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Construction-based approaches to syntax (Croft, 2001; Goldberg, 2003) posit
a lexicon populated by units of various sizes, as envisaged by (Langacker, 1987).
Constructions may be specified completely, as in the case of simple morphemes
or idioms such astake it to the bank, or partially, as in the expressionwhat’s
X doing Y?, whereX andY are slots that admit fillers of particular types (Kay
and Fillmore, 1999). Constructions offer an intriguing alternative to traditional
rule-based syntax by hinting at the extent to which the complexity of language
can stem from a rich repertoire of stored, more or less entrenched (Harris, 1998)
representations that address both syntactic and semantic issues, and encompass, in
addition to general rules, “totally idiosyncratic forms and patterns of all interme-
diate degrees of generality” (Langacker, 1987, p.46). Because constructions are
by their very nature language-specific, the question of acquisition in Construction
Grammar is especially poignant. We address this issue by offering an unsuper-
vised algorithm that learns constructions from raw corpora.

1 The ADIOS algorithm for grammar induction

In a standard paradigm for grammar induction, a teacher produces a sequence of
strings generated by a grammarG0, and a learner uses the resulting corpus to
construct a grammarG, aiming to approximateG0 in some sense (Adriaans and
van Zaanen, 2004). Recent evidence suggests that natural language acquisition
involves both statistical computation (e.g., in speech segmentation) and rule-like
algebraic processes (e.g., in structured generalization) (Saffran et al., 1996; Sei-
denberg, 1997; Marcus et al., 1999; Peña et al., 2002; Seidenberg et al., 2002).
Indeed, modern computational approaches to grammar induction integrate statis-
tical and rule-based methods (Pereira, 2000; Geman and Johnson, 2003).

We have developed a new method that uses statistical information present in
raw sequential data to identify significant segments and to distill hierarchical rule-
like regularities that support structured generalization (Solan et al., 2004; Edelman
et al., 2004). Our algorithm,ADIOS (for Automatic DIstillation of Structure), is
data driven. Consider a corpus of sentences (more generally, sequences) over a
lexicon of sizeN , whose units in the case of language are initially words (starting
with phonemes or letters or even letters in a condensed text without spaces also
works).



The algorithm starts by loading the corpus onto a directed pseudograph (a
non-simple graph in which both loops and multiple edges are permitted) whose
vertices are all lexicon entries, augmented by two special symbols,begin and
end. Each corpus sentence defines a separate path over the graph, starting at
begin and ending atend, and is indexed by the order of its appearance in the
corpus. Loading is followed by an iterative search for significantpatterns, which
are added to the lexicon as new units.

The algorithm generates candidate patterns by traversing, in each iteration,
a differentsearch path(initially coinciding with one of the original corpus sen-
tences), seeking sub-paths that are shared by a significant number of partially
aligned (Harris, 1954; van Zaanen, 2000) paths. The significant patterns (P) are
selected according to a context-sensitive probabilistic criterion defined in terms
of local flow quantities in the graph. Generalizing the search path, the algorithm
looks for an optionalequivalence class(E) of units that are interchangeable in
the given context, i.e., are in complementary distribution (Harris, 1954). At the
end of each iteration, the most significant pattern is added to the lexicon as a new
unit, the sub-paths it subsumes are merged into a new vertex, and the graph is
rewired accordingly (two rewiring modes are available: a context free Mode A
and a context-sensitive Mode B). The search for patterns and equivalence classes
and their incorporation into the graph are repeated until no new significant patterns
are found. The entire process is governed by three parameters, two of which con-
trol pattern significance, and another one sets the widthL of the context window
where equivalence classes are sought. Details of the algorithm appear elsewhere
(Solan et al., 2004).

The final lexicon includes those of the original symbols not incorporated into
larger units, and root patterns distilled by the algorithm (that is, the patterns that
reside on the final graph, at the top level of the hierarchy). Due to the hierarchical
process of pattern creation, each pattern is structured as a tree, whose leaves (ter-
minals) are the original members of the lexicon and whose intermediate nodes are
other patterns and equivalence classes (Figure 1). The resulting tree structure ex-
cludes cyclic recursion (loops) of patterns, although recursion may be introduced
through pattern matching in a post-processing stage.

The final graph includes as many paths as all the original sentences, but it can
also generate many new ones. To generate a sentence from a chosen path in the
graph, all its root patterns are traversed. Each recursively encountered pattern is
treated as a derivation or parse tree (Hopcroft and Ullman, 1979): it is read from
top (root) to bottom (terminals) and from left to right, while accruing the terminals
(words from the original lexicon) and selecting one member from each encoun-
tered equivalence class (Figure 1C). Because the equivalence relations only hold
in the contexts specified by their parent patterns, theADIOS representation is in-
herently safer than grammars that posit globally valid categories (such as “parts
of speech” in a natural language). At the same time, because each rewiring of the
graph brings closer far-apart units that used to straddle the newly abstracted pat-
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Figure 1: Progressive abstraction of patterns constructs a forest of trees rooted
in vertices of the graph (training data generated by a context-free grammar, TA1,
with 50 terminals and 28 rules).(A), Pattern P49, consisting of the terminalthe
and equivalence class E50 ={bird, cat, cow, dog, horse, rabbit}, is distilled.
(B), Further application of the algorithm yields equivalence classes (underlined)
such as E64, which contain some verbs.(C), Pattern P116 can generate 896 novel
sentences, eight of which appear in the training corpus (thegeneralization factor,
8/896, appears in parentheses). A novel sentence, such asthat George is eager
to read disturbs Joe, can be read off the leaf level of the tree (numbered arrows
indicate traversal order during generation). Pattern P116 is a root pattern, that is,
a unit situated on a final path.(D), The set of context-free productions (rewriting
rules) that is equivalent to the tree of pattern P116.(E), The initial path through
a sentence to whichADIOS was applied in the context-sensitive mode B.(F), The
same path after three root patterns (P55, P72 and P178) have been distilled. Note
how the two similar but not identical root patterns, P55 and P72, capture the dif-
ference between the equivalence classes E56 and E66 (indeed,Beth, for example,
is equivalent toJim in the context of P72, but not of P55). In this manner,ADIOS

enforces long-range agreement between E56 and the phrasedoesn’t she (embed-
ded in P178), and avoids over-generalization.(G), The two context-sensitive rules
in this example are [begin P55⇒ begin E56thinks that] and [P72 P178⇒ E66
thinks that P178].



tern, the resulting representation can capture long-range structural dependencies
among units.

Because patterns can be represented in the form of rewriting rules, which
are context-free when Mode A is used (Figure 1D) and context-sensitive when
Mode B is used (Figure 1G), the end product of anADIOS run constitutes a gram-
mar. As infinite recursion is not implemented in the current version of the algo-
rithm, the representations learned byADIOS are comparable in expressive power
to finite Context Sensitive Grammars. This means that any grammar consisting of
context sensitive rules can be loaded into anADIOS instance (that is, translated into
an ADIOS representation), provided that a limit is placed on the number of times
each rule is invoked recursively. In learning, the results described in the following
section show that our algorithm can acquire, from raw corpora, good operational
approximations to those grammars that generate data rich with partially alignable
sentences, including unconstrained natural-language data. Complex grammars
in which inherent ambiguity (Hopcroft and Ullman, 1979) is exacerbated by the
presence of multiple loops are dealt with effectively by acquiring more patterns.

2 Results

We tested theADIOS algorithm both on artificial-grammar data and on natural-
language corpora such as ATIS (Moore and Carroll, 2001) and the CHILDES
collection (MacWhinney and Snow, 1985), and in languages as diverse as English
and Chinese (Resnik et al., 1999). It is reasonable to require that the success of
a learning algorithm be measured by the closeness — ideally, identity — of the
learned and target grammars,G andG0, respectively. Unfortunately, even for
Context Free Grammars (CFGs), equivalence is undecidable (Hopcroft and Ull-
man, 1979). Moreover, for natural languagesG0 is inaccessible. We thus opt for
testing our implementation for generativity1 as follows. In the artificial-grammar
experiments, which start with a target grammar, a teacher instance of the model is
first pre-loaded with this grammar (using the one-to-one translation of CFG rules
into ADIOS patterns), then used to generate the training corpusCtraining. After
training, the learner generates a test corpusClearner and the teacher generates a
target corpusCtarget, the latter containing only novel sentences that do not appear
in Ctraining. The two corpora,Clearner andCtarget, are then used to calculate

1In testing a learned grammarG for strong generativity, the structural descriptions (parse trees) it
assigns to novel strings are compared to those produced by the target grammarG0. A weak gener-
ativity criterion requires merely thatG accept novelG0-grammatical strings as such, and reject the
ungrammatical ones. Strong generativity of grammars acquired by unsupervised algorithms that work
from raw data is in principle difficult to test, because of the unavailability of reliable “gold standard”
structural descriptions for such data. At the same time, demonstrating even weak perfect generativity
by an automatically acquired representation has until now proved elusive. Our results constitute signif-
icant progress on both fronts: the representations acquired by theADIOS algorithm are (1) structured in
a manner that makes certain syntactic sense, and (2) generative in that they largely encode and produce
acceptable sentences.



0.40

0.60

0.80

1.00

0.00 0.20 0.40 0.60 0.80 1.00

A

Pr
ec

is
io

n

(200)

(200)

(200)

mode A (no spaces)

(10,000 )

(200)

mode A (context free mode)

mode A ("semantically supervised")

mode B (context sensitive mode)

Recall

0

0.2

0.4

0.6

0.8

1

ADIOS ATIS-N

Pr
ec

is
io

n

A

Chinese

Spanish

French

English

Swedish

Danish

0

0.6

0 0.2 0.4 0.6 0.8 1

Over-generalization

L=5

L=4
L=3

10,000
Sentences

120,000
Sentences

40,000
Sentences

120,000
Sentences

L=3

L=5

L=4

L=5

L=4L=3
L=5

L=6

150 learners
30 learners

L=7

L=6
L=6

Pr
ec

is
io

n

0.4

0.2

0.8

Lo
w

 p
ro

du
ct

iv
ity

C D

Recall

(5,000)
(2500)

(1000)

(500)

0 0.2 0.4 0.6 0.8 1

0.6

0.4

0.8

1 B 1

Figure 2: (A), The performance of anADIOS model trained on extremely small
corpora generated by TA1. Optimal combinations of recall and precision (single
learner, 30 trials,η = 0.6, α = 0.01, L = 5, maximum recursion depth for the
teacher here and below set to 10) are shown for four different conditions: (i) the
default learning mode A (context-free); with a 800-sentence training corpus (not
shown), both precision and recall reach90%; (ii) mode B (context-sensitive) (iii)
a “semantically supervised” mode in which the equivalence classes of the target
grammar are made available to the learner ahead of time; (iv) bootstrap mode,
starting from a letter level and training on corpora in which all spaces between
words are omitted. For comparable performance, this mode requires larger cor-
pora (size in parentheses:200-10, 000 sentences).(B), Using the ATIS Context-
Free Grammar (4592 rules) (Moore and Carroll, 2001) as the teacher of multiple
ADIOS learners. Precision is defined by the mean over learners; for recall ac-
ceptance by one learner suffices. Several corpus sizes, context window widthsL
and numbers of learners are compared.(C), Output generated by an instance of
ADIOS that had been trained on the natural language ATIS-N corpus was judged
to be as acceptable to human subjects as sentences from ATIS-N (acceptability
data, mean± std, from eight subjects).(D), A dendrogram illustrating the rela-
tionships among six languages using pattern spectra. We define a pattern spectrum
as the histogram of pattern types, with bins labeled by sequences such as (T,P) or
(E,E,T), E standing for equivalence class, T for tree-terminal (original unit) and P
for significant pattern. Hierarchical clustering was applied to Euclidean distances
among histograms of patterns learned from a multilingual Bible (Resnik et al.,
1999) (single learner per language).



precision(the proportion ofClearner accepted by the teacher) andrecall (the pro-
portion ofCtarget accepted by the learner). A sentence is accepted if it precisely
fits one of the paths in theADIOS graph (that is, it can be generated by the path).
In the natural language experiments, where no target grammar is available, the
given corpus is split into two portions, one for training (Ctraining) and one for
testing (Ctarget), and the same evaluation method is applied, except that precision
must in this case be evaluated by an external referee (e.g., by a human subject).
This evaluation method is unique in that (i) it defines precision and recall more
conservatively than is standard in the literature (Klein and Manning, 2002), and
(ii) it involves testing both the capability of the learner toacceptall the grammat-
ical sentencesand its capability togenerateonly sentences that the teacher would
deem grammatical.

2.1 Grammar induction

We have conducted a series of experiments designed to evaluate the performance
of ADIOS in grammar induction (Figure 2).

Learning a simple CFG: We first replicated an experiment (Adriaans and
Vervoort, 2002) that aimed to reconstruct a specific Context-Free Grammar (29
terminals and 7 rules) from a corpus of 2000 sentences. Whereas the algorithm
of (Adriaans and Vervoort, 2002) generated between 3000 and 4000 rules,ADIOS

(used in the default Mode A) yielded 28 patterns and 9 equivalence classes, achiev-
ing 100% precision and99% recall. Next, we appliedADIOS to a somewhat more
complex CFG (TA1 grammar, 50 terminals and 28 rules), and showed that it per-
forms well even when only 200 sentences are used for training (see Figure 2A).

Learning a complex CFG: Because theADIOS algorithm is greedy (the best
available pattern in each iteration is immediately and irreversibly rewired), the
syntax it acquires depends on the order of sentences in the training set. This is
expected to affect the learning of a complex CFG, especially if it contains many
loops. To assess this dependence and to mitigate it, we train multiple learners
on different order-permuted versions of the corpus generated by the teacher. As
Figure 2B illustrates, for the parameter values explored (L = {3, 4, 5, 6}; 30
or 150 learners; corpus size between 10,000 and 120,000 sentences), the opti-
mal precision-recall trade-off for learning the ATIS CFG (357 terminals and 4592
rules) (Moore and Carroll, 2001) is obtained with a 150-learner cohort andL be-
tween 5 and 6. Some of the patterns learned from the ATIS corpus are shown in
Figure 3.

Generativity of the learned natural language grammar: To test the ability
of ADIOS to generate acceptable novel sentences after learning from a natural lan-
guage corpus, we trained it on12, 700 sentences from ATIS-N (a natural language
corpus of size13, 043 Moore and Carroll (2001)) and tested its recall level on the
343 remaining sentences. The small size of the training corpus results in a rela-
tively low recall of40% (under our strict definition that requires an exact match).
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Figure 3: Four patterns extracted from the ATIS natural language corpus. Some
of the sentences that can be described/generated by patterns #1690, #1731, #1855
and #1531 are:I would like to book the first class; I plan to make a round
trip; what kind of food would be served ; how many flights does continental
have . None of these sentences appear in the training data, illustrating the ability
of ADIOS to generalize. The numbers in parentheses denote the generalization
factors of the patterns and their components (e.g., pattern #1690 generates90%
new strings, while pattern #1731 generates66% new strings).

Figure 2C compares the acceptability ofADIOS-generated sentences with original
sentences from the ATIS-N corpus. Notably, the output generated byADIOS is
on the average as acceptable to human subjects as the original corpus sentences.
The human-judged precision (≈ 70%, as shown in the plot) is remarkable; for
comparison, the ATIS-CFG grammar, hand-constructed to fit the ATIS-N corpus
(with recall of45% on same data) produces over99% ungrammatical sentences
when used in a generative fashion.

Languages other than English:Applying ADIOS to the Parallel Bible corpus
(Resnik et al., 1999), we compared six different languages through a meta-analysis
of their respectiveADIOS grammars. The dendrogram shown in Figure 2D cap-
tures the resulting typological relationships.

2.2 Psycholinguistics

Learning “nonadjacent dependencies”:Gómez (2002) showed that the ability
of subjects to learn an artificial language L1 of the form{aXd, bXe, cXf}, as



measured by their ability to distinguish it implicitly from L2={aXe, bXf, cXd},
depends on the amount of variation introduced atX (symbolsa throughf here
stand for 3- or 4-letter nonsense words, whereasX denotes a slot in which a sub-
set of 2-24 other nonsense words may appear). Within theADIOS framework,
these non-adjacent dependencies translate into patterns with embedded equiva-
lence classes. We replicated the Gómez study by trainingADIOS on 432 strings
from L1 (30 learners,|X| = 2, 6, 12, 24, η = 0.6, α = 0.01). Training with
the context window parameterL set to 3 resulted in performance levels (rejection
rate of patterns outside of the learned language) that increased monotonically with
|X|, in correspondence with the human behavior. Interestingly, when trained with
L = 4, adios reaches perfect performance in this task.

Grammaticality judgments: A single instance ofADIOS was trained on the
CHILDES (MacWhinney and Snow, 1985) corpus, using sentences spoken by
parents to three year old children. It was then subjected to five grammaticality
judgment tests. One of these, the Göteborg multiple-choice ESL (English as Sec-
ond Language) test, consists of 100 sentences, each containing an open slot; for
each sentence, the subject selects one word from a list of three choices, so as to
complete the sentence grammatically. In this test,ADIOS scored at60%, which is
the average score for 9th grade ESL students. Interestingly, the average score of
ADIOS on the entire collection of tests was at the same level.
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Figure 4: An illustration of the ability ofADIOS to deal with certain structure-
dependent syntactic phenomena. In this example, when trained on sentences ex-
emplifying the so-called “tough movement”,ADIOS forms patterns that represent
the correct phrases (. . . is easy to read, is easy to please, is eager to read,
is eager to please, to read is easy andto please is easy), but does not over-
generalize to the incorrect ones (*to read is eager or *to please is eager).

3 Discussion

The ADIOS algorithm differs from other methods of grammar induction in the
data it requires and in the representations it builds, as well as in its algorithmic



approach. Most existing approaches require corpora tagged with part-of-speech
(POS) information (Clark, 2001); the very few exceptions (Wolff, 1988; Hen-
richsen, 2002; Adriaans and Vervoort, 2002) are not known to scale up. The ex-
traction of grammatical primitives in published methods may rely on collocation
frequencies (Wolff, 1988), or on global criteria such as the likelihood of the en-
tire corpus given the grammar (Lari and Young, 1990; Stolcke and Omohundro,
1994; de Marcken, 1996; Clark, 2001; Henrichsen, 2002). In comparison,ADIOS

carries out its inferences locally, in the context provided by the current search
path, alleviating the credit assignment problem in learning, and making produc-
tive use of learned structures safer. Furthermore,ADIOS works with raw text or
transcribed speech, and makes no prior assumptions about the structures it seeks.
At the same time, the patterns and equivalence classes it learns can be translated in
a straightforward manner into the form of context-sensitive rewriting rules. These
representations are both expressive enough to support extensive generativity, and,
in principle, restrictive enough to capture many of the structure-sensitive aspects
of syntax (Phillips, 2003) documented by linguists; examples include long-range
agreement (Figure 1F) and tough movement (Figure 4).

The massive, largely unsupervised, effortless and fast feat of learning that
is the acquisition of language by children has long been a daunting challenge
for cognitive scientists (Chomsky, 1986; Elman et al., 1996) and for natural lan-
guage engineers (Bod, 1998; Clark, 2001; Roberts and Atwell, 2002). Because a
completely bias-free unsupervised learning is impossible (Chomsky, 1986; Nowak
et al., 2001; Baum, 2004), the real issue in language acquisition is to determine the
constraints that a model of “grammar induction” should impose — and to charac-
terize those constraints that infants acquiring language do in fact impose — on the
learning procedure. In our approach, the constraints are defined algorithmically,
in the form of a method for detecting, in sequential symbolic data, of units (pat-
terns and equivalence classes) that are hierarchically structured and are supported
by context-sensitive statistical evidence.

Our method should be of interest to linguists of various theoretical persuasions
who construe grammars as containing — in addition to general and lexicalized
(Dauḿe et al., 2002; Geman and Johnson, 2003) rules — “inventories” of units
of varying kinds and sizes (Langacker, 1987; Daelemans, 1998) such as: idioms
and semi-productive forms (Jackendoff, 1997; Erman and Warren, 2000), pre-
fabricated expressions (Makkai, 1995; Wray, 2000), “syntactic nuts” (Culicover,
1999), frequent collocations (Bybee and Hopper, 2001), multiword expressions
(Sag et al., 2002; Baldwin et al., 2003), and constructions (Kay and Fillmore,
1999; Croft, 2001; Goldberg, 2003; Tomasello, 2003). In addition, the growing
collection of patterns revealed by our algorithm in various corpora should com-
plement both syntax-related resources such as the Penn Treebank (Marcus et al.,
1994) and semantics-oriented resources such as the WordNet (Miller and Fell-
baum, 1991), the PhraseNet (Li et al., 2003), and the Berkeley FrameNet (Baker
et al., 1998, 2003).
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