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1 IntroductionIt is widely assumed that the sophisticated behavior of biological cognitive systems is due to theirability to learn from the environment, and, furthermore, that a direct consequence of learning isthe formation of an internal representation of information pertinent to the task. Because learnedrepresentations can be employed in shaping the behavior in similar, and thus potentially relatedsituations in the future, representation is a central concept in the study of learning, as it is in other�elds of cognitive science.The very universality of the idea of representation, which makes it equally useful in connectionistand in symbolic accounts of cognition, may suggest that a general theory of representation is likely tobe a multifaceted, loosely coupled collection of domain-speci�c subtheories. We contend, however,that it is possible to identify certain core properties that any representation of the world mustpossess to be able to support e�cient learning and learning-related behavior. Speci�cally, we believethat representations aimed at capturing similarity | itself the basis for generalization in learning(Shepard, 1987) | must be low-dimensional.The link between the issues of similarity and of low-dimensional representations (LDRs) be-comes apparent when one considers problems that arise in visual psychophysics. By de�nition, suchproblems involve a relationship between the physical characteristics of a stimulus and the percep-tual event it evokes. Now, in many situations, a natural framework for a physical description ofvarious relationships | among them similarities | between the di�erent possible stimuli is a low-dimensional metric space. In those cases, it is reasonable to expect that the representational systemreect the dimensional structure, the topology, and maybe even the metrics, of the stimulus space.In the remainder of this section, we examine the extent to which this expectation is ful�lled in atypical perceptual task (namely, color perception), and discuss the computational implications ofthese �ndings.1.1 A case study: color spacesA paradigmatic perceptual task the understanding of which requires dealing with issues of dimen-sionality is the perception of color. Consider the problem of computing the reectance of a surfacepatch from measurements performed on its retinal image. The central feature of this problem isthat the expected solution (i.e., the reectance function of the surface) resides, in principle, in anin�nite-dimensional space, because a potentially di�erent (in the worst case, random) value of re-ectance may have to be speci�ed for each of the in�nite number of wavelengths of the incidentlight (D'Zmura and Iverson, 1996). Furthermore, the spectral content of the illumination (which isconfounded with the reectance function multiplicatively, and which must be discounted to allowthe computation of the reectance) is also potentially in�nite-dimensional, for the same reason.In human vision, the recovery of surface reectance in the face of possible variations in the1



illumination is known as color constancy. Computationally, the achievement of color constancy isdi�cult enough because of the need to pry apart two multiplicatively combined functions, reectanceand illumination. The in�nite dimensionality of these functions seems to suggest, further, that noset of measurements (short of an in�nite and therefore an infeasible one) would su�ce to supportthe recovery of surface reectance. Nevertheless, human vision exhibits color constancy under awide range of conditions (Beck, 1972), despite the small dimensionality of the neural color codingspace (De Valois and De Valois, 1978); moreover, the dimensionality of the psychological (perceived)color space is also small (Boynton, 1978). In fact, both these color spaces are two-dimensional.11.1.1 Low-dimensional physiological color spaceIn human vision, there are three kinds of di�erent retinal cone types (R, G, B; in addition, there arethe rods, whose spectral selectivity resembles that of the R cones). The hue information containedin the cone responses is further transformed on its way to the brain by combining these into twochannels: R � G and B � Y , where Y denotes R + G. The question arises, therefore, how is itpossible to recover the potentially in�nite-dimensional spectral quantities using this measurementmechanism.2The solution to this paradox is made possible by the �nite (in fact, low) dimensionality of thespace of the actual surface reectances. This observation has been quanti�ed by Cohen (1964),who showed that over 99% of the variance in the set of Munsell chip reectance functions could beaccounted for using just three basis functions (corresponding roughly to variations in intensity andin color-opponent R�G and B�Y channels). The space of illuminations likely to be encountered innature appears to be equally low-dimensional: a principal component analysis of 622 measurementsof daylight illumination (carried out at di�erent times of day) showed that over 99% of the variancecan be accounted for by as few as three principal components (Judd et al., 1964).The �ndings of Cohen and of Judd et al. help one understand why a small number of independentcolor-selective channels su�ce to represent internally most of the richness of the world of color.3The reason is simple: the internal representation space can be low-dimensional, because the distalspace happens to be low-dimensional.1An additional dimension in both cases is that of luminance. It should be noted that color constancy requiressimultaneous processing of more than one spatial location, so that the e�ective dimensionality of the input to theconstancy mechanism is slightly higher than two.2There are several dedicated color channels (as well as a luminance channel) for each location in the central visual�eld, so that the dimensionality of the measurement system is much higher; moreover, the number of dimensions perunit solid angle varies with retinal eccentricity, being the highest around the fovea. In the present discussion, however,we are only concerned with the applicability of this system to the estimation of color, not with its spatial resolution.3All of it, for all we know; any pair of colors that are metameric with respect to our color vision are indistinguishablefor us. Note that metamery (or like representations for unlike stimuli) may also occur when the illumination conditionsare radically di�erent from those which our visual system has evolved to tolerate (try to distinguish between US 1 centand 10 cent coins under an orange sodium street lamp). 2



1.1.2 Low-dimensional psychological color spaceIn the preceding section we have seen that the physiological coding space for color is low-dimensional,and that its dimensionality matches that of the universe of stimuli it is geared to respond to. Itshould not be surprising, therefore, that the representation space fed by the color coding system isequally low-dimensional. Note, however, that the question of the dimensionality of the perceivedcolor space belongs to psychology, not physiology. The only means for its resolution lies, therefore,in processing the responses of observers to color stimuli.A data processing tool that proved to be exceptionally useful in the characterization of internalrepresentation spaces, including that of color, is multidimensional scaling, or MDS. This techniqueis derived from the observation that the knowledge of distances among several points constrainsthe possible locations of the points (relative to each other) to a su�cient degree as to allow therecovery of the locations (i.e., the coordinates of the points) by a numerical procedure (Youngand Householder, 1938). Assuming that the perceived similarities (that is, inverse distances, orproximities) among stimuli such as colors determine the responses made to those stimuli, one canprocess the responses by MDS, and examine the dimensionality of the resulting con�guration ofthe points and the relative locations of the points. The assumption of the orderly relationshipbetween the measured proximities and those derived from the resulting con�guration is veri�ed inthe process, by the success of the MDS procedure, as manifested in the low stress (which is thecumulative residual discrepancy between those two quantities, computed over all the points). Inthe processing of color perception data, the con�guration derived by MDS is invariably found to beapproximately circular (placing violet close to red), and to reside in two dimensions, one of whichcorresponds to the hue, and the other { to the saturation of the color (Shepard, 1962; Boynton,1978).1.2 ImplicationsThe exploration of the metric and the dimensional structure of psychological spaces has been boostedby the improvement of the metric scaling techniques and by the development of non-metric multi-dimensional scaling in the early 1960's (Shepard, 1966; Kruskal, 1964). By 1980, a general patternwas emerging from a large variety of perceptual scaling experiments: the subject's performancein tasks involving similarity judgment or perception can be accounted for to a substantial degreeby postulating that the perceived similarity directly reects the metric structure of an underlyingperceptual space, in which the various stimuli are represented as points (Shepard, 1980).44The metric model of the system of internal representations is not always directly applicable, as shown by asymmetryand lack of transitivity of similarity judgments that can be obtained under a range of conditions (Tversky, 1977). Arecent proposal for a reconciliation of the feature contrast theory derived from these results with the metric perceptualscaling theory is described in (Edelman et al., 1996). 3



This pattern has not escaped the attention of theoretical psychologists. In a paper which ap-peared on the tri-centennial anniversary of the publication of Newton's Philosophiae Naturalis Prin-cipia Mathematica, and was motivated by a quest for psychological laws that would match those ofmechanics, Shepard (1987) proposed a law of generalization that tied the likelihood of two stimulievoking the same response to the proximity of the stimuli in a psychological representation space |the same space that so persistently turned out to be low-dimensional in the experiments surveyedin (Shepard, 1980).The signi�cance of Shepard's insight is twofold. First, the introduction of the notion of apsychological space puts novel stimuli on an equal footing with familiar ones: a point correspondingto a novel stimulus is always located somewhere in the representation space; all one has to do ischaracterize its location with respect to the familiar points. The great importance of generalizationstems from the fact that the visual system literally never encounters the same stimulus twice: thereare always variations in the viewing conditions such as illumination; objects look di�erent fromdi�erent viewpoints; articulated and exible objects change their shape. Mere memory for paststimuli, faithful and extensive as it may be, is, therefore, a poor guide for behavior. In contrast,a suitable representation space can help the system concentrate on the relevant features of thestimulus, which, presumably, remain invariant.5 In such a space, proximity is a reliable guidefor generalization. Shepard's (1987) work shows that the validity of proximity as the basis forgeneralization is universal, and can be derived from �rst principles.The second reason behind the importance of having a common space for the representation ofa range of perceptual qualities in any given task has to do with the low dimensionality of such aspace. This point became gradually clear only recently, with the emergence of formal approachesto the quanti�cation of complexity of learning problems. Whereas in some perceptual tasks (suchas color vision) low dimensionality of the representation stems naturally from the correspondinglow dimensionality of the stimulus space, in other tasks (notably, in object shape recognition) thesituation is less clear, although there are some indications that a useful common low-dimensionalparameterization of diverse shapes can be achieved (see Figure 1).In the case of object recognition, it is tempting to argue that one should use the multidimen-sional signal as is, because the shape information that the visual system needs is certainly presentthere: \The photoreceptors are [: : : ] necessarily capable of coding, by their population response,any conceivable stimulus. Why are subsequent populations needed?" (Desimone and Ungerleider,1989, p.268).6 We now know that this approach to representation is untenable, as far as learningto recognize objects from examples is concerned. The reason for this is related to the notion of thecurse of dimensionality: the number of examples necessary for reliable generalization grows exponen-5The issue of invariant feature spaces is beyond the scope of the present discussion, which focuses on dimensionality.6Desimone and Ungerleider meant this question to be rhetorical; representations of visual stimuli in the highercortical areas are clearly di�erent from those at the retinal level.4



Figure 1: Top: images of several 3D objects. Middle: images of the same objects, parameter-ized with 15625 parameters and re-rendered. The parameterization was de�ned by computing theoccupancy indices for each voxel in a 25 � 25 � 25 subdivision of the volume of each object. Bot-tom: images rendered from the representations of the objects in a common 5-dimensional parameterspace, obtained from the high-dimensional voxel-based space using principal component analysis(data courtesy of S. Duvdevani-Bar). If the parameterization is carried out in this manner, it willdepend on the choice of objects, because the latter determines the set of basis functions that spanthe object space. If universal basis functions for shape, such as deformation modes, are used, theparameterization will be universal too (although its dimensionality is likely to be somewhat higher).In any case, the possibility of such parameterization indicates that a low-dimensional distal shapespace may provide a basis for shape representation that is just as powerful as the low-dimensionalspaces of naturally occurring illumination and reectance spectra, discussed in section 1.1.tially with the number of dimensions (Bellman, 1961; Stone, 1982). Learnability thus necessitatesdimensionality reduction.1.3 Dimensionality reductionAlthough empirical evidence for the low dimensionality of the psychological representation spaceshas been accumulating steadily for some decades now, there is still a widespread tendency in psy-chology to overlook the computational problem presented by the derivation of low-dimensionalrepresentations from perceptual data. The main reason behind this state of a�airs is the mistakenassumption that the raw data available to the cognitive system reside in an immediately accessiblelow-dimensional space. For example, textbooks typically describe visual perception as the extractionof information from the two-dimensional retinal image, completely ignoring the fact that the imme-5



diate successor of the retinal space in the processing hierarchy is, in primates, a million-dimensionalspace spanned by the activities of the individual axons in the optic nerve (cf. the discussion on thedimensionality of space in Poincar�e, 1913).Obviously, the million numbers available at any given moment at the point of entry to the visualsystem must be somehow combined together if the dimensionality of the signal is to be reduced.How is this reduction to be done? The visual needs of a simple organism | think of a sea snailequipped with a few dozens of photoreceptors | may be satis�ed, e.g., by computing the mean andthe standard deviation of the activities of the photoreceptors. Such an approach to LDR extractionwould result in a two-dimensional representation making explicit the ambient luminance in thecreature's environment and something like the contrast of the optical stimulus | signals possiblyrelated to the presence and the size of other creatures in the vicinity of the observer.Obtaining a greater amount of visual information from the environment calls for a more ad-vanced approach to dimensionality reduction. Consider, for example, a system intent on learning todiscriminate between images of two human faces, under varying viewpoint and illumination. Underthe present formalism, an image of a face is represented initially as a point in the high-dimensionalspace corresponding to the photoreceptors in the fovea (or the pixels, in a computer vision system).To learn to attribute a point to its proper class, itself represented by a cluster of points in thehigh-dimensional pixel space, a system must be able to distinguish between two kinds of movementsin this space: those precipitated by changes in the viewing conditions, and those that correspondto changes in the identity of the face. These changes span two manifolds in the million-dimensionalspace of pixels. While each of these manifolds may be of a much lower dimensionality, they arelikely to be very di�cult to �nd, because they are embedded in so many dimensions. Thus, theproblem of the extraction of the relevant dimensions may, as it were, be di�cult or easy, but it isquite obvious that this problem is not trivial.The choice of an approach to the reduction of dimensionality to a manageable level clearlydepends on the computational reasons for having an initially high-dimensional measurement space.One such reason is the need for the highest possible resolution in the input space. For example,in shape discrimination, high spatial resolution may be required for distinguishing objects thatbelong to the same category. Note that even when a family of objects can be given a commonlow-dimensional description, the features involved in such a description (that is, the dimensionsof an appropriate representation space) are unknown a priori to the observer. Furthermore, therelevant features may change from one task to another even when the collection of objects underconsideration is �xed. Thus, a visual system would do well if it insures itself against the possibilityof losing an important dimension by making as many measurements as possible. This increasesthe likelihood that any dimension of variation in the stimulus will have a nonzero projection onat least some of the dimensions of the measurement space. Finally, another reason for having ahigh-dimensional measurement space at the front end of a perceptual system is the need for sparse6



feature sets; the importance for learning of having just a few features active for any give object isdiscussed in (Barlow, 1959; Barlow, 1990; Barlow, 1994); see also (Young and Yamane, 1992; Field,1994; Rolls and Tovee, 1995).1.4 Intermediate conclusionsThe conclusions of the above introductory survey of the issue of dimensionality in perceptual rep-resentation and learning constitute a curious mixture of opposites: even if the task at hand can begiven a low-dimensional parameterization, a visual system has no direct access to the distal parame-ter space, and must, therefore, resort to massively redundant measurements, which carry with themthe curse of dimensionality. In the rest of this chapter, we argue that the hope of exploiting theintrinsic low-dimensional structure of problems of vision is, nevertheless, well-founded. In section 2,we review a number of relevant computational approaches to dimensionality reduction. Section 3then presents, in some detail, two empirical studies that support our view of LDR extraction. Fi-nally, section 4 recapitulates the central message of our approach, and suggests possible directionsin which it can be extended.2 Some computational approaches to dimensionality reductionThe full importance of the characterization of the psychological spaces as metric (or, at least,topological) and low-dimensional cannot be realized in the absence of the proper mathematicalapparatus. Fortunately, the recent developments in mathematical statistics and in computationallearning theory supplied some useful tools; some of these will be surveyed in this section. Thedi�erent approaches to dimensionality reduction are to be judged, within the present framework, bythe following features:� Biological relevance. Procedures for dimensionality reduction are mostly of interest to usinsofar as they can serve as models for this function in biological information processingsystems.� The ability to deal with high-dimensional spaces. The approaches described in the literatureare tested, typically, on the reduction of dimensionality by a factor of 3� 10. In comparison,the problem of dimensionality reduction that arises in biological perceptual systems involvesspaces whose dimensionality runs in the tens of thousands, if not millions.� Data- and task-dependence. Those approaches that de�ne the low-dimensional space relativeto or in terms of a given data set (rather than in absolute terms) are of special interest, becausethe relevant structures change from one task to another.7



� Fidelity. Of particular value are those methods that reect as closely as possible the layoutof some intrinsic low-dimensional pattern formed by the data points, despite their embeddingin the high-dimensional measurement space.In the remainder of this section, we survey a number of approaches that address some of the aboveconcerns; two additional promising methods are discussed in section 3, in connection with somepsychophysical and computational experiments in dimensionality reduction.2.1 Vector quantization and clusteringClustering methods, which have a long history in pattern recognition (Duda and Hart, 1973), canserve to reduce dimensionality if each data point (vector) is quantized | represented by the labelof the cluster to which it is attributed. Network versions of clustering algorithms frequently involvefamiliar learning rules, such as the Hebbian rule of synaptic modi�cation (Moody and Darken,1989). The basic idea behind these methods is two-phase iterative optimization. Given the requiredor expected number of clusters, the algorithm �rst adjusts the means of the candidate clusters soas to reect the cluster membership of each observation. Second, cluster memberships are updatedbased on the new means.Many variations on this approach are possible. A statistically relevant formal framework here isthat of �tting the data with a mixture of Gaussians, for which the estimation of the parameters isguided by the maximum likelihood principle (Jacobs et al., 1991). In general, clustering techniquestend to be very sensitive to the dimensionality of the data, leading to large quantization distortionsand to problems associated with local minima of the optimization criterion; to alleviate these prob-lems, recently proposed global vector quantization methods use optimization by simulated annealing(Rose et al., 1992). Another potential problem with vector quantization is its reliance on the raw(measurement-space) distances between data points, which, in many cases, are inappropriate.7 Inprinciple, this problem may be approached by incorporating knowledge about the task into thede�nition of the distance function (Baxter, 1995), although the practical value of this approach isas yet unclear.2.2 Discriminant analysisGiven a number of independent features (dimensions) relative to which data are described, discrim-inant analysis (Fisher, 1936) creates a linear combination of these which yields the largest meandi�erences between the desired classes (clusters). In other words, discriminant analysis seeks those7E.g., in the pixel space, the distance between two images of the same face taken under di�erent illuminations islikely to be larger than the distance between images of two di�erent faces, taken under similar illuminations (Moseset al., 1994). 8



projections that minimize intra-class variance while maximizing inter-class variance. If the depen-dent (class) variable is a dichotomy, there is one discriminant function; if there are k levels of thedependent variable, up to k� 1 discriminant functions can be extracted, and the useful projectionscan be retained. Successive discriminant functions are orthogonal to one another, like principalcomponents (discussed below), but they are not the same as principal components, because theyare constructed to maximize the di�erences between the values of the dependent variable. Recently,it has been observed that the classical formulation of discriminant analysis is not accurate whenthe dimensionality is close to the number of training patterns used to calculate the discriminatingdirections; an added variability due to the high dimensionality should be taken into account (Buck-heit and Donoho, 1995). As far as network implementation is concerned, linear discrimination ise�ciently learned by a single-layer Perceptron (Rosenblatt, 1958). Some recent nonlinear extensionsof discriminant analysis are discussed in (Hastie et al., 1994).
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Figure 2: Principal components �nd useful structure in data (A) and fail when the variance of eachcluster is di�erent in each direction (B).2.3 Principal components and maximum information preservationIn the reduction of dimensionality by principal component analysis (PCA), data are projected ontothe leading eigenvectors of their covariance matrix, corresponding to the directions of maximumvariance. Numerous network-based approaches to PCA have been proposed (Sejnowski, 1977; Oja,1982; Linsker, 1986; Kammen and Yuille, 1988; Miller et al., 1989; Sanger, 1989). Linear reconstruc-tion of the original data from principal component projections is optimal in the mean square errorsense. This approach is thus optimal when the goal is to reconstruct accurately the inputs, and isalso optimal for the maximum information preservation (mutual information maximization), if thedata are normally distributed. PCA is not optimal when the goal is classi�cation, as illustrated bythe simple example in Figure 2 (see also Duda and Hart, 1973, p.212). This �gure presents twosets of points, each belonging to a di�erent class. The goal is to simplify the representation with aminimal loss in information, which, in this case, amounts to �nding a one-dimensional projection9



that captures the class structure exhibited in the data.Clearly, the structure in the data is conveyed by projecting the data onto the x direction. Thisdirection also maximizes the projection variance for Figure 2A, but not for Figure 2B. Similarly,minimizing the reconstruction error is achieved by projecting onto the x direction for Figure 2Aand by projecting onto the y direction for Figure 2B. Here, therefore, is a simple example in whichthe goal of cluster information preservation contradicts that of �nding the principal component ofthe data.8 This suggests that information preservation is to be preferred over PCA for patternrecognition applications (these two criteria coincide for the normal data distribution).2.4 Projection pursuitFollowing the realization that information preservation may be very di�erent from the extractionof principal components, and that projection onto the principal component directions may not beuseful in the case of non-Gaussian distribution, it becomes relevant to ask, what can count as aninteresting structure (important information) in a high-dimensional non-Gaussian data distribution.One possible answer here is provided by the Projection Pursuit (PP) methods (Huber, 1985).These seek features emphasizing the non-Gaussian nature of the data, which may be exhibitedby (semi) linear projections. The relevance to neural network theory is clear, since the activityof a neuron is widely believed to be a semi-linear function of the projection of the inputs ontothe vector of synaptic weights. Diaconis and Freedman (1984) have shown that for most high-dimensional clouds (of points), most low-dimensional projections are approximately Gaussian. This�nding suggests that important information in the data is conveyed in those directions whose single-dimensional projected distribution is far from Gaussian. Polynomial moments are good candidatesfor measuring deviation from Gaussian distribution; for example, skewness and kurtosis which arefunctions of the �rst four moments of the distribution, are frequently used in this connection.Intrator (1990) has shown that a BCM9 neuron can �nd structure in the data that exhibits devi-ation from normality in the form of multi-modality in the projected distributions. Because clusterscannot be found directly in the data due to its sparsity (recall the curse of dimensionality), this typeof deviation, which is measured by the �rst three moments of the distribution, is particularly usefulfor �nding clusters in high-dimensional data, and is thus useful for classi�cation or recognition tasks.Applications of this method are described in (Intrator, 1993; Intrator et al., 1996).8One may wonder why principal components miss the important structure in the data, while another projectiondoes not. The answer lies in the fact that principal components are concerned with �rst and second order momentsof the data; when there is important information in higher-order moments, it cannot be revealed by PCA.9BCM stands for Bienenstock Cooper and Munro (1982), who formulated a learning rule designed to model earlyvisual cortical plasticity. The current version of this rule, its mathematical properties, statistical motivation andnetwork extensions are discussed in (Intrator and Cooper, 1992).
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2.5 Independent component analysisIndependent component analysis (ICA) (Comon, 1994; Bell and Sejnowski, 1995) attempts to �nd ana�ne transformation of the input data so that in the new coordinate system, the di�erent dimensionsare statistically independent. This is a stronger constraint compared with principal componentanalysis, which only requires that the di�erent dimensions be uncorrelated. In other words, ICAseeks a factorizing transformation so that the joint probability density function becomes a productof unidimensional densities, by minimizing the mutual information between the di�erent dimensions.This actually leads to a minimization of higher order correlations, in addition to the second-ordercorrelation of the PCA. It is yet unclear whether this formulation is appropriate for dimensionalityreduction, although an attempt to extend the formulation to a dimensionality reduction methodwas recently presented (Amari et al., 1996).2.6 Topology-preserving dimensionality reductionWe now turn to the discussion of topology-preserving methods; these can be especially useful forrepresenting data for which an a priori pattern of similarities is given, and which are known to residein an intrinsically low-dimensional space (embedded in a high-dimensional measurement space).10Intuitively, such data may be thought of as a set of points drawn on a sheet of rubber, which isthen crumpled into a (high-dimensional) ball. The objective of a dimensionality-reducing mappingis to unfold the sheet and make its low-dimensional structure explicit. If the sheet is not tornin the process, the mapping is topology-preserving; if, moreover, the rubber is not stretched orcompressed, the mapping preserves the metric structure of the original space, and, hence, theoriginal con�guration of points.The requirement that the mapping be of the latter kind (i.e., an isometry) is very restrictive:if it is to hold globally, the mapping must be linear. For local approximate isometry, any smoothand regular mapping is su�cient.11 Moreover, near linearity and smoothness are also necessary fortopology preservation. This is good news, as far as the learnability of the mapping is concerned:a smooth mapping implies a small number of parameters to be learned. This, in turn, reducesthe likelihood of over�tting and poor generalization, which plague learning algorithms in high-dimensional spaces.The oldest nonlinear method for topology-preserving dimensionality reduction is multidimen-sional scaling, already mentioned in section 1.1.2. MDS has been originally developed in psycho-metrics, as a method for the recovery of the coordinates of a set of points from measurements of the10A good simple example is, again, color: there is a natural pattern of similarities that must be observed (e.g., pinkshould be represented as closer to red than to green), and the objective color spaces are low-dimensional, as we haveseen in section 1.1.11A discussion of such quasiconformal mappings in the context of shape representation can be found in (Edelmanand Duvdevani-Bar, 1997). 11



pairwise distances between those points. MDS can serve to reduce dimensionality if the points areembedded into a space of fewer dimensions than the original space in which interpoint distances weremeasured. The main problem with MDS, if it is considered as a method for massive dimensionalityreduction rather than as a tool for exploration of experimental data in applied sciences (Shepard,1980; Siedlecki et al., 1988), is its poor scaling with dimensionality (Intrator and Edelman, 1996).In the context of learning, a number of methods for topology-preserving dimensionality reductionhave been derived from the idea of a self-supervised auto-associative network (Elman and Zipser,1988; DeMers and Cottrell, 1993; Demartines and H�erault, 1996). Because these methods are un-supervised, they extract representations that are not orthogonal to the irrelevant dimensions of theinput space. An interesting approach that combines supervised feature extraction with topologypreservation was proposed in (Koontz and Fukunaga, 1972), whose dimensionality reduction algo-rithms explicitly optimize a joint measure of class separation and (input-space) distance preservation(see also Webb, 1995). This approach, which resembles MDS, su�ers from the same poor scalingwith the dimensionality.A recent technique that combines PCA and clustering (Kambhatla and Leen, 1994) attempts to�rst cluster the input space and then perform bottleneck dimensionality reduction in di�erent regionsseparately. In this way, they attempt to overcome the drawback of PCA, namely, its ability to �ndonly linear structure. However, the clustering part of this method is sensitive to the dimensionality.
Synaptic modification based
on back−propagation rule
and the EPP learning rule

Internal 
Representation 
Unit

Figure 3: A hybrid neural network for dimensionality reduction, which combines exploratory pro-jection pursuit and standard backpropagation learning rules; see section 2.7. The low-dimensionalrepresentation is formed at the hidden layer of the network.
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2.7 Hybrid dimensionality reductionBecause of the potential bene�ts of bringing all possible kinds of information to bear on the problemof dimensionality reduction, numerous attempts have been made to combine unsupervised with su-pervised learning for that purpose (Yamac, 1969; Gut�nger and Sklansky, 1991; Bridle and MacKay,1992). Typically, these approaches use a hybrid learning rule to train a network, which then de-velops a reduced-dimensionality representation of the data at its hidden layer. In this context, itis possible to impose prior knowledge onto the network by minimizing the e�ective number of itsparameters using weight sharing, in which a single weight is shared among many connections in thenetwork (Waibel et al., 1989; Le Cun et al., 1989). An extension of this idea is the \soft" weightsharing, which favors irregularities in the weight distribution in the form of multimodality (Nowlanand Hinton, 1992). This penalty has been shown to improve generalization results obtained by hardweight elimination, under which a weight whose value becomes smaller than a prede�ned thresholdis set to zero. Both these methods make an explicit assumption about the structure of the weightspace, but disregard the structure of the input space.As described in the context of projection pursuit regression (Intrator, 1993), a penalty term maybe added to the cost function minimized by error back propagation, for the purpose of measuringdirectly the goodness of the projections12 (see Figure 3). This emphasizes the choice of the \right"prior, as a means to improve the bias/variance tradeo� (Geman et al., 1992). Penalty terms derivedfrom projection pursuit constraints tend to be more biased towards the speci�c problem at hand,and therefore may yield improved generalization for instances of that problem.3 ExamplesThe multiplicity of the available approaches to dimensionality reduction prompts one to ask whichof them constitutes the best model of the shape processing subsystem in human vision, or, for thatmatter, whether the framework of dimensionality reduction is at all relevant to shape processing.Unlike the objective color spaces (the spectra of surface reectances, and of daylight illumination),which, as we noted above, have been known for quite some time to be low-dimensional (Cohen,1964; Judd et al., 1964), spaces of naturally occurring shapes still await characterization.13Even though it is as yet unknown whether or not classes of natural objects can be consideredas residing in inherently low-dimensional spaces, it is possible to �nd out whether the human vi-sual system is geared to take advantage of low dimensionality, if the latter is forced upon a set ofarti�cially constructed stimuli. An early study involving such stimuli (closed contours, parameter-ized by two orthogonal variables), conducted by Shepard and Cermak (1973), showed that human12The essence of Exploratory Projection Pursuit (Friedman, 1987) is to seek projections so that the projecteddistribution is far from Gaussian.13An exception here is the space of human head shapes (Atick et al., 1996); see also section 3.2.13



subjects judge shape similarity as if they represent the shapes as points in a two-dimensional space,whose placement is correct in the sense of being isomorphic (with respect to shape similarity) tothe original parameter space used to generate the shapes.3.1 Veridical perception of low-dimensional similarity patterns among 3D shapesA recent systematic study of shape similarity perception that we describe next con�rmed the abilityof the human visual system to attune itself to the proper low-dimensional contrasts among shapes,despite the embedding of these contrasts in high-dimensional measurement and in intermediaterepresentation spaces (Edelman, 1995a; Cutzu and Edelman, 1996).3.1.1 The psychophysical experimentsThe experiments of Edelman and Cutzu involved animal-like solid objects, generated and renderedusing computer graphics software. The shape of each object was de�ned by a point in a common 70-dimensional parameter space (the shape space). The planar (2-dimensional) and regular shape-spacecon�gurations formed by the stimuli in each experiment (see Figure 4, left, for an example) were cho-sen to facilitate the comparison between the (distal) shape space and the (proximal) representationspace, recovered from the subject's response data using multidimensional scaling.The psychophysical data were gathered using three di�erent methods for estimating perceivedsimilarity. In the pairs of pairs comparison experiments, the subjects di�erentially rated pairwisesimilarity when confronted with two pairs of objects, each revolving in a separate window on acomputer screen. In the long-term memory variant of this method, the subjects were �rst trained toassociate a label with each object, then carried out the pairs of pairs comparison task from memory,prompted by the object labels rather than by the objects themselves. In the delayed match to sampleexperiments, pairs of static views of the same object or of di�erent objects were consecutively andbriey ashed on the screen; the subject had to decide whether or not the two views were of thesame object under di�erent orientations, or of di�erent objects. The response time and error ratedata from each experiment were entered into proximity tables, as described in (Cutzu and Edelman,1996), and were submitted to MDS.In all the experiments, the parameter-space con�gurations according to which the stimuli hadbeen arranged (such as the Star con�guration in Figure 4, left) were easily recognizable in theMDS plots. Procrustes analysis (Borg and Lingoes, 1987) indicated that the similarity betweenthe MDS-derived and the objective con�gurations was signi�cantly above chance, as estimated bybootstrap (Efron and Tibshirani, 1993). Notably, the parameter-space con�gurations of the stimuliwere also recovered in the long-term memory experiments, in which the subjects could not rely onimmediate percepts or short-term memory representations of the stimuli (cf. Shepard and Chipman,1970). 14
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Figure 4: Left: Star, one of the four shape-space con�gurations used in the experiments of (Cutzuand Edelman, 1996) (see section 3.1). The inset shows one of the shapes, at about 1/3 of its actualscreen size, as seen by the subjects in a typical experiment. Middle: the 7-point con�guration (cor-responding to the seven members of the Star pattern), recovered by multidimensional scaling fromsubject data, then Procrustes-transformed (i.e., scaled, rotated, translated, and possibly reected)to align with the true con�guration (by \true" con�guration we mean the one constructed in aparameter space chosen arbitrarily in advance of the experiments. For a discussion of the issue ofdi�erent possible parameterizations, see (Edelman and Duvdevani-Bar, 1997)). The circles markthe true shape-space locations of the seven objects; the �'s { the locations determined by MDS;lines connect corresponding points. The total length of the lines is the Procrustes distance betweenthe two con�gurations; Monte Carlo analysis indicated that this distance was signi�cantly belowthat obtained by chance, in all the experiments. Right: the con�guration recovered by MDS fromthe response data of a computational model of shape perception, described in section 3.1. Here too,the similarity between the recovered and the true con�gurations was highly signi�cant.3.1.2 A computational model: Chorus of PrototypesBy virtue of the algorithmic de�nition of the MDS procedure, the 2D shape space recovered from thesubject data closely reects the subject's internal representation space.14 The low dimensionality ofthe latter space indicates, therefore, that the faithful perception of similarities among the stimuli bythe subjects was accompanied by a massive dimensionality reduction, which, moreover, preserved thetopographic layout of an original low-dimensional space throughout the shape processing pathway.To elucidate the possible computational basis for this feat of the human visual system, the shapeperception experiments were replicated with two computer models. In the �rst model, designed toillustrate the behavior of a raw image-based measure of similarity, object views were convolved withan array of overlapping Gaussian receptive �elds. The proximity table for each parameter-spacecon�guration was constructed by computing the Euclidean distances between the views, encoded by14Provided that the MDS stress is small (Kruskal and Wish, 1978), as it was in the above experiments.15



the activities of the receptive �elds. In the MDS-derived view-wise con�gurations, views of di�erentobjects were grouped together by object orientation, not by object identity. Thus, a simple image-based representation (which may be considered roughly analogous to an initial stage of processingin the primate visual system, such as the primary visual area V1), could not reproduce the resultsobserved with human subjects.The second model, which we call the Chorus of Prototypes (Edelman, 1995b), corresponded toa higher stage of object processing, in which nearly viewpoint-invariant representations of familiarobject classes are available; a rough analogy is to the inferotemporal visual area IT (Young andYamane, 1992; Logothetis et al., 1995). Such a representation of a 3D object can be relatively easilyformed, given several views of the object (Ullman and Basri, 1991), e.g., by training a radial basisfunction (RBF) network to interpolate a characteristic function for the object in the space of allviews of all objects (Poggio and Edelman, 1990). In the simulations, an RBF network was trained torecognize each of a number of reference objects (in the Star con�guration, illustrated in Figure 4,the three corner objects were used as reference). At the RBF level, the (dis)similarity betweentwo stimuli was de�ned as the Euclidean distance between the vectors of outputs they evoked inthe RBF modules trained on the reference objects. Unlike in the case of the simple image-basedsimilarity measure realized by the �rst model, the MDS-derived con�gurations obtained with thismodel showed signi�cant resemblance to the true parameter-space con�gurations (Figure 4, right).The nature of dimensionality reduction performed by the Chorus scheme can be characterizedby viewing its action as interpolation: intuitively, one would expect the proximal representation ofthe distal (objective) shape space to be a (hyper)surface that passes through the data points andbehaves reasonably in between. Now, di�erent tasks carry with them di�erent notions of reasonablebehavior. Consider �rst the least speci�c level in a hierarchy of recognition tasks: deciding whetherthe input is the image of some (familiar) object. For this purpose, it would su�ce to represent theproximal shape space as a scalar �eld over the image space, which would express for each image itsdegree of \objecthood" (that is, the degree to which it is likely to correspond to some familiar objectclass). Some of the relevant quantities here are the activity of the strongest-responding prototypemodule, and the total activity of the modules; cf. Nosofsky, 1988). Note that it is possible tocharacterize a superordinate-level category of the input image, and not merely decide whether it islikely to be the image of a familiar object, by determining the identities of the prototype modulesthat respond above some threshold (i.e., if, say, the cat, the sheep and the cow modules are the onlyones that respond, the stimulus is probably a four-legged animal; see Edelman et al., 1996).At the basic and the subordinate category levels, one is interested in the location of the inputwithin the shape space, which, therefore, can no longer be considered a scalar. Parametric inter-polation is not possible in this case, as the intrinsic dimensionality of the shape space is not givena priori. Now, the prototype response �eld induced by the reference-object modules constitutesa nonparametrically interpolated vector-valued representation of the shape space, in the following16



sense: changing the shape (\morphing") one object into another, corresponding to a movementof the point in the shape space, makes the vector of reference-module responses rotate smoothlybetween the point corresponding to the two objects.The multiple-classi�er Chorus scheme for dimensionality reduction possesses a number of usefulproperties, which extend beyond the list of requirements stated at the beginning of section 2 (namely,biological relevance, the ability to deal with high-dimensional inputs, data-dependence, and �delity).Of particular interest in the context of categorization is the possibility to use Chorus as the basis forthe construction of a versatile and exible model of perceived similarity; if the saliency of individualclassi�ers in distinguishing between various stimuli is kept track of and is taken into considerationdepending on the task at hand, then similarity between stimuli in the representation space can bemade asymmetrical and non-transitive, in accordance with Tversky's (1977) general contrast model(Edelman et al., 1996).Surprisingly, Chorus shares its most valuable feature | the ability to make explicit, with aminimal distortion, the low-dimensional pattern formed by a collection of stimuli that reside in anextremely high-dimensional measurement space | with an entire class of other methods. Specif-ically, any method that (1) realizes a smooth mapping between a distal low-dimensional problemspace (e.g., a shape space) and an internal representation space, (2) can be taught to assign a properlabel to each distal stimulus, and (3) can be made to ignore irrelevant dimensions of variation inthe data (e.g., downplay variation in viewpoint relative to variation in shape), is likely to support afaithful low-dimensional representation of all members of the category from which its training dataare chosen (Edelman and Duvdevani-Bar, 1997). Support for this observation is provided by theresults cited in the next section, where faithful low-dimensional representation of a space of humanhead shapes emerges following training on a classi�cation task unrelated to similarity preservation,in an architecture that is unrelated to that of the multiple-classi�er scheme described above.3.2 Low-dimensional representation as a substrate for the transfer of learningOur next case study, taken from (Intrator and Edelman, 1996), is intended to demonstrate (1) thata low-dimensional representation is an e�cient means for supporting the development of versatilecategorization performance through learning, and (2) that topographically faithful representationscan emerge through a process of learning, even when the latter is guided by considerations otherthan the preservation of topography.15The study that we summarize below addressed the problem of learning to recognize visual objectsfrom examples, whose solution requires the ability to �nd meaningful patterns in series of images,or, in other words, in spaces of very high dimensionality. As in the cases we discussed above,15In this section, we are concerned with the formation of task-dependent representations that possess useful prop-erties such as topography preservation; the integration of these into a coherent global representation space will betreated elsewhere (Intrator and Edelman, in preparation).17



dimensionality reduction in this task is greatly assisted by the realization that a low-dimensionalsolution, in fact, exists. In particular, the space of images of a given object is a smooth low-dimensional subspace of the space of images of all objects (Ullman and Basri, 1991; Jacobs, 1996).The mere knowledge of the existence of a low-dimensional solution does not automatically pro-vide a method for computing that solution. To do that, the learning system must be biased towardssolutions that possess the desirable properties | a task that is highly nontrivial in a high-dimensionalspace, because of the curse of dimensionality. The method for dimensionality reduction describedin (Intrator and Edelman, 1996) e�ectively biases the learning system by combining multiple con-straints via an extensive use of class labels. The use of multiple class labels steers the resultinglow-dimensional representation to become invariant to those directions of variation in the inputspace that are irrelevant to classi�cation; this is done merely by making class labels independent ofthese directions. In this section, we describe the outcome of a computational experiment involvingimages of human faces, which indicates that the low-dimensional representation extracted by thismethod leads to improved generalization in the learned tasks, and is likely to preserve the topologyof the original space.3.2.1 The extraction of a low-dimensional representationAs in the \bottleneck" approaches to dimensionality reduction (Cottrell et al., 1987; Leen andKambhatla, 1994), Intrator and Edelman forced a classi�er (which, for the purpose of the presentdiscussion, may remain a black box) to learn a set of class labels for input objects, while con-straining the dimensionality of the representation used by the classi�er. Unlike in the standardmethods, however, the classi�er had to produce only the labels, rather than reconstruct the inputpatterns. This approach, therefore, constitutes a compromise between completely unsupervised andtotally supervised methods in that it uses a label that individuates a given data item, but does notrequire information regarding the relationship between the di�erent items, let alone the completereconstruction of the data as in the bottleneck autoencoder systems.The ability of this method to discover simple structure embedded in a high-dimensional measure-ment space was demonstrated on a face data set, in which the extraction of the LDR (low-dimensionalrepresentation) requires a highly nonlinear transformation on the measurement space.16 At the basisof this data set lies a two-dimensional parametric representation space, in which 18 classes of facesare placed on a regular 3� 6 grid; an additional parametric dimension, orthogonal to the �rst two,models the within-class variation (see Figure 6). To impose a distinctive low-dimensional structureon the set of faces, we followed the simple approach of common parameterization by principal com-ponent analysis (PCA). This was done by starting with a set of nine 3D laser scans of human heads,and by embedding the 3�6 grid in the 2D space spanned by the two leading \eigenheads" obtained16(Intrator and Edelman, 1996) applied their method also to another data set, consisting of parameterized fractalimages. 18
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Figure 5: Some of the images from the Faces data set (see section 3.2). Top: the 18 heads obtainedby placing a 3 � 6 grid in the space of the two leading principal components of the original nineheads. Bottom: the 7 views of the rightmost head in the top row above; the views di�er by 3� stepsof rotation in depth, summing up to a total di�erence of 18�. Prior to classi�cation, the images,originally of size 400� 400, were reduced to 49� 16 = 784 dimensions by cropping the backgroundand by correlation with a bank of �lters (the exact spatial pro�le of these �lters turned out to beunimportant; Gaussian �lters did just as well as opponent center-surround ones).from the data by PCA. Each of the 18 heads derived by PCA from the original scanned head datawas piped through a graphics program, which rendered the head from seven viewpoints, obtainedby stepping the (simulated) camera in 3� rotation steps around the midsagittal axis.3.2.2 ResultsThe application of the label-based method led to a good recovery of the relevant low-dimensionaldescription of the Faces data set (see Figure 6). The performance of this method in recovering therow/column parametric structure of the 18 classes seems to be especially amazing. Thus, combiningmultiple constraints via an extensive use of class labels is an e�ective way to impose bias on alearning system whose goal is to �nd a good LDR.17 In particular, the use of multiple class labels17A series of control experiments with a 5-layer nonlinear bottleneck autoencoder (Kambhatla and Leen, 1994)showed that self-supervised dimensionality reduction cannot recover a good LDR in the present case, illustrating the19
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Figure 6: Faces data set, dimensionality reduction by a bottleneck multilayer perceptron (MLP);the plots show the locations of the 18� 3 test stimuli in the space spanned by the activities of theunits residing in a hidden layer (18 faces times 3 test orientations per face). Left: results obtainedwith a 3-layer MLP with 13 units in the middle hidden layer, trained for 20; 000 epochs on the18-way classi�cation task. The low-dimensional representation proved to be a good substrate forsolving classi�cation tasks on which the system has not been trained: the error rate on a randomnonlinear dichotomy involving the 18 classes was 0:02, compared to 0:07 obtained by a system trainedspeci�cally on that dichotomy, but using the raw multidimensional representation; see (Intrator andEdelman, 1996) for details. Right: results for a 5-layer bottleneck MLP with 2 hidden units in themiddle hidden layer, trained on the 18-way classi�cation task. The test dichotomy error rate was0:1, compared to 0:29 on the raw data.helps to steer the system to become invariant to those directions of variation in the input space thatplay no role in the classi�cation tasks. This is done merely by using class labels that are invariantto these directions.3.2.3 ImplicationsAn important feature of the LDR computed by this method is the preservation of the topologyof the \true" parametric space underlying the data, which is especially relevant in the context ofhuman cognition. As we have seen in section 3.1, a low-dimensional pattern built into complex2D shapes (by arranging these shapes in a conspicuous con�guration in an underlying parameterimportance of guidance provided by the class labels. 20



space) is recovered by the visual system of subjects required to judge similarities between theshapes (Shepard and Cermak, 1973; Cortese and Dyre, 1996; Edelman, 1995a; Cutzu and Edelman,1996). These �ndings show that the human visual system is capable of recovering the proper low-dimensional representation of the stimuli from a several thousand-dimensional measurement space(dictated by the number of pixels taken by this object representation), while preserving the topologyof the original space (and in many cases the exact relative placement of the stimuli in that space).The comparable capabilities of the two computational models of LDR extraction (the one describedin section 3.1, and the other outlined in the present section) suggest that topography-preservingdimensionality reduction may be less elusive than previously thought, and, in fact, may be a genericproperty of systems that realize a broad class of mappings between the world and their internalrepresentation space,18 as proposed in (Edelman and Duvdevani-Bar, 1997).4 Summary and conclusionsTo paraphrase the title of E. Wigner's (1960) paper, the unreasonable e�ectiveness of living rep-resentational systems may seem to suggest, at �rst, that there must be something special aboutsuch systems that allows them to harbor representations of the world. It seems to be more likely,however, that the phenomenon of representation may be yet another natural category, which devel-oped under evolutionary pressure in response to certain traits of the world with which the systeminteracts (cf. Millikan, 1984). No doubt, some of the relevant properties of the world contributemore than others in any given case of successful representation. We propose that over and abovethose diverse properties there is a unifying principle: various aspects of the world are representedsuccessfully insofar as they can be expressed in a low-dimensional space.Speci�cally, we suggest that the possibility of e�ective representation stems from the low-dimensional nature of the real-world classi�cation tasks: an intelligent system would do well merelyby reecting the low-dimensional distal space internally. This undertaking, however, is not asstraightforward as it sounds. Because the relevant dimensions of the distal stimulus variation areneither known in advance nor immediately available internally, the perceptual front end to any so-phisticated representational system must start with a high-dimensional measurement stage, whosetask is mainly to assure that none of the relevant dimensions of stimulus variation are lost in theprocess of encoding. The ultimate performance of the system depends, therefore, on its capabilityto reduce the dimensionality of the measurement space back to an acceptable level, which would beon par with that of the original, presumably low-dimensional, distal stimulus space.18Namely, mappings that are smooth, regular, and that project out the irrelevant dimensions, while preserving therelevant ones at least to some minimal extent.
21
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