times ¢ correct responses were given in MONO
trials under the combination of conditions that yielded j correct responses in STEREO.
The contingency tables were then submitted to a frequency analysis (SAS procedure
FREQ). The results showed that the association between MONO and STEREO perfor-
mance in session 1 was significant at F(9,312) = 51.7 (p < 0.0001), while in session 4
the significance was F(9,312) = 131.4 (p < 0.0001). The Pearson correlation between
the number of correct responses in MONO and STEREO trials, computed from the con-
tingency tables, increased from 0.378 in session 1 to 0.476 in session 4. Thus, the
contingency analysis indicates a gradual increase in the similarity between MONO and

STEREO performance with practice.

7 General discussion

We have described four experiments aimed to elucidate the nature of internal repre-
sentations involved in three-dimensional object recognition. Our main findings can be

summarized as follows:

e When subjects had to recognize previously seen views of objects that appeared
at arbitrary 3D orientations, some of the views yielded shorter response times
and lower error rates than others. This happened even when each view was
shown for the same number of times during training. Thus, the emergence of
canonical views cannot be attributed solely to differences in the subject’s prior
exposure to the corresponding aspects of the target. Neither are canonical views
completely determined by elongation and asymmetry, since they arise for rota-
tionally balanced objects that subtend approximately the same solid angle from

any viewpoint.
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6.3 Discussion

The results of experiment 4 offer several insights into the nature of representations
that support object recognition. First, the persistent dependence of the error rate
on distance to the training view (see Fig. 9) corroborates similar previous findings by
other researchers (e.g., Rock and DiVita, 1987), and supports the notion that object
representations involved in subordinate-level recognition are fundamentally viewpoint-
dependent.

Second, even though the average performance in STEREO trials was consistently
better than in the MONO trials, the dependence of error rate on misorientation relative
to the training view (Fig. 9) was the same under the two conditions. In other words,
recognition under STEREO exposure was as viewpoint-dependent as in the MONO case.
Together with the findings of experiments 2 and 3, this indicates that the availability
of depth information through stereopsis improves the subjects’ performance, but does
not cause a radical change in the recognition abilities.

Third, the dissociation between the effects of practice on performance in STEREO
and MONO trials in the early sessions indicates that the formation of an integrated rep-
resentation that includes viewpoint-specific depth information is not immediate. Note
that STEREO and MONO trials were intermixed throughout the experiment. Neverthe-
less, the variation of response time and error rate over views followed a different time
course in each of these two conditions, eventually converging onto the same pattern.
We have quantified the progress of this convergence or integration, by analyzing the
degree of association between MONO and STEREO performance, defined as the likeli-
hood of obtaining a correct response in a MONO trial, provided that a correct response
was given in the STEREO trial for the same combination of object, view and subject
variables.

To estimate the degree of association, a contingency table was computed for each

session. Since each combination of object, view and subject was repeated in the ex-
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subjects were first trained on 13 views of the stimuli, spaced at 2° intervals along the
equator of the viewing sphere (+13° around a reference view), then tested repeatedly
on another set of 13 views, spaced at 10° intervals (0° to 120° from the reference view).
The simulated lights and the rendering were as in experiment 1. Four new subjects,

three of them naive, participated in this experiment.

6.2 Results

The mean miss rate was 14.0% under MONO and 8.1% under STEREO (difference sig-
nificant at ' = 43.1; d.f. = 1,2392; p < 0.0001). The learning curves both for the
variation of response time and for the variation of error rate were somewhat different
in the STEREO and the MONO conditions (Fig. 8). Regression analysis showed a signif-
icant dependence of response time on misorientation D relative to the training view in
all four sessions. In session 4, however, the response times were much more uniform
than in session 1. Furthermore, the dependence of response time on D in session 4
(RT ~ —1.0D +0.015D?) was much weaker than in session 1 (RT ~ —2.0D +0.03D?).

The dependence of error rate on the distance to the training view was somewhat
different in the STEREO and MONO conditions (see Fig. 9). In session 1, the mean error
rate in MONO trials was consistently higher than in STEREO, although the difference
between the error rate at D = 0° and the error rate at D = 120° was about the same
(15%) in the two conditions. In session 4, the error rate under MONO approached the
error rate under STEREO, except for the range of D between 50° and 80°, where MONO
was much worse than STEREO. Notably, error rate averaged over the two conditions
in session 4 was significantly dependent on misorientation (£ = 3.27; d.f. = 12,598;

p < 0.0001).
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5.3 Discussion

Performance in STEREO and MONO trials followed somewhat different time course in
sessions 1 through 3. However, after four sessions, both STEREO and MONO conditions
yielded similar coefficients of variation of response time and error rate over views
(difference n.s.). A comparison of the figures for the first and the last sessions reveals
the same reduction with practice of response time variation over different views as
found in experiment 1, both under STEREO and MONO presentation.

Experiments 1 through 3 concentrated on the recognition of views previously seen in
training, and yielded results compatible with the notion that such views are recognized
by interpolation involving (an indeterminate number) of stored views, chosen from the
training set for a given object. This interpretation led to two predictions regarding
the ability of the visual system to generalize recognition across viewpoints, that is, to
recognize novel views of objects previously seen from a limited range of viewpoints.
First, we expected the subjects to find it more and more difficult to recognize views
that were progressively more and more different from familiar ones (cf. Rock and
DiVita, 1987). Second, as long as the representation of the stored views remained
truly viewpoint-specific, this difficulty was expected to persist despite the availability
of strong depth cues both in training and in testing. To address these two points,
we have repeated experiment 3, this time testing the recognition of novel views under

MONO and STEREO conditions, and its development with practice.

6 Experiment 4: binocular stereo and generaliza-

tion to novel views

6.1 Method

The stimuli in this experiment were the same as in experiment 3. Its design was also

similar, except that most of the test views were initially unfamiliar to the subjects. The
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repeatedly on the same views. Each test view appeared six times in each session —
three times in mono, and three times in stereo, in random order. Three subjects, two

of them naive, participated in the experiment.

5.2 Results

The mean response time in this experiment showed the expected decrease with session
and, in addition, was by 25 msec faster under STEREO than under MONO (difference
n.s., p = 0.18). The mean error rate was 16.6% under MONO and 5.7% under STEREO.
A Stereo x Session analysis of variance of the error rate showed significant main effects
for Stereo (F = 82.2; d.f. = 1,1870; p < 0.0001) and Session (F = 8.6; d.f. = 3,1870;
p < 0.0001), and a weak interaction (F = 2.4; d.f. = 3,1870; p < 0.06). The interaction
was apparent in the difference between the strong effect of Session under MONO, and
the marginal effect of Session under STEREO. In the MONO case, the error rate dropped
from 23.2% in session 1 to 12.4% in session 4 (difference significant at p < 0.0001). In
comparison, under STEREO the error rate was reduced from 7.7% in session 1 to 4.2%
in session 4 (difference marginal at p = 0.14).

The variation of response time over views followed the same pattern as in experi-
ment 1, decreasing from session to session. The only significant effect in an analysis of
variance for the variation of response time was that of session (F' = 5.8; d.f. = 3,143;
p < 0.001). In comparison, the variation of error rate was not significantly affected
by Session (again as in experiment 1), but was different under STEREO and MONO
(F =99; df.=1,92; p < 0.002). As apparent in Fig. 7, the four-session learning
curves in the STEREO and the MONO conditions coincided for the variation of response

time, but differed significantly for the variation of error rate.
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the strongest depth cue — stereo (see Bilthoff and Mallot, 1988) — to recognition.
Binocular stereo proved to reduce significantly the error rate. However, although the
error rate was lower in the presence of stereo disparity, recognition was still less than
perfect.

The monotonic dependency of response time on orientation under both MONO and
STEREO conditions in the two sessions of experiment 2 was similar to what we found in
experiment 1. In both those experiments the dependency of response time on orienta-
tion diminished with practice. To find out whether this dependency indeed disappears
with long enough practice, we next explored the development of the recognition of

familiar views over an extended testing period.

5 Experiment 3: binocular stereo and the recogni-

tion of familiar views

5.1 Method

In experiment 3 we examined the development of performance in STEREO and MONO
trials over four sessions. The experiment consisted of six blocks and employed six
targets, chosen randomly out of a set of 48 objects. Each target was assigned seven
of the remaining 42 objects to serve as non-targets or distractors in the forced-choice
procedure. The objects were 7-segment tubes similar to the ones used in the previous
experiments. This time, in addition to constraining the random-walk procedure to
avoid sharp angles and self-intersections, we only used objects that appeared rotation-
ally balanced (that is, for which the three principal moments of inertia were equal to
within 10%). This was done to minimize artifacts arising from the choice of reference
attitude. The simulated lights and the rendering were as in experiment 1.

In each of the six blocks, the subject was first trained on 13 views of the stimuli,

evenly spaced at 10° intervals along the equator of the viewing sphere, then tested
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no kinetic depth effect during training, the subjects reported perceiving the target
stimulus as three-dimensional. Testing was divided into two sessions of five trials per

view. Five naive subjects participated in this experiment.

4.2 Results

Mean error rate in this experiment was 14.7%. We found that texture cues did not
affect performance, but binocular disparity and light direction did. The error rate
was lower in the STEREO trials (11.5% as opposed to 18.0% under MONO), and lower
under oblique lighting (13.7% compared to 15.8%). A three-way analysis of variance
of the error rate (using the GLM procedure (Sas, 1985), Light x Texture x Stereo)
showed significant main effects for Stereo (F' = 45.1; d.f. = 1,4760; p < 0.0001), and
Light (FF = 4.9; d.f. = 1,4760; p < 0.03). The main effect of texture and the various
interactions were not significant. The mean response time was shorter by 17 msec
under STEREO than under MONO, but this effect did not reach significance (p = 0.2).
Regression analysis showed similar dependence of response time on the distance
to the best view both in STEREO and in MONO trials. Because of this, data from
the two conditions were pooled for regression computation in this experiment. The
results showed a significant dependence of response time on orientation in session 1
(RT ~ 1.0D; coefficient different from 0 at #(1,2130) = 3.2, p < 0.0015), and in
session 2 (RT ~ 1.0D; t(1,2061) = 3.3, p < 0.0011). Error rate did not depend on the

misorientation relative to the best view in any orderly fashion.

4.3 Discussion

Previous studies of object recognition under varying amount of surface detail have
found little influence of color and texture on performance (Biederman and Ju, 1988;
Price and Humphreys, 1989). The results of experiment 2 extended those findings,

and provided, to our knowledge for the first time, information on the contribution of
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4 Experiment 2: role of depth cues in recognition

The results of experiment 1 motivated a closer study of the distribution of error rate
in recognition, first, because it may help distinguish between different varieties of
viewpoint-dependent representations, and, second, because error rate appears to be
a stabler measure of performance than response time. It is conceivable, however,
that the viewpoint-dependent error rate of the subjects in experiment 1 was due not
to the viewpoint-specific nature of object representations, but to the paucity of depth
information in the test views, which could have forced the subjects to rely on inherently
viewpoint-dependent 2D mechanisms. If that is indeed the case, adding depth to the
test views, e.g., by using binocular stereo, should reduce significantly the differences in
the error rate among the different test views. We tested this prediction by exploring
the role of three different cues to depth. Whereas in the previous experiment test views
were two-dimensional and the only depth available cues were shading of the objects
and interposition of their parts, we now added texture and binocular stereo to some of
the test views, and manipulated the position of the simulated light source to modulate

the strength of the shape from shading cue (cf. (Biilthoff, 1991; Pentland, 1988)).

4.1 Method

The targets in experiment 2 (a new set of 10 tube-like objects) were rendered under
eight different combinations of values of three parameters: marble-like surface texture
(present or absent), simulated point light position (at the simulated camera or to the
left of it, in which case the angle subtended by the viewing and the lighting directions
was 45°) and binocular disparity (present or absent). The diffuse lighting component,
and the relative intensity of the two lights were as in experiment 1. A fixed set of 16
views of each object was now used both in training and in testing. Training was done
with maximal depth information, namely, under oblique lighting (to facilitate shading

effects), with texture and stereo present. Thus, although in this experiment there was

19



account for the observed pattern of error rates, because theories of the normalization
variety, to which alignment belongs, predict no dependency of error rate on orientation
in cases where, as it is with our stimuli, degradation of the input due to occlusion or
other causes is not a problem.”

A possible alternative interpretation of the results of experiment 1 holds that ob-
jects are represented by multiple specific views, and are recognized by interpolating
among these views, as suggested in section 1.2 (see also Biilthoff and Edelman, 1992).
Specifically, the dependence of response time on misorientation relative to a canonical
view can be modeled by the spread of activation in a network of “grandmother cells”,
each of which represents a particular view (Edelman and Weinshall, 1991). Can the
view interpolation model explain also the differences in error rate among previously
seen views of familiar stimuli? We stress again that no such effect is predicted by
the viewpoint normalization models, which in principle can transform the input or the
stored description into an optimal configuration prior to comparing them to each other.
In contrast, if images of objects are indeed recognized by comparing them directly with
specific views of known objects (as postulated by the interpolation approach), such dif-
ferences are to be expected. If two particular views of two different objects look similar,
they will tend to be confused more frequently, resulting in an elevated error rate in
comparison with other views of the same objects. Thus, the multiple-view interpo-
lation model, which postulates no involvement of mental rotation in recognition, can

account both for the response time and for the error rate data of experiment 1 (see

also Edelman and Weinshall, 1991).

"The error rates in the experiments reported by Tarr and Pinker (tabulated in Tarr, 1989) also seem
to have depended on viewpoint. Unfortunately, Tarr and Pinker (1989) confine their discussion of the

error rates to a statement that there was no evidence for a speed/accuracy tradeoff.

18



p < 0.005),° but not significant (F < 1) in session 2. No orderly dependence of error
rate on the distance (either to the shortest response time view, or to the lowest error

rate view) was found in the two sessions.

3.3 Discussion

The results of experiment 1 indicate that preferred or canonical perspectives arise
even when all the views in question are shown equally often and the objects possess
no intrinsic orientation that might lead to the advantage of some views compared
to others. Furthermore, the properties of the canonical views change with practice,
even in the absence of feedback to the subject. In session 1, the advantage of some
views consisted of a particularly low error rate, while the response times for the various
views exhibited monotonic dependency on misorientation relative to the view for which
response time was the lowest. In comparison, in session 2 the differences in the error
rate remained at the same level, while the pattern of response times underwent a
pronounced change, signified by the decrease in the differences among the various
views, and by the disappearance of the orderly dependence of response time on object
attitude.

These findings concerning the recognition of familiar views agree with the response
time data of Tarr and Pinker (1989), whose experiments involved repeated exposure to a
set of views, followed by the presentation of novel test views. They have demonstrated
that the monotonic dependence of response time on object attitude, present in the
first experimental blocks, disappeared with practice, then reappeared for novel views
when these were first introduced. The interpretation offered in (Tarr and Pinker,
1989) for this behavior of response times is based on a theory of recognition that uses
viewpoint-dependent representation, namely, Ullman’s two-stage scheme of recognition

by alignment ((Ullman, 1989); see section 7). That interpretation, however, does not

6The coefficient of D?  which was also significant but small (0.01 msec/deg?), indicates that the

growth of response time with D slowed down for higher values of D.
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Session | CV of RT | CV of ER

1 36.6 +2.0 | 139.9 £9.7
2 26.6 +£1.8 | 126.4 +£5.2

Table 1: Coefficient of variation of mean response time (CV of RT), and of error rate

(CV of ER), in %, over views of test objects.

A quantitative assessment of this decrease was obtained by computing the coeffi-
cient of variation (standard deviation divided by the mean) of response time and of
error rate over different views of an object. Unlike the mean response time, which is
expected to decrease with practice merely because the subject becomes more proficient
in performing the task, the normalized variation of response time over views can reveal
nontrivial effects of practice (Edelman et al., 1991). The prominence of the canoni-
cal views, as measured by the variation of response time over different views of the
stimuli, decreased significantly with practice (F' = 10.5; d.f. = 1,98; p < 0.0016; see
Fig. 6a). The variation of the error rate, on the other hand, did not change significantly

(F=1.5;d.f. =1,98; p = 0.23 n.s.; see Fig. 5 and Fig. 6b, and Table 1).

Another manifestation of the evolution of the canonical view phenomenon is the
change with practice in the dependency of response time on the misorientation relative
to a canonical view. In the first session, the response time to a given view depended
monotonically on the misorientation D relative to the “best” view (defined opera-
tionally as the view that yielded the shortest response time for the given subject and
object). In the second session, this dependence disappeared. Note that in the second
session there was still enough variation in response time over views (Fig. 6a) to allow
for such dependence. Nevertheless, the regression of response time on D was signifi-

cant in session 1: RT = 577 4+ 3D, (RT in msec, D in degrees; F = 5.3; d.f. = 2,729;
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above, but with 90° steps, and constituted, therefore, a subset of the training views.
The subjects were required to recognize the test views, shown statically, under forced-
choice conditions, in which target and non-target views appeared in random order and
in equal proportions. The subjects were asked to be as fast and as accurate as possible.
Sixteen practice trials were inserted before each test sequence. The experiment was
divided into two sessions, in each of which every test view of the stimuli was shown five
times. Five subjects, four of them naive, participated in this experiment. The interval
between sessions ranged from about three hours for four of the subjects to about a

month for the fifth one, and had no noticeable effect on the results.

3.2 Results

The subjects appeared to have followed the instructions and responded both quickly
and accurately (mean response time: 645 msec; mean error rate: 16.0%). In the
analysis of this and the other experiments, we have retained only the data from the
positive trials (that is, the trials in which the target was displayed). In the rest of the
paper, therefore, “error rate” means “miss rate,” unless otherwise stated.

The initial pattern of response times exhibited differences among views, typical of
the canonical views phenomenon, even though all views that were subsequently tested
appeared in training for the same number of times (see Fig. 3). This pattern, however,
underwent a pronounced change from the first to the second session.

The development of canonical views with session is visualized in Fig. 4 as a 3D
stereo-plot of response time vs. orientation, in which local deviations from a perfect
sphere represent deviations of response time from its mean. The response times for
the different views become more uniform with practice. For example, the difference in
response time between a “good” (i.e., short-RT) and a “bad” view in the first session
(the dip at the pole of the sphere and the large protrusion in Fig. 4, top) decreases in

the second session (Fig. 4, bottom).
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3.1 Method

To address these points, we trained subjects on a motion sequence of target views,
then tested their recognition of static views, all of which have been previously seen
as a part of the training sequence. The first experiment employed 10 five-segment
tube-like objects,* each of which served in turn as the target in a separate block of
trials (the other nine objects were the non-targets for that block). The object shapes
were determined by a random walk in 3D, and were normalized for a constant overall
length. Successive step sizes in the random walk were equal. The random walk was
constrained to eliminate sharp angles between successive limbs, and self-intersections.
The objects were rendered under the Lambertian model, using a simulated mixture of
point lighting (of relative intensity 1.0, situated at the simulated camera at which the
rendered images were obtained) and diffuse lighting (of relative intensity 0.3).

In the beginning of each of the 10 blocks, the subject was shown a sequence of 144
views of the target, spaced at 30° and timed to create an impression of continuous
motion. The sequence was produced by starting with an arbitrary view, and rotating
the object by 30° steps around the horizontal axis in the image plane. Following the
completion of each full revolution around this axis, the object was rotated by 30° around
the vertical axis in the image plane, and a new revolution around the horizontal axis
in the image-plane was commenced. In this manner, a good coverage of the viewing
sphere was obtained. ®

The 16 test views for each target object were obtained by the same procedure as

4Other object classes, such as computer-generated 3D amoeba-like shapes (Fig. 1b), yielded similar

results .

5The viewing sphere, an imaginary sphere centered at the object, is a convenient way of referring to
configurations of the object’s views. The attitude of the observer with respect to the object is specified
by three numbers: the latitude and the longitude at which the line of sight pierces the sphere, and
the rotation about the line of sight (which in the present case is equal to zero). Distance between two
views, or their misorientation with respect to each other, can then be defined, e.g., as the shortest-path

rotation between them, or the angular distance along a great circle on the viewing sphere.
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view interpolation case, response time could depend on orientation strongly, if the
interpolation involves a time-consuming spread of activation in a simple distributed
implementation, or very weakly, if an appropriately connected network of processing
units is used (cf. the architectures discussed in Edelman, 1987). Because of this depen-
dence of response time on implementation details, and because in the present paper we
are mainly concerned with computational-level theories (as opposed to algorithm-level
theories; see Marr, 1982), we consider response time to be of secondary importance,

compared to other performance measures such as the error rate.

3 Experiment 1: evolution of canonical views

In the first experiment our aim was to explore the canonical views phenomenon un-
der controlled conditions and, in particular, to study its development with practice.
The outcome of this experiment could be relevant to the issue of object representa-
tion in recognition, as follows. First, the very existence of preferred views among a
set of equally familiar views shown in training would be incompatible with viewpoint-
invariant theories of recognition, unless these are modified to allow for significant dif-
ferences among views (which would preclude these theories from being referred to as
viewpoint-invariant). Second, stable and persistent canonical views effects would indi-
cate that multiple-view representations, possibly in conjunction with mental rotation,
are basic characteristics of recognition. On the other hand, if the pattern of canonical
views is subject to change, it could be regarded as reflecting a transient behavior of
the mechanism of recognition rather than its functional architecture (Pylyshyn, 1985).
In particular, significant changes in the dependence of response time on viewpoint,
precipitated by practice, would cast doubts on the plausibility of interpreting such

dependence as evidence for mental rotation in recognition.
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1IFC paradigm is that it may allow the subjects to concentrate on a subset of features
of the stimulus rather than on its global shape. This could lead to problems in the
interpretation of the results, were those to be found independent of the experimental
manipulations, since the subjects in that case would be suspect of having used short-
cuts to reach their decision. As we will see in the subsequent sections, this is not an
issue in our experiments.

The stimuli we used were shaded gray-scale images of novel objects, generated by
a computer graphics program (S-Geometry, Symbolics Inc.) according to a pseudoran-
dom procedure, and displayed on a high-resolution color monitor (Mitsubishi UC-6912,
short-persistence phosphor) connected to a stereoscopic display system (StereoGraphics
3Display). This gave us access to a large pool of 3D shapes whose statistical character-
istics (e.g., average complexity, texture), as well as presentation conditions (shading,
binocular disparity) could be tightly controlled. To minimize effects of self-occlusion,
which could potentially distort the pattern of “intrinsic” canonical views of the 3D
shapes in question, in most of the experiments reported here we have used segmented
thin tube-like objects, such as those in Figure la. Some of the experimental results
described below have been replicated with amoeba-like shapes (Fig. 1b). In all exper-
iments the viewing distance was 114 ¢m, and the tube-like and amoeba-like objects

subtended a visual angle of approximately 5°.

2.3 Using response times and error rates for inferring mental

organization

As a final methodological remark, we note that some of the theoretical predictions
concerning response time, made in section 1.2, are relatively weak, because of their
potential dependence on implementation details. For example, the monotonic increase
in response time with misorientation, predicted by the normalization theories, disap-

pears if the transformation mechanism is “one-shot” instead of incremental. In the
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any single object.?> Under these circumstances, it is difficult to claim that the subject’s
performance reflects faithfully properties of the individual representations, such as the
degree of their viewpoint invariance. To force the subject to compare the stimulus with
the representation of a specific object, rather than with an entity representing the entire
set of known objects of a given category, we have developed and used an experimental
approach to the study of recognition based on the single-interval forced-choice (1IFC)
paradigm.

The experiments described below consisted of two phases: training and testing. In
the training phase subjects were shown an object defined as the target, usually as a
motion sequence of 2D views that led to an impression of 3D shape through the kinetic
depth effect. In the testing phase the subjects were presented with single static views
of either the target or a distractor (one of a relatively large set of similar objects). The
subject’s task was to press a “yes”-button if the displayed object was the current target
and a “no”-button otherwise, and to do it as quickly and as accurately as possible. No
feedback was provided as to the correctness of the response.

Our decision to use the 1IFC paradigm, motivated by the desire to force the sub-
jects to compare the stimulus to an internal representation (and not to a simultaneously
displayed distractor), opened the possibility that the subjects would be biased in their
responses. A comparison between the proportions of miss and false-alarm errors com-
puted for the entire body of data (see appendix A) showed that most of the subjects
tended to respond conservatively, which led to the false-alarm rates being often lower
than miss rates. It should be noted that because none of our conclusions below are
based on absolute values of the miss rate (and certainly not on the false-alarm rate,
since we were not concerned with data from trials in which the target did not appear),

this bias has no consequence. An objection sometimes made against the use of the

3For example, a recent model of familiarity judgment calls for a description of the stimulus to be
compared to a weighted average of the representations of all known objects, with the outcome depending

on a measure of the resulting similarity (Nosofsky, 1991).
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1992b). It differs from previous work on the recognition of misoriented objects in

several respects, as discussed below.

2.1 Realistic stimulation

First, we sought to give the subjects every opportunity to acquire 3D viewpoint-
invariant representations of the stimuli, by employing realistic shading, kinetic depth,
and, in some experiments, binocular stereo in the presentation of the stimuli during
training. Providing the subject with ample depth cues should increase the plausibility
of attributing any subsequent manifestation of viewpoint dependency in recognition to
viewpoint-dependent representation, rather than to general scarcity of 3D information
in the stimulus during training. Second, we have considered the possibility that the
subjects do form a 3D object-centered representation during training, but fail to make
full use of it because test images, being inherently two-dimensional, are processed by
some kind of specialized 2D mechanism and do not activate the “real” 3D pathway to
recognition. To make this possibility less likely, in three of our experiments some of

the test images were presented under full binocular stereo conditions.

2.2 The experimental paradigm

Our major aim was to make the task faced by the subjects as similar as possible to
a common notion of what constitutes recognition. Previous psychophysical studies
of recognition required that the subject name the displayed object (Tarr and Pinker,
1989), or decide whether it is a mirror image of a previously shown object (Koriat and
Norman, 1985), or determine whether the object is familiar or novel (Rock and DiVita,
1987). Of these tasks, familiarity decision is the closest to recognition in its everyday
sense. One problem with substituting familiarity decision for recognition is that it does

not necessarily require the subject to compare the stimulus with the representation of

10



tal rotation. If information necessary for computing the normalizing transformation
is available in the stimulus, a normalization-based approach is expected to perform
with a uniformly low error rate, irrespective of the stimulus attitude. Indeed, when
asked to give a basic-level classification of an object seen from an unfamiliar viewpoint,
human subjects virtually never err (Biederman, 1987). However, when the task can
only be solved through relatively precise shape matching, the error rate reaches chance
level already at a misorientation of about 40° relative to a familiar attitude (Rock and
DiVita, 1987). Similar dependence of error rate on orientation is obtained both for the
tube-like objects studied by Rock and others (Biilthoff and Edelman, 1992b), and for
amoeba-like objects such as those shown in Figure 1 (see the plot in Figure 2). This,
together with the variation in the error rate for different familiar views of everyday
objects (Palmer et al., 1981), may be taken to indicate that the normalization process
is far from perfect, with the imperfection somehow increasing with the amount of ro-
tation that is to be compensated for. A plausible alternative to this interpretation is
that an inherently imprecise mechanism such as view interpolation is the main avail-
able means for the generalization of recognition to novel views. Experiments reported
in the present paper provide evidence in support of the imperfection of generalizing

recognition to novel views.?

2 General approach

Our experimental approach is designed to explore the ways in which multiple-view

representations could be used in the recognition of 3D objects (Biilthoff and Edelman,

2 As pointed out by a reviewer, error rates may not be diagnostic in distinguishing between an imper-
fect normalization mechanism in which larger transformations introduce increased noise or deformation,
and an intrinsically imprecise viewpoint interpolation. Since the first alternative would amount to a
substantial modification of the normalization approach, we note that our arguments are confined explic-
itly to the original formulation of normalization, as it is usually presented (Ullman, 1989), and applied

(Huttenlocher and Ullman, 1987).



response times in the recognition of novel objects, which are particularly suitable for
this purpose because they offer the possibility of complete control over the subjects’
prior exposure to the stimuli. They have found that the monotonic dependency of
response times on the stimulus attitude, which disappeared after repeated exposure
to the same set of test views, reappeared for “surprise” test views, only to fade away
again as these novel views became familiar to the subjects. Tarr and Pinker proposed
that an alignment process during which the stimulus was rotated to the nearest stored
view was responsible for the monotonic dependency of response time on orientation,
and that after sufficient practice novel test views were added to the previously existing
representation of the object, enabling their subsequent recognition in constant time.

The use of “surprise” test orientations permitted Tarr and Pinker to rule out an
alternative account of the effect of familiarity, which holds that the emerging inde-
pendence of response time on orientation is due to the incremental formation of rep-
resentations that are object-specific, but orientation-invariant (that is, fall into the
first class of representations discussed in the introduction). If such viewpoint-invariant
representations were acquired with practice, the response time for any novel orienta-
tion would have been the same as for the familiar ones, contrary to the experimental
data. Additional evidence regarding the issue of viewpoint invariance can be obtained
by comparing the error rates for familiar and for novel views (Jolicoeur and Landau,
1984). Clearly, a higher error rate for novel views would speak against theories that
postulate viewpoint-invariant representations.

Another motivation for looking at the error rates in addition to response times is
the possibility to distinguish between different theories that use multiple-view represen-
tation. Whereas the pattern of response times found by Tarr and Pinker is compatible
with a theory of recognition that combines multiple-view representation with explicit
normalization to one of the stored views, the pattern of error rates in recent experi-
ments by Rock and his collaborators (Rock and DiVita, 1987) constitutes evidence in

support of multiple-view representation, but not necessarily of normalization by men-



level categorization, recognition performance depends on the object’s attitude with
respect to the observer (for a discussion of possible causes for this empirically demon-
strated difference, see Edelman, 1991; Biilthoff and Edelman, 1992b). Viewpoint-
dependent performance is obtained at the subordinate levels whether or not the test
views are familiar to the observer. The major relevant phenomena in the two cases
are, respectively, canonical views and limited generalization.!

Commonplace objects such as houses or cars can be hard or easy to recognize,
depending on the attitude of the object with respect to the observer. Palmer, Rosch
and Chase (1981) found that human subjects consistently labelled certain views of such
objects as “better” than other, random, views. Furthermore, in a naming task subjects
tended to respond quicker when the stimulus was shown from a good or canonical per-
spective, with the response time increasing monotonically with misorientation relative
to a canonical view (determined independently in a subjective judgment experiment).
The error rate for naming, as found by Palmer et al., was very low, with the errors
being slightly more frequent for the worst views than for others.

The body of evidence documenting the monotonic dependency of recognition time
on the object’s attitude has been interpreted recently (Tarr, 1989; Tarr and Pinker,
1989; Tarr and Pinker, 1990) as an indication that objects are represented by a few
specific views, and that recognition involves viewpoint normalization or alignment (Ull-
man, 1989) to the nearest stored view, by a process related to mental rotation (Shepard
and Cooper, 1982). A number of researchers have shown the differences in response
time among familiar views to be transient, with much of the variability of disappearing
with practice (see, e.g., (Jolicoeur, 1985; Koriat and Norman, 1985; Tarr and Pinker,
1989)). Tarr and Pinker (1989) investigated the effect of practice on the pattern of

! Because we are only addressing here the recognition of objects that belong to the same basic category,
we need not consider the issue of indexing and the phenomena associated with it. For an overview of
indexing, which is the extraction of possible models from a large library that may be done prior to a

detailed consideration of each model, see Grimson, 1990.



under the viewpoint normalization approach will be uniformly low for any test view,
either familiar and novel, in which the information necessary for pose estimation is not
lost.

Consider now the predictions of the view interpolation theory. First, no intrinsic
effect of orientation on response time is expected (see section 2.3 for a discussion of
this prediction). Second, a lower error rate for familiar than for novel test views is
predicted by the interpolation theory, no matter how the interpolation is implemented.
Moreover, some variation in the error rate among the familiar views is also possible, if
the stored prototypical views form a proper subset of the previously seen ones (in which
case views that are the closest to the stored ones will be recognized more reliably than

views that have been previously seen, but were not included in the representation).

1.3 Previous evidence for viewpoint-dependent recognition

Numerous studies in cognitive science (see Rosch, Mervis, Gray, Johnson and Boyes-
Braem, for a review) reveal that in the hierarchical structure of object categories there
exists a certain level, called basic level, which is the most salient according to a variety
of criteria (such as the ease and preference of access). Taking as an example the
hierarchy “quadruped, mammal, cat, Siamese”, the basic level is that of “cat”. Objects
whose recognition implies more detailed distinctions than those required for basic-level
categorization are said to belong to a subordinate level. The pattern of response times
and error rates in recognition experiments appears to be influenced to a large extent by
the category level at which the distinction between the different stimuli is to be made.
Specifically, if the subjects are required to determine the basic-level category of the
stimulus, they normally exhibit response time independent of the stimulus orientation,
as well as near-zero error rate (except when the 3D structure of the object is severely
distorted, e.g., due to foreshortening; see Biederman, 1987, p.140ff).

The present paper is concerned with the subordinate levels, where, unlike in basic-



1990; Edelman and Weinshall, 1991; Bilthoff and Edelman, 1992b). Recognition of an
object represented by the resulting characteristic function amounts to a comparison
between the value of the function computed for the input image and a threshold situated

between 0 and 1.

1.2 Implications of the theories

The theories mentioned above make different predictions about the effect of object
orientation on the accuracy of recognition and on the amount of time it takes. Two
major kinds of test conditions for those predictions are recognition of previously seen
views, and generalization of recognition to novel views of objects previously seen at a
limited range of attitudes. Theories that rely on viewpoint-invariant representations
predict no systematic effect of orientation either on the response time or on the error
rate, both for familiar and for novel test views, provided that the representation prim-
itives (i.e., invariant features or generic parts) can be readily extracted from the input
image. In comparison, theories that involve viewpoint-dependent representations nat-
urally predict viewpoint-dependent performance. The details of the predictions vary
according to the recognition method postulated by each particular theory.

Consider first the predictions of those theories according to which viewpoint-related
variability of apparent shape of objects is explicitly compensated for, by normalizing or
transforming the object to a standard viewpoint. A system that represents an object by
one or more of its views and uses an incremental transformation process for viewpoint
normalization is expected to exhibit response times that will depend monotonically on
the misorientation of the test view relative to one of stored views. This pattern of
response times will hold for many of the familiar, as well as for novel test views, since
the system may store selectively only some of the views it encounters for each object,
and rely on normalization for the recognition of other views, either familiar or novel.

In contrast to the expected dependence of response time on orientation, the error rate



the theories that postulate viewer-centered representations call for an explicit normal-
ization (cf. Palmer 1983), either of the input or of the model, by a 3D transformation
designed to undo the effects of viewpoint-related shape variability. An example of the
normalization approach is provided by Ullman’s theory of recognition by alignment
(Ullman, 1989) (see also Fischler and Bolles, 1981; Lowe, 1986; Huttenlocher and Ull-
man, 1987). In the first stage of the alignment process the pose of the unknown object
is recovered from the correspondence of a few key features in the input image and
the stored representation. Subsequently, the two are aligned, by carrying out the 3D
transformation determined from the estimated pose, and the outcome of recognition is
decided, based on the goodness of the resulting fit between the object and the model.

A recently proposed approach to recognition dispenses with the need for an explicit
normalization of the input image, by comparing it, not with each individual stored view,
but with a hybrid “view” obtained by interpolating among the stored prototypical
ones. Computational basis for the view interpolation approach is provided by the
observation that, under orthographic projection, the 2D coordinates of the projection
of an object point can be represented as a linear combination of the coordinates of
the corresponding points in a small number of fixed 2D views of the same object
(Ullman and Basri, 1991). In the more general case of perspective projection, or in
the case when spatial primitives other than the coordinates of individual points (or
altogether non-spatial primitives such as color) are used, this approach can rely on
universal interpolation or approximation methods such as basis function expansion or
splines (Poggio and Girosi, 1990). In one possible implementation of the interpolation
approach to viewpoint-dependent representation, a characteristic function is defined
for each given object in such a way that it is close to 1 for the various views of that
object, and is close to 0 elsewhere. To that end, a Gaussian-shaped basis function is
placed at each of the prototypical stored views of the object, so that an appropriately
weighted sum of the Gaussians approximates the desired characteristic function over

the entire range of possible views (Poggio and Edelman, 1990; Edelman and Poggio,
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1 Introduction

1.1 Viewpoint-invariant and viewpoint-dependent represen-

tations in recognition

Most contemporary theories of vision describe object recognition in terms of a com-
parison between the input image and a set of stored models that represent known
objects. Carrying out such a comparison is, in general, difficult, because the apparent
two-dimensional shape of the retinal projection of an object may vary considerably, de-
pending on its pose relative to the observer. Computational solutions to the problem
of viewpoint-related variability of object appearance fall into two classes (see Ullman,
1989 for a review). According to one class of object recognition theories, stored rep-
resentations are viewpoint-invariant, and are compared directly to similarly invariant
descriptions computed from the retinal input. Some of the theories belonging to this
class propose to achieve viewpoint invariance by representing objects as sets of spatially
stable or altogether non-spatial features such as contour intersections or characteristic
texture or color that are naturally independent of the viewpoint. In other viewpoint-
invariant approaches, objects are represented as hierarchical three-dimensional (3D)
arrangements of generic parts, described in a coordinate system centered on the object
itself, rather than on the viewer. During recognition, the input object is assigned a
similar coordinate system (based, e.g., on its axis of elongation (Marr and Nishihara,
1978; Palmer, 1975)), and its structural description relative to the chosen coordinate
system is computed and compared to the stored models.

According to the second class of theories of recognition, objects are represented at
several specific orientations, usually determined by the perspective of the viewer at
the time of the formation of the stored representation. Under this approach, direct
comparison between the input shape and a stored model is no longer possible, because

the two will generally be misoriented with respect to each other. Consequently, some of



Abstract

How does the human visual system represent and recognize novel three-dimensional
objects? Variation in response time over different views of objects, obtained in sub-
ordinate-level recognition tasks, hints that objects may be represented by collections
of specific views, rather than by viewpointindependent models. We report results of
four experiments that provide further evidence in support of the viewpoint-specific
representation hypothesis. In the first experiment we tested the recognition of objects
seen repeatedly from the same set of viewpoints. Although the response times in this
experiment became uniform with practice, the differences in error rate for the different
views remained stable. In the second experiment, this result was replicated in the
presence of a variety of depth cues in the test views, including binocular stereo. In the
third experiment, recognition under monocular and stereoscopic conditions was com-
pared over four testing sessions. In those two experiments, we found that the addition
of stereo depth reduced the mean error rate, but did not affect the general pattern
of performance over different views, and its development with practice. Finally, the
fourth experiment probed the ability of subjects to generalize recognition to unfamil-
iar views of objects previously seen at a limited range of attitudes, both under mono
and stereo. The same increase in the error rate with misorientation relative to the
training attitude was obtained in the two conditions. Taken together, these results
support the notion that 3D objects are represented by multiple specific views, possibly
augmented by partial viewer-centered three-dimensional information, if it is available

through stereopsis.
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