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Abstract

The computational program for theoretical neuroscience initiated by Marr and Poggio (1977) calls for a

study of biological information processing on several distinct levels of abstraction. At each of these levels

— computational (defining the problems and considering possible solutions), algorithmic (specifying the

sequence of operations leading to a solution) and implementational — significant progress has been made

in the understanding of cognition. In the past three decades, computational principles have been discovered

that are common to a wide range of functions in perception (vision, hearing, olfaction) and action (motor

control). More recently, these principles have been applied to the analysis of cognitive tasks that require

dealing with structured information, such as visual scene understanding and analogical reasoning. Insofar

as language relies on cognition-general principles and mechanisms, it should be possible to capitalize on

the recent advances in the computational study of cognition by extending its methods to linguistics.

The possibility of integrating linguistics into a unified science of cognition — a desideratum put forward

in many of the relevant disciplines — depends on the degree to which common computational principles

(Marr and Poggio, 1977) and brain mechanisms are shared by language and by the other cognitive functions.

To explore this possibility, we need to bring together ideas from several fields, which as yet have seen little

intellectual cross-fertilization. The first of these is cognitive linguistics (Langacker, 1987; Bernárdez, 1999)

— a natural home discipline for the integration project, which consistently produces valuable insights into

the psychology of language, yet is little concerned with algorithmic or implementational issues. The second

is computational linguistics (Jurafsky and Martin, 2000), including statistical natural language processing
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(Manning and Scḧutze, 1999) — a field that examines the mathematical nature of language-related tasks and

generates important applications, yet pays little attention to behavioral or neurobiological issues. Lastly, there

is the Marr-Poggio computational framework (Marr and Poggio, 1977), which is used across cognition and

which spans all the relevant levels of analysis, but has not yet been extended to the study of language.

This chapter discusses some of the general computational principles that emerge as useful for understand-

ing cognition, focusing on those that are likely to be especially relevant in dealing with structured knowledge.

It then brings these principles to bear on a theory of language that is rooted both in cognitive and in compu-

tational linguistics, and that views language as an incrementally learnable system of redundant, distributed

representations akin to those found by neurobiologists in olfaction, audition, vision, and motor control.

1 Common principles of cognitive representation and processing

The view that cognition hinges on the representation of knowledge by the brain is widely accepted in linguis-

tics, psychology, neuroscience, and the philosophy of mind (Chomsky, 1957; Miller, 1962; Shepard, 1975;

Marr, 1982; Gallistel, 1990; Cummins, 1996). Most importantly, representations play a central role in those

theories of mind/brain that construe cognition as computation defined over representational states (Baum,

2004).1 A representational state in a cognitive system is characterized by its covariation with certain aspects

of the relevant state of affairs in the world, and, crucially, by having counterfactually supported observable

effects.2

1.1 How to garner empirical support for posited representations

Whereas thirty years ago linguists were expected to prove that the representations they posit are psycho-

logically real (Fodor et al., 1974) by predicting and then demonstrating such effects, contemporary formal

linguistics has, lamentably, given up on this requirement (Edelman and Christiansen, 2003). Consider, for ex-

ample, the following passage from an online introduction to a course in neurolinguistics: “We know already

what isn’t the right question: What is the psychological reality of linguistic entities and operations?”3 As

1Such states need not, and probably cannot, be wholly internal to the brain; cf. “The primary function of perception is to keep our

internal framework in good registration with that vast external memory, the external environment itself” (Reitman et al., 1978, p.72).

Thus, in many respects, the world is its own best representation (O’Regan, 1992).
2A counterfactual is a logical conditional statement whose antecedent is taken to be contrary to fact by those who utter it; cf. “If

linguistics were what the author claims, syntactic trees would be visible in CAT scans.” (Postal, 2004, ch.11).
3Quote found at a web site forNeurolinguistics, course #24.944, taught by Alec Marantz (Head, Department of Linguistics and

Philosophy, MIT) in 2000; see

http://web.mit.edu/linguistics/www/marantz/marantz.home.24944f00intro.html.
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a result, stipulated linguisticentia, from Deep Structure and transformations in the 1960s to Logical Form,

traces, Move, and Merge in the 1990s, have multiplied over the decades, arguablypraeter necessitatem.4 To

date, none of the rare attempts to obtain psycholinguistic (behavioral) evidence for such entities have yielded

unequivocal results. For example, in the recent study by (Nakano et al., 2002), only 24 subjects out of the

original 80 performed consistently with the predictions of a trace/movement theory, while 39 subjects exhib-

ited the opposite behavior (the data from the rest of the subjects were discarded because their error rate was

too high).

The shakiness of the empirical foundations of generative linguistics appears to be especially disappointing

when seen in the broader context of successful representational theories that have emerged in other cognitive

domains. Indeed, the need to demonstrate the psychological (behavioral), and, eventually, the neurobiological,

reality of the theoretical constructs exists in all of cognition, including human vision, where, as in language,

direct observation of the underlying mechanisms is difficult. An excellent example of how vision scientists

have risen to this challenge is found in the history of the concept of multiple parallel spatial frequency channels

(Figure 1), a representational hypothesis that had been introduced in the late 1960s, then completely vindicated

by purely behavioral means over the following decade; see, e.g., (Wilson and Bergen, 1979).

More generally, the logic of looking for empirical signatures of the posited representations can be put to

work in a number of ways that are all well known to cognitive scientists. For example, the reality of a distinc-

tion between two representations or processes can be indicated by adouble dissociation, that is, a situation

in which each of the two can be obtained in isolation from the other, either as a result of “complementary”

lesions in different patients (Damasio and Tranel, 1993), or through experimental manipulation of stimuli pre-

sented to normal subjects (Pulvermüller et al., 1996). Likewise, one can usepriming (Tulving and Schacter,

1990; Ochsner et al., 1994): if a representation can be primed — that is, if its manifestation in response to a

stimulus can be modified by prior exposure to a related stimulus — then it is real, and can be accounted for by

the mechanism that embodies the memory trace for this class of stimuli (Wiggs and Martin, 1998). Finally,

the worries of some cognitive scientists that representations are merely epiphenomenal to cognition can be

assuaged ultimately by demonstrating thecausal effectivenessof representational mechanisms through direct

intervention, such as microampere-level current injection at the appropriate brain site which brings about the

predicted perceptual/behavioral change (Salzman et al., 1990).

4Occam’s Razor, often stated asentia non sunt multiplicanda praeter necessitatem[entities should not be multiplied beyond

necessity], is a fundamental principle of the scientific method, which has recently assumed a central role in statistical inference and

learning theory (Rissanen, 1987; Blumer et al., 1987).
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Figure 1: An illustration of the basic concepts required for a behavioral demonstration of the psychological

reality of spatial frequency channels, which is a kind of visual representation found in the brain. In the image

shown here, spatial frequency (rate of change of intensity across space) varies along the abscissa and contrast

(difference between dark and light) along the ordinate (Campbell and Robson, 1968). As you can see, more

contrast is required to perceive the grating (the alternation between dark and light) for low and high frequen-

cies, compared to intermediate frequencies. Researchers have postulated early on that the perception of spatial

frequency stimuli is supported by multiple channels, each tuned to a particular band (much like in a sound

system’s graphic equalizer). Evidence corroborating this idea comes from three kinds of psychophysical ex-

periments.(1) Adaptation: exposure to a high-contrast grating of a specific frequency reduces the sensitivity

(that is, raises the detection threshold) for gratings of other spatial frequencies to an extent depending on the

frequency difference. In the context of the variable frequency and contrast test grating shown here, adaptation

would manifest itself as a notch in the boundary along which the grating fades into an apparently uniform

field, situated at the frequency of the adapting stimulus: at the adapted frequency, more contrast is needed

for the grating to be perceived.(2) Sub-threshold summation: the extent to which two sub-threshold (that

is, imperceptible) gratings of differing spatial frequencies shown together combine to elicit a supra-threshold

percept depends on the difference between their frequencies.(3) Masking: the threshold for a faint test grat-

ing is elevated by a high-contrast mask grating superimposed on it to the extent that their frequencies match.

In all three cases, the effects fade when the difference in spatial frequency is larger than about one octave (a

factor of two). This would not be the case, were the contrast information not processed by a set of independent

mechanisms, each tuned to an octave-wide band of spatial frequencies.
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1.2 Some common characteristics of cognitive representations

What kinds of representations does one find in the brain? In domains as diverse as olfaction, vision, reasoning

and memory, the representations are typicallydistributedin that an ensemble of neurons (rather than a single

neuron) is involved in each task,overlappingin that the response profiles of the members of an ensemble

are redundant (rather than mutually exclusive), andgradedin that each neuron’s response depends smoothly

(rather than in an all-or-none fashion) on the represented quantity. Thus, theories involving distributed, over-

lapping, and graded representations (Pouget et al., 2000) have enjoyed the most consistent and wide-ranging

explanatory success across cognition.

While thinking about distributed representations, it is important to realize that embracing the terminology

of parallel distributed processing, often referred to as “connectionism”, does not by itself constitute a par-

ticularly illuminating explanation. That the brain is, on the level of mechanism, a connectionist device is a

trivial observation; understanding it will take coordinated action on computational (problem) and algorithmic

(process) levels as well (Marr and Poggio, 1977). This is precisely what is happening now in the cognitive

sciences: researchers are converging on a few classes of problems to which various aspects of cognition can

be reduced, and are forging an understanding of a few classes of computational processes, operating over

distributed representations, that are common to a wide range of cognitive tasks. Some examples of such

general-purpose computational building blocks of biological information processing are outlined below (see

Appendix A for a brief overview of the relevant mathematical concepts).

Function approximation. In numerical analysis, function approximation is the problem of recovering the

form of an unknown function from a set of given argument-value pairs. It has been noted that this generic

problem description fits well the standard scenario of supervised learning (Poggio, 1990). In vision, for

instance, an observer may be exposed to various views of a given shape, then required to determine whether

a test view belongs to the same object. This can be done by approximating an indicator function that encodes

the appearance of the object in question in the space of all views of all possible objects, then evaluating it at

the test view (Poggio and Edelman, 1990). In motor control, the function to be learned may map the intended

action to a vector of muscle activations, and so on for other cognitive tasks (Poggio, 1990).

Density estimation. An idea that is computationally related to function approximation is the estimation of

the probability density of some quantity of interest over the relevant variables. Such estimation may proceed

in an unsupervised fashion, or combined with class information; it leads to powerful methods for statistical

inference and decision making, via the mathematical apparatus of Bayes theory and related approaches. Statis-

tical inference is widely acknowledged to be an indispensable tool for cognition, in areas ranging from vision
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(Kersten and Schrater, 2000) to conceptual learning (Tenenbaum, 1999) and language acquisition (Clark,

2001), where the relevant domain may be the set of constructions acquired from a corpus, and the output of

the inference procedure — a breakdown of the probabilities of each construction depending on the context.

Dimensionality reduction. Learning theorists know that for function approximation (in particular, density

estimation) to work well it must be conducted over a low-dimensional domain: because the required number

of data points grows exponentially with dimensionality, function approximation in high-dimensional spaces

is intractable (Bellman, 1961). The problem of dimensionality reduction, also known in cognition as feature

detection, is increasingly often seen as fundamental in language (Landauer and Dumais, 1997) and in vision

(Intrator and Edelman, 1997).

In some cases, these abstract problems and the principles and algorithms used to address them have been

mapped onto the function of the brain and its circuitry, resulting in explanatory models that span all three

levels of Marr’s program. For example, in olfaction the anatomy and the physiology of the pathway leading

from the sensory epithelium to the glomeruli in the olfactory bulb (Lancet, 1991; Shepherd, 1992) can be

seen as filtering data through a bank of radial basis functions (Poggio, 1990). This operation implements

what is known to be a universal approximation algorithm (Hartman et al., 1990) that can be used in learning

from examples (Poggio, 1990). The same algorithmic approach can support visual object recognition, as

demonstrated by the Chorus of Prototypes model (Edelman, 1999), in which the stimulus is represented by

its similarities to (processed) memory traces of past stimuli. Recent single-cell studies in the monkey found

neurons that are broadly and redundantly tuned to particular object categories (Freedman et al., 2001) and

that embody an ensemble representation of inter-object similarities that is veridical with respect to the distal

stimuli (Op de Beeck et al., 2001). Both these findings had been predicted by the Chorus of Prototypes model

(Edelman, 1998; Edelman, 1999).

2 Dealing with structure: a special challenge?

To be relevant to language, the computational principles behind these findings must be extended to situations

that require highly structured representations. Recent work in various areas of cognition has been pursuing

such an extension. For example, in complex analogy tasks a similarity-based model performs very well when

the distributed representations it uses are made to reflect the structure of the input (Plate, 1995; Eliasmith and

Thagard, 2001). Likewise, in vision the Chorus of Fragments model (derived from the Chorus of Prototypes),

which aims at dealing with structured objects and scenes (Edelman and Intrator, 2003), is based on the twin

principles of distributed representation by similarities (mentioned above) and of the use of visual space to
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anchor the various shape fragments (Edelman, 2002), introduced next.

2.1 The role of space in representing structure

The idea that space should serve as a natural scaffolding for supporting structured representations, whose roots

go back to the ancient mnemonic Method of Loci (Neisser, 1976, p.137), is stated forcefully in Wittgenstein’s

Tractatus(Wittgenstein, 1961, proposition 3.1431):

The essential nature of the propositional sign becomes very clean when we imagine it made up of

spatial objects (such as tables, chairs, books) instead of written signs. The mutual spatial position

of these things then expresses the sense of the proposition.

In vision, sorting shape cues by their location in the visual field goes a long way toward solving the binding

problem in the representation of object and scene structure (Edelman, 1999; Clark, 2000; Edelman, 2002;

Edelman and Intrator, 2003). In particular, various components of a scene or an object need not be bound to

each other in any special manner, as long as each of them is bound to its proper location in the visual space,

merely by virtue of its appearance there.

In neurobiology, the spatial scaffolding approach to the representation of visual structure is consistent with

the omnipresence in the monkey inferotemporal and prefrontal cortex ofwhat+whereneurons, which are both

shape-tuned (signalingwhat is the stimulus), and location-selective (signalingwhereit appears) (Rao et al.,

1997; Op de Beeck and Vogels, 2000). On a larger scale, the neural substrate of the perceptually defined

external space may be the cortical surface itself, as indicated by the ubiquity of map-like representations

(Gallistel, 1990) in vision (Ward et al., 2002), olfaction (Joerges et al., 1997), and audition (Shamma, 2001).

2.2 Spatial representations for language

Functional (problem-level) analogies between language and vision suggest various parallels between the man-

ner in which structure is dealt with in these cognitive domains (Minsky, 1985). For instance, the treatment

of a sentence with an embedded relative clause may be compared to the processing of a scene with occlusion

(Figure 2, left; additional parallels are illustrated and discussed in Figure 2, right). In recent years space has

been conjectured to play a central role in neurolinguistics. Consider, for example, the notion of iconicity

in syntax (Simone, 1995): “. . . not only motor but also cognitive operations such as language, which do not

appear to have any intrinsic spatial organization, are maintained in registration with spatial systems, and [. . . ]

this attention-requiring linkage confers a processing advantage” (Coslett, 1999). The iconicity hypothesis

is intimately connected to Construction Grammar (Fillmore, 1985; Goldberg, 1995): linguistic freezes or
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hath become the head
the stone     of the corner

that
   the
      builders
         rejected

Figure 2: Left: there is a task-level analogy between interpreting a composite scene with occlusion and the

processing of a sentence that contains an embedded relative clause (adapted from (Minsky, 1985, p.269)).

The existence of such analogies between vision and language on the abstract level of the computational tasks

(Marr and Poggio, 1977) faced by the brain, along with the uniformity of the underlying low-level cortical

mechanisms (Phillips and Singer, 1997), suggests that cross-cognition commonalities should be sought also

on the algorithmic level.Right: the postcard shown here (Apolinère Enameledby M. Duchamp) can be

used to make the same point about parallels between language and vision (cf. the occlusion of the girl’s legs

by the bed-frame), and more. For instance, Duchamp’s painting could be represented (and understood) in

terms of its local similarities to various familiar images (Chorus of Fragments (Edelman, 2002; Edelman and

Intrator, 2003)), which need not match the scene perfectly (Edelman, 1999); likewise, an utterance could be

represented (and understood) in terms of the cloud of constructions (Chorus of Phrases (Solan et al., 2003b))

it evokes, as illustrated in Figure 3. Furthermore, just as many viewers fail to notice that the bed in this

scene would be useless (look closely at the frame), subjects exposed to ungrammatical sentences of moderate

complexity may rate them as no less felicitous than similarly structured grammatical ones. For example,

the sentence “The apartment that the maid who the service had sent over was well decorated” tends to be

rated as no worse (Gibson and Thomas, 1999) – and, in some settings, better (Christiansen and MacDonald,

2003) – than “The apartment that the maid who the service had sent over was cleaning every week was well

decorated”; cf. (Gibson and Pearlmutter, 1998; Chipere, 1997; Chipere, 2001).
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prefabs (Landsberg, 1995) that are spatially (or, equivalently, temporally; cf. Figure 3) iconic become con-

structions when parameterized (Erman and Warren, 2000). Psycholinguistic and neuropsychological evidence

in support of linguistic iconicity has been recently reviewed in (Chatterjee, 2001).

On the level of neurobiology, in those areas of the human brain that support language, the counterpart

to the visualwhat+whereneurons mentioned above may bewhat+whenneurons, tuned to particular struc-

tures appearing in a particular sequence (as illustrated in Figure 3). The possible role of temporal response

properties of neuron assemblies in implementing sequence-sensitive processing has been discussed by (Pul-

vermüller, 2002); parallels between the brain representations of space and time in vision and in audition have

been pointed out, among others, by (Shamma, 2001).

3 Treatment of structure in computational cognitive linguistics

Examples of space-based representations, which abound both in vision and in language, show that the goal of

structure-sensitive processing by a distributed architecture is less forbidding than commonly thought, and that

it is already within reach of cognition-general principles and mechanisms. This section outlines a cognitive

approach to language, which is based on these foundations, and which casts the relevant computational,

algorithmic and implementational issues in cognition-general terms.

3.1 Computational approach: the Chorus of Phrases and Construction Grammar

When applied to language, the idea of a distributed representation of structure based on similarities to multiple

structured exemplars, called the Chorus of Fragments in the setting of visual scene processing (Edelman and

Intrator, 2003), translates into aChorus of Phrases: a redundant ensemble of potentially overlapping, mutually

reinforcing phrase fragments that, as Langacker puts it, “motivate” the sentence they cover:

“. . . rather than seeing a composite structure as an edifice constructed out of smaller components,

we can treat it as a coherent structure in its own right: component structures are not the build-

ing blocks out of which it is assembled, but function instead tomotivatevarious aspects of it.”

(Langacker, 1987, p.453), italics in the original.

A schematic illustration of the Chorus of Phrases (COPH) in action is shown in Figure 3, where a stimulus

(which could be an entirely novel sentence) evokes a cloud of associations, pointing to snippets of previously

encountered phrases, each of which approximately matches parts of the input, and which together cover all of

it.
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I read the news today, oh boy, about a lucky man who made the grade.

he
y,
 y
ou
 m
ad
e 
th
e 
gr
ad
e

in
 t
he
 n
ew
s 
to
da
y,
 a
n 
Id
ah
o 
ma
n

oh
 b
oy
, 
wh
at
 a
 s
ha
me

yo
u 
lu
ck
y,
 l
uc
ky
 b
as
ta
rd

th
e 
ne
ws
 a
t 
te
n

ab
ou
t 
a 
bo
y

I 
al
re
ad
y 
re
ad
 t
he
 n
ew
sp
ap
er

I 
 h
ea
rd
  
 a
 s
to
ry
 a
bo
ut
 a
 m
an

do
st
 t
ho
u 
kn
ow
 w
ho
 m
ad
e 
th
ee

no
t 
th
e 
9 
o’
cl
oc
k 
ne
ws

re
ad

sa
w

wa
tc
he
d

space/time

activation

phrasal patterns

Figure 3: A schematic illustration of the Chorus of Phrases in sentence processing (for actual data from the

ADIOS project, see (Solan et al., 2003a; Solan et al., 2003b; Edelman et al., 2004)). An input sentence is

shown along with a subset of phrases it evokes from memory, each of which matches some word, sequence

of words, or, generally, a parameterized pattern (in cartouche:I heard, read, saw, watched a

story about a man) in the input. The unfolding of each pattern’s activation (which reflects its time-domain

“receptive field”) may be important (Pulverm̈uller, 2002), but even without it the ensemble of active patterns

is a highly informative representation, just as its counterparts in vision are (Edelman, 1999; Edelman and

Intrator, 2003). The members of the ensemble disambiguate each other by supplying multiple interacting

constraints on the interpretation. Consequently, it should be possible to process various queries about the

input, both syntactic (voice, aspect, etc.) and semantic (thematic, connotational, conceptual). Moreover, it

may be possible to use for that purpose generic cortical mechanisms (Phillips and Singer, 1997; Maass et al.,

2003) that would map the distributed phrase activation patterns onto the corresponding required outputs, as in

the scenario of function approximation found across cognition (Poggio, 1990; Intrator and Edelman, 1997).

From the computational standpoint, it is interesting to observe that one can reconstruct the input sentence

itself, should that be required for some reason, from a number of subsequence (phrase or pattern) queries that

is on the order ofn log α + α log n, wheren is the length of the sentence andα is the size of the lexicon

(Skiena and Sundaram, 1995). This computational complexity, which is quite benign in view of theα-fold

parallelism inherent in a distributed lexicon, can be further reduced by allowing matching that is approximate

(Jiang and Li, 1996) in the sense of (Valiant, 1984).
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On the abstract, computational (Marr and Poggio, 1977) level, the view of language as based on context-

specific structural generalizations, exemplified by the COPH approach, differs radically from that of generative

theories such as the Minimalist Program (Lasnik, 2002), which attempt to describe language in terms of uni-

versally valid syntactic rules projected by a categorically annotated lexicon. Recall that the basic theoretical

challenge at the computational level is to specify what it is that needs to be done in the given task — in the

present case, in language comprehension and production. According to the COPH framework, comprehension

involves constructing a distributed representation of the stimulus in terms of its structure-dependent similar-

ities to multiple stored exemplars, which convey information both about form (the exemplars are, generally,

patterns with slots; see Figure 3) and about meaning. Production consists of letting a set of exemplars chosen

for their semantics interact and constrain each other until a fully specified linear sequence of terminals is ready

for output.

This distributed approach, which does not distinguish between syntactic and semantic representations and

processes, is broadly compatible with the tenets of the Cognitive school in linguistics (Langacker, 1987),

and, more specifically, with Construction Grammar (Fillmore, 1985; Goldberg, 1998; Goldberg, 2003; Croft,

2001). COPH is, however, more than a mere metaphor for constructions, for several reasons. First, COPH

is deeply rooted in computational principles (multidimensional similarity spaces, distributed representations),

algorithmic methods (statistical inference) and neural mechanisms (receptive fields and maps) that proved

instrumental in analyzing other aspects of cognition. Second, by steering the goals of syntactic (and semantic)

analysis toward those of cognition in general, COPH brings to the fore a collection of mathematical tools

hitherto not considered by linguists (see Appendix B: mathematical tools). Third, an implemented model

of language acquisition and processing situated within the COPH framework provides empirical support and

constraints for the construction grammar theories, as described briefly below.

3.2 Algorithmic and implementational issues: theADIOS model

The algorithm behind this working model of language acquisition and processing (ADIOS, or Automatic DIs-

tillation Of Structure) learns, in an unsupervised fashion, a streamlined representation of linguistic structures

from untagged, large-scale natural-language corpora (Solan et al., 2003b; Solan et al., 2004; Edelman et al.,

2004). The algorithm represents sentences as paths on a graph whose vertices are, initially, words. Significant

patterns are defined as sets of paths in which a common prefix and suffix form a context surrounding a slot

where locally distributionally equivalent (Harris, 1954) elements may appear. In each iteration, such patterns,

determined by context-sensitive statistical inference, form new vertices, and the graph is rewired, leading to

the emergence of progressively more complex, hierarchically structured representations. The algorithm stops
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when no new patterns are found in a given iteration. Linguistic constructions thus correspond to trees com-

posed of patterns and their associated equivalence classes. An entire utterance is typically represented by

several such constructions (a Chorus of Phrases; cf. Figure 3), which may be activated to different degrees,

depending on their fit to the input. Previously unseen inputs are processed by pursuing structural and lexical

similarities to familiar patterns.

The probabilistic principle that drives the context-sensitive, hierarchical pattern abstraction process in

the ADIOS model is related both to the notion of “suspicious coincidences” long thought to be the key to

unsupervised learning in neural systems (Barlow, 1959; Barlow, 1989) and to the Minimum Description

Length (MDL) criterion for representational efficiency (Bienenstock et al., 1997). Intuitively, two elements

— such as two members of a potential linguistic construction or two fragments of a visual object — belong

together to the extent that the probability of their joint appearance is higher than the product of the probabilities

of their individual appearances; coding such elements as a unit results in a more concise representation. It

has been conjectured that these principles, which can support structured learning in vision (Barlow, 1990;

Edelman et al., 2002a; Edelman et al., 2002b) and in language (Bienenstock et al., 1997; Clark, 2001; Solan

et al., 2003b), may provide “common foundations for cortical computation” (Phillips and Singer, 1997). The

ADIOS algorithm is based on a criterion for pattern unity that is specifically adapted to the sequential nature of

language and to the graph-like data structure used to represent it. It is interesting to note that the entrenchment

of pattern- or construction-like units (the degree to which subjects treat them as such) depends on the corpus

frequency of the corresponding sub-unit sequences (Harris, 1998), which supports the notion that the patterns

postulated by theADIOS algorithms are the psychologically real.

The implementedADIOS model has been subjected to extensive tests, some of which focused on the ac-

quisition of artificial languages generated by context-free grammars (CFG), and others — on learning from

real natural-language corpora such as CHILDES (MacWhinney and Snow, 1985), ATIS (Moore and Carroll,

2001) and the Bible (Resnik et al., 1999); only a few of these tests can be mentioned here. The CFG exper-

iments involved twoADIOS instances: a teacher and a student. In each of the multiple runs, the teacher was

pre-loaded with a ready-made context free grammar (using the straightforward translation of CFG rules into

ADIOS patterns), then used to generate a series of training corpora with up to6400 sentences, each with up to

seven levels of recursion. After training in each runi, a student-generated test corpusC
(i)
learned of size10000

was used in conjunction with a test corpusC
(i)
target of the same size produced by the teacher, to calculate

precision and recall. This was done by running the teacher as a parser onC
(i)
learned (precision measured by

the teacher’s acceptance of the student-generated sentences) and the student – as a parser onC
(i)
target (recall

measured by the student’s acceptance of novel sentences not seen during training).5 The results — nearly

5Defining performance in terms of sentence acceptance amounts to testing for the so-called “weak” generativity rather than the
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100% precision and about95% recall – indicate a substantial capacity for unsupervised induction of context-

free grammars even from very small corpora (Edelman et al., 2004). Promising performance has also been

demonstrated for real-life language. For example, a model trained on the CHILDES data attained a level

of performance considered to be “intermediate” for 9th-grade students when subjected to a standard test of

English as a Second Language (ESL) proficiency (Solan et al., 2003b).

3.3 Select open questions

The proposed framework places within reach of empirical research many exciting open issues in language and

cognition, some of which are outlined next.

Linking psycholinguistics to visual psychophysics. Recent psycholinguistic evidence indicates that listen-

ers and readers routinely settle for “good enough” representations of the linguistic material they face, rather

than seeking an exhaustive parse or even just a fully disambiguated semantic interpretation (Bever et al., 1998;

Ferreira et al., 2002; Sanford and Sturt, 2002); cf. Figure 2, right. A unified computational approach to vision

and to language should help relate these findings to the cluster of phenomena in visual psychophysics known

as “change blindness” (Simons and Levin, 1997), which indicate that subjects do not fully parse visual scenes

either.

From the “big picture” to the neural mechanisms. Marr and Poggio’s framework calls for equal attention

to the computation- and the neurobiology-level understanding of cognition. On an abstract, computational

level, construction-based approaches — in particular the Chorus of Phrases — readily integrate themselves

into the rest of cognition, offering along the way a useful insight into the relationship between the final

representational product of language and that of vision. Goldberg’s thesis — “constructions all the way

down” (Goldberg, 2003) — can be taken to imply that the Chorus of Phrases evoked by an utterance or a text

is just about all there is to its interpretation. There is a clear parallel between this stance and the conjecture

that in vision the Chorus of Fragments is an adequate, and in fact the only reasonable, bottom line (Edelman,

2002). On the level of mechanism, however, the details have yet to be worked out.

“strong” generativity, under which the derivation/parse trees are compared instead of sentences (Roberts and Atwell, 2003). There

is a good reason for this choice: any “gold standard” that can be used to evaluate strong generativity, such as the Penn Treebank

(Marcus et al., 1994), invariably reflects its designers’ preconceptions about language, which are often controversial among linguists

themselves: the derivation trees are always stipulated, never observed. A learner who exhibits perfect weak generativity — that is,

who accepts and produces all and only those sentences respectively produced and accepted by the teacher — is, for all practical

purposes, perfectly successful.
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Between the mechanism and the virtual machine. A crucial question is whether or not it is possible to

avoid altogether the need to manipulate constructions dynamically, rather than through a pre-wired network.

This is important because the act of binding a variable to a value (or inserting a constituent into a construction)

dynamically is deeply problematic in the context of a neural implementation (Edelman and Intrator, 2003).

The ability of humans to do algebra or to program computers attests to the existence of some mechanism

in the brain that at least creates the semblance of dynamic binding. People, however, must be trained for

years before they become good at this kind of symbol manipulation, and it would be prudent to make it a

means of last resort in a theory of any cognitive phenomenon that is more mundane than programming in

Lisp. The same consideration applies to a related issue, recursion: although it has been recently reaffirmed

by some linguists as the epitome of human uniqueness (Hauser et al., 2002), humans are notoriously bad at

deep recursion (Gibson and Thomas, 1999). In comparison, shallow recursion, as well as the manipulation of

complexity-controlled constructions, can be handled by finite means such as theADIOS representation (Solan

et al., 2003b). These considerations suggest that dynamic binding and deep recursion may both be supported

in the brain by a virtual machine that is difficult to build and expensive to maintain and operate, and that

is at least once removed from the neural mechanisms that are so good at supporting everyday cognition; cf.

(Dennett, 1991, p.209).

4 Conclusions

Computational cognitive science holds that a comprehensive theory of any information processing task must

lead to its understanding on several levels of abstraction (Marr and Poggio, 1977). Although distinct, these

levels cannot be studied independently, lest theorizing loses touch with psychological and neurobiological re-

ality, or, conversely, the neurobiology becomes too myopic (Edelman, 1999). Accordingly, the framework for

computational cognitive linguistics outlined here is informed by the top-down computational and algorithmic

principles of context-dependent probabilistic learning and is based on a bottom-up implementational scheme

that is ubiquitous in the brain: computing with structured connections, which carry dynamically unfolding

neural activation patterns and which support low-dimensional, distributed, redundant, graded representations.

The vision of language it offers should boost cognitively oriented theories such as Construction Grammar

(Croft, 2001; Goldberg, 2003) and help connect them to rich repositories of computational knowledge (from

learning theory, probability and information, and natural language processing) and empirical data (from psy-

chophysics and neuroscience) about the brain.
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Appendix A: some useful mathematical concepts

The following is a brief glossary of some of the mathematical concepts used in this chapter to describe the

state of the art in the computational understanding of cognition.

Functions. Much of the essence of the idea of learning in cognition is captured by the mathematical notion

of a function. Formally, a function is a mapping (a specification of correspondence) from one set, which

is called the domain, to another, called the range. In the example of Figure 4, left, the functionf maps the

elementa1 in the domainA to b2 in the rangeB, a2 to b1, and so on. The mapping that defines a function must

be unequivocal in that a given element in the domain cannot be mapped to more than one element in the range

(although any number of elements in the domain can be mapped to the same one in the range, as illustrated

in Figure 4, left). Thus, every time a cognitive system learns to attach a valence to a stimulus or associate it

with a response, it learns a function defined over the set of possible stimuli. Note that the sets in question may

include variables that are internal or external to the system, and are, in general, multidimensional spaces (see

below).

Figure 4: Illustrations of the basic idea of a function (left) and of learning a function from examples (right);
see text for explanations.

Multidimensional spaces. A point in ann-dimensional space can be thought of as an ordered collection

of n independent measurements (feature values) that define some entity of interest. For example, the state
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(configuration) of a human arm can be described by four numbers: three to specify the angular position of the

spherical shoulder joint and one to specify the elbow angle (including the hand introduces many more degrees

of freedom and hence many more dimensions). Thus, each configuration of the arm corresponds to a point in

a four-dimensional space, and learning to position an arm amounts to learning a function from the space of

the relevant muscles to this configuration space.

Learning and function approximation. In this conceptual framework, learning from examples amounts

to interpolating an unknown function from the given correspondences between some of the elements in its

domain and its range (Poggio, 1990). In the illustration shown in Figure 4, right, the functionf maps a two-

dimensional space (the horizontal plane) into a one-dimensional space (the vertical axis); it can be thought of

as a surface defined over the plane. Given the height of the surface (the value of the function) at several points

(filled circles), one can try to determine its value at a new point (open circle). In the context of controlling

an arm, for instance, this would amount to a generalization of the previously available control settings to

determine a setting for a new target configuration. The mathematical, psychophysical and neurobiological

aspects of this approach as applied to visual object recognition are described in (Edelman, 1999).

Dimensionality reduction. The mathematical tools associated with the concept of multidimensional spaces

can be applied to the description of brain states and of their evolution over time (Mumford, 1994; Mumford,

1997; Edelman, 2001). In the most straightforward fashion, one dimension is assigned to describe the activity

level of each neuron (Churchland and Sejnowski, 1992). This results in a space with many billions of dimen-

sions; apart from the convenience of the mental picture of a brain state as a point in such a space, not much

is gained, because of the overwhelming computational complexity of dealing with such high-dimensional

spaces. Because certain kinds of brain representations are necessarily high-dimensional,6 cognition must in-

volve, at various stages, the reduction of dimensionality to a level that is computationally manageable. The

dimensionality of a representation can be reduced by projecting it into a lower-dimensional space; for details

and applications of this idea, see (Edelman and Intrator, 1997). Note that such a projection is a function,

which can be learned from examples (as described above).

Probabilities and statistical inference by density estimation. The most knowledge one can possess about

any situation that involves information processing is the joint probability of all the relevant variables,

P (X1, X2, . . . , Xn). This profound insight can be traced back to the writings of David Hume:

6For example, the retinal signal, whose raw dimensionality runs in the millions (it is equal to the number of axons in the optic
nerve), or the motor control signal, whose dimensionality is at least the same as the number of distinct muscles in the body.
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“All kinds of reasoning consist in nothing but a comparison, and a discovery of those relations,

either constant or inconstant, which two or more objects bear to each other.” (Hume, 1740, Part

III, Sect. II)

“An experiment loses of its force, when transferr’d to instances, which are not exactly resembling;

tho’ ’tis evident it may still retain as much as may be the foundation of probability, as long as

there is any resemblance remaining.” (Part II, Sect. XII)

“. . . all knowledge resolves itself into probability. . . ” (Part IV, Sect. I)

Hume’s realization of the central and crucial role ofstatistical inferencein knowledge generation (that is,

learning) has been developed by many others, including his contemporary Thomas Bayes, the pioneering

statisticians Karl Pearson and Ronald A. Fisher, and the neurobiologist Horace B. Barlow. Their combined

insights led to the modern applications of inference to vision and other senses (Barlow, 1990; Knill and

Richards, 1996), as well as to language (Manning and Schütze, 1999).

The conception of visual learning as inference is naturally complemented by the emerging view of percep-

tion as statisticaldecision making, stated cogently in the following passage by the originator of the ecological

theory of perception, the psychologist J. J. Gibson:

“. . . the percept is always a wager. Thus uncertainty enters attwo levels, not merely one: the

configuration may or may not indicate an object, and the cue may or may not be utilized at its

true indicative value.” (Gibson, 1957)

As a simple concrete example, consider a perceptual system that monitors the values of three features,X1, X2

andX3, which are related to the presence of four possible objects as coded byX4 = {O1, O2, O3, O4} seen

at one of two possible angles,X5 = {A1, A2}. In this case, the knowledge of the joint probability density

P (X1, X2, X3, X4, X5) would allow the system to estimate the conditional probability of each combination

of object and angle, given the observed feature values:P (X4, X5|X1, X2, X3). This information, in turn,

would suffice to support optimal decision making on the basis of the maximum likelihood criterion (which

combination of values ofX4 andX5 is most likely in the light of the measurements?). It is important to note

that the same tools used to reason about — and to learn — a function from examples are also applicable to

probability densities.

The graph data structure. The kind of data that arise in the context of natural language processing, namely,

sequences defined over a finite alphabet or lexicon of discrete symbols, can be captured by graphs — a useful

data structure that is extensively studied in computer science (Aho et al., 1974). Formally, a graph is specified
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by two sets: the vertices, and the edges (which may be directed) that connect some of them. Figure 5 illustrates

a simple graph whose vertices are labeled by the symbols{begin, end, I, and, you, read, news, the, run, today,

slept}. Traversing some of its directed edges while writing down the encountered vertices yields sentences

such as “I read the news today”, “you run”, “I slept”, and “you and I slept”. TheADIOS algorithm outlined in

section 3.2 uses a graph of this type as its basic data structure.

Figure 5: A very simple graph of the kind used as the basic data structure by theADIOS algorithm.

Appendix B: mathematical tools for computational cognitive linguistics

From the standpoint of methodology, a computationally motivated approach to cognitive linguistics does not

imply pitching “mathematics versus psychology” – an expression used by Tomasello as a section heading

in his introduction toThe New Psychology of Language(Tomasello, 1998, p.ix). Rather, the usual tools of

mathematical linguistics (such as formal languages,λ-calculus and symbolic logic) should be supplemented

by new ones. Some of these, which proved well-suited for analyzing distributed representations in various

areas of cognition, are listed below.

Syntax: from constituent trees to string cover. Computational learning theory offers various tools capable

of dealing with distributed, potentially over-complete (Chen and Donoho, 1994) representations of sequence

data. One of these is string kernels, a representation that tallies the occurrences of specific symbols in specific

locations, and supports reasoning about global properties of the sequence probed in this manner and, in partic-

ular, about features that can help classify it (Lodhi et al., 2001). Similar methods are increasingly in demand

in computational biology, because of the sequential nature of the data in both domains, and, specifically, be-

cause of the close analogy between text analysis by the identification of multiple, overlapping local patterns

on the one hand, and hybridization approaches to DNA sequencing on the other hand. Recent developments

in this field include derivations of the algorithmic complexity of specifying a string by its substrings (Skiena
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and Sundaram, 1995; Jiang and Li, 1996; Iliopoulos and Smyth, 1998). This approach is distinct from (and

more relevant for our present purposes than) treebank-based parsing (combining multiple local or partial parse

trees (Joshi and Schabes, 1997; Bod, 1998)) in that the cover it seeks need be neither precise nor exclusive.

Semantics: from functions to constructions and relations. According to the Chorus of Phrases metaphor

(Figure 3), the representation of a sentence by an ensemble of active units can be approximately described as a

relation (namely, as the subset of units whose activity exceeds some threshold). As in Construction Grammar

(Goldberg, 2003), this representation captures both semantic and syntactic information about the input. Inter-

estingly, recent work in computational semantics addressing various problematic aspects of compositionality

suggests that systematicity of meaning is better served by defining meaning as a relation over sentence parts

(Zadrozny, 1994), rather than as a function of the parts, as stipulated by the classical, Fregean approach.

Acquisition: from parameter setting to structure discovery. The ascendancy of the generative grammar

and its accompanying innateness postulate over competing distributional and behaviorist ideas in the 1960s

can be ascribed in a large part to the inadequacy of the contemporary statistical inference methods and the

perceived inability of association-based learning to handle recursion. Statistics, however, need not be limited

to counting word frequencies: in computer science, the integration of advanced statistical inference (including

Bayesian methods, the Minimum Description Length principle and other related information-theoretic tools),

progress in computational learning theory, efficient algorithms, and cheap hardware led to important concep-

tual progress, as well as to practical achievements (Manning and Schütze, 1999). Likewise, learning need not

be limited to the establishment of pairwise associations: bounded-depth recursively structured patterns can be

learned from examples, by efficient algorithms that rely on modern statistical inference (Solan et al., 2003b;

Solan et al., 2004); see (Clark, 2001) for an overview of the recent progress in this field.
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