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On Learning to Recognize 3-D Objects from Examples 

Shimon Edelman 

Abstract-Previous results on nonlearnability of visual concepts relied 
on the assumption that such concepts are represented as sets of pixels 
[l]. This correspondence uses an approach developed by Haussler [2] to 
show that under an alternative, feature-based representation, recognition 
is PAC learnable from a feasible number of examples in a distribution-free 
manner. 

Index Terms-Complexity, learning from examples, object recognition, 
representation, vision. 

I. INTRODUCTION 

A .  Background  

Whatever innate mechanisms may be available to the human visual 
system for distinguishing between important and unimportant features 
of the outside world, there is little doubt that descriptions of objects 
built from these features are learned from examples. Since vision 
is the primary source of data for category formation, the study of 
visual learning can lead to important insights into the structure of 
cognition. 

Any theoretical investigation of learning must start with the se- 
lection of a class from which the concepts to be learned will 
be drawn. This selection poses the difficult problem of achieving 
a compromise between the conflicting requirements of description 
and generalization. On one hand, the concepts are required to be 
sufficiently expressive to describe faithfully the target patterns and 
to capture any fine distinctions that may be present among them. 
On the other hand, concepts whose descriptions must be learned 
from examples and, at the same time, support generalization to novel 
situations should be kept as simple as possible. 

The present note addresses this dilemma in the context of learning 
object recognition. First, it provides a background for the discussion 
by restating a general formulation of the notion of learnability 
due to Valiant and Haussler [3], [ 2 ] .  Next, it mentions previous 
approaches to the analysis of learnability of recognition [l], [4] and 
attributes their negative results to a particular choice of concept 
class that appears to favor description capability at the expense 
of generalization properties. An alternative, feature-based approach 
to the learning of visual recognition is then formulated and ana- 
lyzed. Finally, computer simulations whose results are compatible 
with the proposed theoretical approach [5], [6] are described and 
discussed. 

Learnability of visual concepts can be formalized as follows (see 
[2]). Let P be the problem of learning functions belonging to a 
hypothesis space +, with domain S and range  I-. A pair (s, y )  E 
S = .Y x I -  is called an example ;  a sequence of examples is called 
a sample .  Let L : I-  x I-  4 [O. Jf] for some real M > 0 be the loss 
function. Finally, let D be a family of probability measures on S. 
One can now define what it means to solve the learning problem 7‘. 

Definition ( p a g e  6 of Hauss le r  [Z/): Let P be a learning problem 
defined by 1. I-. F. L, and D. Let C be a learning function from the 
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set of all samples over S into +, that is, C : u,,,z1Si” i J. C is 
said to solve P if for all 11 > 0, 0 < o < 1 and 0 < h < 1, there 
exists a finite sample size 7rr = m (v. ( I .  6) such that for all D E P ,  if 
< consists of 7t1 examples drawn independently at random according 
to D with probability at least 1 - h ,  then 

d ,  ( e r ,  ( L ( c ) ) .  optirtr t /  ttl ( D .  F)) 5 (I (1) 

where the error e r n ( C ( < ) )  is defined as the expectation of C(<)  
with respect to the distribution D ,  optirtr U tu ( D .  F) is the infimum 
of e r n ( f )  over all f E F, and the metric tl, is (Ij,( I’. .+) = -. In 
other words, the function C solves the learning problem if it produces 
with high probability a hypothesis that is acceptably close to the 
optimal hypothesis in .F (this parallels Valiant’s definition of probably 
approximately correct (PAC) learning [3]). 

B. Previous Work on Learnable and Nonlearnable Visual Concepts 

The issue of representation corresponding to the choice of the 
hypothesis space F in the above definition is of utmost importance 
in vision [7]. The choice of representation is not entirely free. At the 
very least, it is constrained by the fact that input transducers in both 
biological and artificial visual systems provide signal that is spatially 
discrete (sampled). To date, complexity analyses of visual learning 
have taken this constraint at face value in assuming that the basic 
unit of representation is the pixel [l], [4]. As  a result, counterintuitive 
conclusions regarding the nonlearnability of the recognition of visual 
concepts defined by templates [ 11 have been obtained. Specifically, 
the number of examples rtr required to achieve PAC learning of 
Boolean template representations was shown to be unfeasible. 

Fortunately, it appears that a somewhat misleading definition of 
visual complexity may have been responsible for these results. As far 
as the human visual system is concerned, the definition of complexity 
in terms of image resolution is inappropriate for two reasons. First, 
although spatial resolution in human vision is limited by the discrete 
sampling of the retinal image at the photoreceptor level, the optics 
of the eye act as a low-pass spatial filter, cutting off frequencies 
above approximately 60 cycles per degree [ 8 ] .  Thus, increasing the 
resolution of a picture above a certain level cannot possibly affect the 
percept it evokes. Second, experimental findings suggest that varying 
the amount of detail in a picture has little effect on recognition, 
even when the variations themselves are easily noticeable [9]. The 
important factor in recognition seems to be closeness to a prototype; 
a faithful line drawing rendition of an object is recognized just as 
easily as its photograph. 

11. RECOGNITION OF 3-D OBJECTS. THEORETICAL LEARNABILITY 

A. An Alternative Formulation of the Complexir]v of Recognition 

In contradistinction to pixel-based definitions of visual complexity, 
the author proposes a resolution-independent complexity measure 
whose primitives are inspired by the notion of primal sketch, which 
was introduced by Marr [7]. According to Marr. primal sketch is 
an intermediate representation of the visual input that is formed 
by the first stage of bottom-up visual processing in which simple 
spatial properties of the input (e.g., localization of intensity or texture 
gradients, spatial aggregation) are made explicit. The independence of 
the resulting representation on input resolution is a major consequence 
of this process of abstraction. In fact, algorithms for low-level visual 
tasks such as edge detection and binocular stereo work best when 
applied at several levels of resolution simultaneously; see, e.g., [ l o ] .  

To assess visual complexity of a class of objects for the purpose 
of recognition, it is sufficient to consider sets of object features that 

leave out irrelevant details. A feature is defined as a function from 
the set of all objects into R”. If the range of a feature bears no 
relationship to the space in which the object’s geometry is described, 
that feature may be referred to as abstract (a typical example of such 
a feature is color). Another possibility is to consider the location of 
a certain relatively compact part of the object (say, an eye in face 
recognition) as a spatial feature. 

In pure shape-based recognition, which is the main concern of this 
note, it is assumed that objects can be adequately described by their 
spatial features. It turns out that for such objects, any collection of at 
least three noncollinear features forms a diagnostic set, that is, allows 
the object to be recognized (distinguished from other objects of the 
same category) in a 2-D image 1111, [12]. The author shall define, 
therefore, the complexity of a class of objects as the size k of their 
diagnostic feature set. 

In the simplest case of 3-D point sets, the features are merely 
the locations of the points themselves. Clearly, the method of 
comparing two such feature sets must allow for some location 
uncertainty; otherwise, any small perturbation would render an object 
unrecognizable. Note that this is where the proposed approach differs 
from pixel-based methods, which raise combinatorial problems by 
considering explicitly the various pixel configurations caused by 
shape perturbation. One simple way to achieve relative insensitivity 
to feature location uncertainty is to blur at least one of the feature sets 
before comparison, e.g., by convolving it with a bell-shaped kernel 
such as the Gaussian. (Convolution with a Gaussian kernel has been 
previously proposed as a method for regularizing the estimation of 
an unknown continuous probability density from a set of discrete 
samples [ 131, [ 141). 

An object can then be represented as the set F of allowed 
transformations of its “canonical” 3k-dimensional state (a concate- 
nation of X. triples of coordinates: one per each feature). In other 
words. the indicator function for the set F f = f2  o f l  is a 
composition of a transformation fl : R’’k x T + where 
T = R” is the n-dimensional parameter space of a Lie group of 
one’s choice (see [15] and [16] for examples of application of Lie 

For concreteness, the subsequent analysis is limited to the general 
linear group in 3-D G L ( 3 ) ,  which includes rigid rotations in 3-D as 
a subgroup. Adopting the G L ( 3 )  group while restricting the range 
of transformation parameters is equivalent to allowing the object to 
undergo certain nonrigid deformation and still requiring that it be 
recognized. provided that the deformation is not too severe. Note that 
this general representation is somewhat impractical because the visual 
system has no direct access to the 3-D coordinates of the features. 
One must consider, therefore. projection 11 : R3’ -+ R” as the 
first stage in any process of recognition (for simplicity, projection is 
assumed to be orthographic). 

The problem of learning to recognize 3-D objects can now be 
given two different formulations, depending on the availability of 
correspondence [ 171 information. The first formulation assumes that 
the constituent features of an object can be singled out in its retinal 
projection and can be matched to corresponding features in the 
stored representation of the object. Although finding the correct 
correspondence between object and model features is, in general, a 
difficult computational problem, in many practical situations, it can be 
solved efficiently by using distinctive features [ 181 or an incremental 
approach resembling pruned search [ 191. Note that the representation 
under the correspondence formulation is effectively 2k-dimensiona1, 
as suggested in the previous paragraph. 

The second formulation considered below does not assume knowl- 
edge of correspondence and postulates instead a “collapsed” 2-D 
representation of an object by a superposition of 2-D projections 

groups to perception) and a fuzzy indicator f 2  : R3’- -+ [O. 11. 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 

of all k of its features. Thus, objects are represented in this case by 
collections of their snapshots (this resembles Russell’s definition of 
a visual object as the collection of all of its views [20]). The price 
for giving up the assumption of known correspondence under this 
formulation is in the increased likelihood of interference among the 
different features. As we shall see, this is reflected in an increase 
in the number of examples required for learning recognition without 
correspondence. 

B. Learnability Analysis 

A common feature of these two formulations is that they reduce 
the problem of learning recognition to the problem of approximating 
a multivariate function from a set of examples (cf. [21]). One way to 
analyze the learnability of recognition is to draw conclusions about 
the requisite number of examples from the knowledge of smoothness 
properties of the function to be approximated [22], [23]. However, 
approximation theory is, in a sense, too strict for the present specific 
purpose. A function f for which s i g t i ( j  - 0.3) = . s i y I ( f  - 0.3) 
everywhere would be a perfect recognizer of the object represented 
by the set {z I f ( z )  > 0.3} but could still be considered a bad 
approximation for f under reasonable definitions of goodness of fit. 

Combinatorial geometry seems better suited for the analysis of 
learnability of recognition than approximation theory. Fortunately, 
the necessary tools for such an analysis are already available and are 
exploited below. According to the definition given in Section I-A, a 
learning problem is solvable if the solution can be approximated from 
a finite number of examples. A bound on the number of examples can 
be obtained using the following theorem, which is due to Haussler: 

Theorem (page 26 of Haussler /2]): Let J be a family of func- 
tions from I into a metric space (1.. r l l -  ) of diameter .\I such that 
F = { L ,  : f E J}, where Lf( .r . .y )  = d \ . ( f ( . r ) . , y )  is permissible.’ 
Let D be a probability measure o n  S = S x 1.. Assume 2 1, 
U > 0, and 0 < ( I  < 1. Let < be generated by independent draws 
from S according to an arbitrary but fixed distribution D. Then 

P R ( 3 f  E J: t l , ! ( e r c ( f ) . e r / , ( f i )  > ( I }  

5 4C( n,,/& J ) + ~ , + ‘ /  (2) 

where e r / >  (f ) is the true expectation of f and e r ,  ( f )-its estimate is 
based on the sample E.  This theorem gives a bound on the probability 
of having an indicator function f E J for which the estimated 
expected loss would differ too much from its true value in terms 
of the capaciry C of the class J (the capacity of a set is defined here. 
after [2], as the supremum on the size of its smallest f-cover taken 
over all possible probability measures). Thus, if one can devise an 
algorithm for learning f E J from examples in such a way that its 
error on the example set is small, the above bound could be used to 
compute the number of examples necessary to assure acceptable error 
rate throughout the input space. A simple greedy algorithm satisfying 
this requirement is described in Section 111. 

Now, consider the problem of learning a canonical 3k-dimensional 
state of an object from a sequence of views. Assuming correspon- 
dence, each of the views is a 2X.-dimensional vector composed of X. 
coordinate pairs: one per feature. The action of the transformation 
group on the canonical state z” E K!’”~, followed by orthographic 
projection, can be represented as the multiplication of z” by a 2 k  x 3X. 
matrix T = dic/!i(L. .  . . . L ) ,  where L is a 2 x 3 matrix (cf., the 
appendix in [12]). Each of the components of a view is therefore of 
the form .r, = E::, t,,.r, (where all but three of the t , ,  for each 
given i vanish) and can be considered an element of a 6-D vector 

’ Permissibility is a measurability condition f o r  uncountable classes of 
measurable functions. In the present case, F is permissible (see page 196 
of [ 141). 
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space of functions from ‘R3h to R. Consequently, the combinatorial 
dimension of the class of functions .r, (2’) for all possible zo is equal 
to 6 (e.g., page 19 of [2]). To obtain the combinatorial dimension 
of the class of entire views, note that each view is a k-fold free 
product of functions.2 The required dimension is therefore 6 k ,  which 
gives the class ,I‘ of views of the capacity C ( e . , Y )  = 2C6’, where 
C = ( I n  q), and M is a uniform upper bound on ,Y (page 
24ff [2]). 

Note that to learn zo in this formulation, one must be given 
examples of the form ( T . z ) ,  that is, the transformation must be 
known. This knowledge can come from standard visual motion 
algorithms, which work well when objects are defined by a sufficient 
number of discrete features, with frame-to-frame correspondence, as 
in the present case. In fact, given enough corresponding features 
in several frames, both the motion and the structure of an object 
can be recovered algorithmically (see, e.g., [24]). Nevertheless, it 
is interesting that a recognition algorithm for a given object can 
be learned from examples, provided that a general-purpose motion 
algorithm is available. 

As an example of the no-correspondence case, consider the prob- 
lem of learning to classify vectors U E 72‘’ obtained by sampling the 
intensity of the projections of a k-feature object onto a 2-D “retina” at 
t i  fixed locations. The combinatorial dimension of each u ~ ,  which is 
a superposition of the projections of k features, is k .  Invoking again 
the free product theorem from [2], we obtain the following capacity 
for the no-correspondence representation: C ( e .  V )  = 2Cnk,  where 
C = ( I n  

Thus, under both formulations, recognition of 3-D objects is 
learnable; the number of examples necessary to ensure that with 
probability greater than 1 - b ,  the true error rate for a k-feature 
object will lie within n (using the d,, metric) of the error rate on the 
training set and is linear in k :  

), and .U is a bound on V .  

(3)  

where T i  = Gk in the correspondence case and I< = i l k  ( n  >> 6) 
in the no-correspondence case. The value of 1 1  depends on details 
such as the average spacing of object features and the point spread 
function of the stages prior to recognition. 

111. RECOGNITION OF 3-D OBJECTS: A PRACTICAL APPROACH 

The above results indicate that recognition is learnable. The author 
shall now outline a simple greedy algorithm that learns to represent an 
object from positive examples using the no-correspondence approach. 
A view of the object is represented as a 2-D distribution of “retinal” 
activity, which is caused by the simultaneous presence of k features 
at certain locations in the image. Thus, a view can be considered 
a conjunction of localized feature (CLF) occurrences (see [6]). An 
object is represented by a collection of just enough views to ensure 
that any new view obtained by a rigid rotation of the same object will 
fall close enough to one of the stored views (cf., page 281 of [2S]). 
In a sense, then, an object is defined as a disjunction of conjunctions 
of feature occurrences [SI. 

The algorithm is incremental in that i t  accepts the examples one by 
one and is related to the well-known statistical technique of learning 
vector quantization. It starts with an empty set I -  of views and then 
iterates over views in the sample set S, retaining any view that is 
sufficiently distant (under a simple 2-D correlation metric) from each 
of the currently stored views. Details of the implementation of this 
algorithm are irrelevant to the present discussion and are omitted 
here. They can be found in [6].  

121. 
‘Afree product of kfunctions . f , ( . r )  is the form ( f l ( . r ) .  f z ( . r ) .  . . . . f k ( . r ) )  
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20 40 60 80 io0 
Sample size 

Fig. 1 .  Performance (measured by the ratio of the maximum distance 
between desired and actual output on the training set to the minimum distance 
on the test set; see [12]) of three recognition algorithms related to CLF versus 
the number m of training views (sample size). The three solid curves are 
data for a no-correspondence algorithm, which is a simplified version of CLF 
(N), a nearest-neighbor classifier with correspondence (C), and a radial basis 
function algorithm (R; see [SI). For comparison, a plot of the right-hand side 
of (2) for a particular combination of parameters (2e-o 0 2 n l )  is also shown (E, 
dashed curve). Note that the average performance of the no-correspondence 
algorithm is considerably worse than that of the other algorithms for the given 
range of sample sizes although its dependence on the sample size is the same, 
as expected from the results of Section 11-B. 

begin LEARN-CLF; 
1) I- + 0; 
2) r + I ' , , ,  I I" E s; s 6 s - {h}; 
3) if mint . ,€ \  { ~ ( I , . O > ) }  is large enough t h e n  1- t 1 - U  { t , } ;  

4) if S = 0, then return I-;  else go to 2. 
end 

The CLF algorithm satisfies trivially the requirements posed by 
the PAC learning paradigm; since its error rate on the training set 
of views can be made arbitrarily low, a similar success on a random 
collection of views can be assured, provided that the training set is 
large enough. An analysis of the structure of the problem given in 
the previous section indicates that the required size of the training 
set is feasible. 

An empirical evaluation of different algorithms that learn to recog- 
nize 3-D objects from examples supports the theoretical conclusions. 
Results of this evaluation (but not the details of the algorithms, which 
are outside the scope of this correspondence) are reported below. Fig. 
1 shows the dependency of an arbitrary performance measure related 
to error rate on sample size, for three algorithms, all of which learn 
by collecting and retaining specific views of objects (most of the 
results are from [12]; the objects are defined as collections of points 
in 3-D).3 The differences between these algorithms lie in their use 
of the stored views. 

The first of the three algorithms uses each stored view as a 2-D 
snapshot in which feature correspondence information is not explicitly 
available. The performance measure plotted for this algorithm is 
inversely related to the average correlation between test views and 
the stored representation [6]. The second algorithm is a simple 
nearest-neighbor classifier that represents each stored view as a 
2k-dimensional vector and, consequently, uses correspondence [ 121. 

'For the restricted case of orthographic projection and rigid transformation, 
there exists an algorithm that can learn to recognize an object of this type from 
just six views obtained by Gram-Schmidt orthonormalization from a few tens 
of random views [ l l ] .  

011 
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Fig. 2. Performance of a recognition module that combines Algorithm 
LEARN-CLF with RBF interpolation to acquire and use a multiple-view 
representation of an object defined by a set of six points in 3-D. Top: The 
dependence of the error rate on the number of examples presented to the 
module. The error rate shown in the plot is the average of miss rate (the 
proportion of rejected views of the target object) and false alarm rate (the 
proportion of accepted views of nine other objects of the same class). Bottom: 
The number of views retained by the learning algorithm asymptotes at about 
12 for 100 random training views. 

Finally, the third algorithm is based on view interpolation by radial 
basis functions (RBF's; see [5],  [12]). Given a set 1- of views 
of a target object, which is obtained by the greedy procedure 
described above, the RBF algorithm learns to recognize that object 
by computing a vector of coefficients c that minimizes 

(4) 

where -Y is the total number of training views U, (which may be larger 
than /I7/), U, E I - ,  and G(.)  is the gaussian function. Minimizing the 
above expression is equivalent to finding a smooth multidimensional 
spline surface over 2''' that is close to 1 at the training views 
and falls off to 0 elsewhere. The minimization can be performed 
by computing the pseudoinverse of a I T 7 (  x S matrix [21]. The 
coefficients r, found in this manner are used to decide whether a 
new view U belongs to the target object by comparing the value of 
the expression E, c,G(llu - u,l12) to a threshold situated between 
0 and 1. 

Fig. 2 describes an application of this algorithm to the recognition 
of an object defined by six randomly placed points in 3-D. The upper 
part of the figure shows the progress of the error rate of an RBF 
recognizer, which is presented with a sequence of 100 random views 
of the object. As  shown in the lower part of the figure, 12  of these 
views are retained by Algorithm LEARN-CLF as a representation of 
the object. When the same learning algorithm was applied to objects 
consisting of four, five, and six 3-D points, respectively, the number 
of examples it took to achieve an error rate better than 25% was 
21, 38, and 54 (see Fig. 3). The linear dependence of the number of 
examples on the complexity of the problem measured by the number 
of points or features defining an object should be compared with the 
prediction of (3). 

IV. DISCUSSION 

The present note has been motivated by the recently published 
negative results regarding the learnability of visual recognition [I], 
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which appeared to contradict both intuition and facts (namely. the ex- 
istence of successful learning algorithms for recognition [ 6 ] ,  [SI). The 
source of the contradiction was traced hack to an unrealistic definition 
of visual complexity in terms of image resolution. An alternative 
definition in terms of the number k of fuzzily positioned features 
was  shown to lead to more plausible learnability results. Specifically, 
the number of examples necessary to achieve PAC learning of 3-D 
object recognition was  found to be O (  k ) ,  with different coefficients of 
proportionality for the correspondence and no-correspondence cases. 
As pointed out in the introduction. the formulation of the problem of 
learnability is constrained by conflicting requirements of description 
and generalization adequacy. The formulation proposed in this note 
achieves a measure of compromise between thesc two requirements. 
A practical approach to the recognition of a class of 3-D objects 
represented by sets of spatially localized features has been outlined. 
At the same time, it has been shown that rccognition of these objects 
can be learned from a feasible number of examples. 

One way to draw conclusions on thc learnability of recognition 
would be to invoke approximation theory to show that radial basis 
functions are adequate for 3-D object recognition and then use 
Haussler’s proof of the learnability of RBF‘s 121. Indeed, there are 
empirical indications that such an approach would be successful 
(the CLF representation outlined in Section 111 i s  related to RBF 
interpolation; see also [SI). The approach taken abovc is  different 
in that i t  attempts to characterize and analyze the generic problem 
of learning to recognize objects while imposing as few constraints 
as possible on the form of the solution. The emerging picture 
can be summarized by observing that the most difficult part of 
recognition may be accumulating the relevant feature alphabet (261. 
In comparison, methods for coping with viewpoint dependency of 
apparent shape of objects are provably learnable from examples. 
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A Constrained Approach to Multifont 
Chinese Character Recognition 

Xiaofei Huang, Jun Gu, Senior Member, IEEE, and Youshou WU 

Abstract-Recognizing multifont, multiple-size Chinese characters was 
a difficult task in the area of optical character recognition (OCR). In this 
correspondence, we introduce the constraint graph as a general character 
representation framework. Each character class is described by a con- 
straint graph model. Sampling points on a character skeleton are taken 
as nodes in the graph. Connection constraints and position constraints 
are taken as arcs in the graph. For patterns of the same character class, 
this model captures both the topological invariance and the geometrical 
invariance in a general and uniform way. Character recognition is then 
formulated as a constraint-based optimization problem. A cooperative 
relaxation matching algorithm that solves this optimization problem is 
developed. A practical OCR system able to recognize multifont, multiple- 
size Chinese characters with a satisfactory performance was implemented. 

Index Terms4onstraint graph, correspondence mapping, force-driven 
elastic matching, optical character recognition (OCR), relaxational opti- 
mization. 

I. INTRODUCTION 

Due to a very large number of character classes and higher 
complexity, the recognition of Chinese characters has been a very 
difficult task. 

Traditional work in the area of character recognition mainly falls 
into two categories [8]: a statistical-decision approach [ l ] ,  [6], [ lo] ,  
[13] and a structural approach [SI, [ l l ] ,  [3], [2], [18]. A recent survey 
of the latest work in OCR research and development can be found 
in [15]. 

The constrained approach described in this correspondence is 
similar to the neural network approach to character recognition. 
Recently, there have been several other works that also apply artificial 
neural networks to OCR. Krzyzak and Suen [12] and Cun et al. 
[4] used the backpropagation model for the recognition of uncon- 
strained handwritten digits. Gan and Lua [7] proposed an adaptive 
resonance network (ARN) for Chinese character classification. The 
ARN classifier divides 3755 Chinese characters into seven classes. 
For Song font and Hei font, they achieved a 90% classification rate. 
h u n g  [14] used graph matching by neural networks for character 
recognition. 

In this correspondence, we present a general representation scheme 
called constraint graph that incorporates different types of knowledge 
of Chinese character patterns into a unified framework. For patterns 
of the same character class printed in different fonts and sizes, 
their structural and geometrical invariance are represented by the 
topological constraints and the geometrical constraints imposed on 
the primitives of the character patterns. The specific knowledge 
concerning character variabilities, as well as the general knowledge 
concerning character invariances, can be uniformly represented as 
constraints in the graph. Such a unified representation framework 
facilitates an automated learning process and an efficient character 
recognition process. 
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Fig. 1. Chinese character pattern can be described based on a three-level 
representation hierarchy. 

Based on this model, character recognition is formulated as a con- 
strained optimization problem, and a cooperative relaxation matching 
algorithm is developed for Chinese character recognition. We have 
developed a practical Chinese character recognition system on an 
IBM-PC with recognition rates from 95 to 99%. 

The rest of the correspondence is organized as follows: In Section 
11, we describe a general representation framework for character 
recognition. We formulate the character recognition problem as a 
constraint-based optimization problem in Section 111. In Section 
IV, a cooperative relaxation algorithm that finds a correspondence 
mapping is given. Section V provides experimental results from our 
character recognition system. Section VI concludes this correspo- 
dence. 

11. A GENERAL REPRESENTATION FRAMEWORK 
BASED ON A CONSTRAINT GRAPH 

In this section, we  first describe the basic structural characteristics 
of Chinese character patterns. We introduce a constraint graph [9] as 
a general representation framework to encapsulate different types of 
knowledge about character patterns. 

A. Structural Characteristics 

A character defines a character class for recognition. Due to a 
variety of fonts, sizes, and positions, even for the same character 
class, there may be a great diversity of appearances and structures. 
Furthermore, noise and input distortions may lead to many variations 
of a character image. Characterizing these variations is the first critical 
step to character recognition. 

There are several basic formation rules for Chinese characters. A 
Chinese character is formed by a number of components of simple 
structures. Some of the components are formed by basic components. 
Eventually, those components are disassembled into a number of 
strokes. Hence, a Chinese character can be described in a three-level 
representation hierarchy, that is, the character level, the component 
level, and the stroke level. An example of this representation is given 
in Fig. 1. 

There are approximately 400 basic components and some 20 
essential strokes. These numbers are much less than the total number 
of Chinese characters, which is over 50 000. This three-level hierar- 
chical representation simplifies the task of character representation. 
It reflects the inherent characteristics that people use in the writing 
or in the recognition of Chinese characters. 
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